
A L L - I N - O N E

Coding

Nikhil Abraham et al.

OBC: 7.375” W

Nikhil Abraham is the CFO
of Udacity, an education company
that teaches technology skills that
help launch or advance a career.
Prior to joining Udacity, Nik worked
at Codecademy where he taught
beginning coders across a variety
of professions. He is also author of
Coding For Dummies and Getting a
Coding Job For Dummies.

Computers/Programming/General

$39.99 USA / $47.99 CAN / £27.99 UK

The demand for skilled coders exceeds the supply of trained candidates. What
better time to learn, or perfect, a skill that can lead to high-paying jobs? This
all-in-one guide gets you started with coding basics, helps expand your know-
how of high-demand skills, and serves as a valuable reference when problems
erupt. From building a simple web page to exploring data science, learn about
the world of coding here!

Cover Image: © maciek905/iStockphoto

9 Books Inside…
• Getting Started with Coding
• Career Building with Coding
• Basic Web Coding
• Advanced Web Coding
• Creating Web Applications
• Selecting Data Analysis Tools
• Evaluating Data
• Essential Machine Learning
• Applying Machine Learning

OFC: 7.375” W x 9.25” HSpine: 1.42

A
L

L
-IN

-O
N

E

Coding
Abraham

et al.

Start your coding career here!

0003081829.INDD i	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:04	AM

 Coding
A L L - I N - O N E

0003081829.INDD ii	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:04	AM

0003081829.INDD iii	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:04	AM

 Coding
A L L - I N - O N E

 b y Nikhil Abraham, Andy Harris,
Eva Holland, Joris Meys, Luca Massaron,

Chris Minnick, John Paul Mueller,
and Andrie de Vries

Coding All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2017 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017935595

ISBN 978-1-119-36302-6 (pbk); 978-1-119-36303-3 (epub); 978-1-119-36305-7 (epdf)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

0003081829.INDD iv	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:04	AM

0003081830.INDD v Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Contents at a Glance
Introduction . 1

Book 1: Getting Started with Coding . 5
CHAPTER 1: What Is Coding? . 7
CHAPTER 2:	 Programming	for the Web . 19
CHAPTER 3: Becoming a Programmer . 33

Book 2: Career Building with Coding . 43
CHAPTER 1: Exploring Coding Career Paths . 45
CHAPTER 2: Exploring Undergraduate and Graduate Degrees 59
CHAPTER 3:	 Training	on	the	Job . 73
CHAPTER 4: Coding Career Myths . 83

Book 3: Basic Web Coding . 93
CHAPTER 1: Exploring Basic HTML . 95
CHAPTER 2: Getting More Out of HTML . 113
CHAPTER 3: Getting Stylish with CSS . 129
CHAPTER 4: Next Steps with CSS . 151
CHAPTER 5: Building Floating Page Layouts . 173
CHAPTER 6:	 Using	Alternative	Positioning . 201

Book 4: Advanced Web Coding . 231
CHAPTER 1: Working Faster with Twitter Bootstrap . 233
CHAPTER 2:	 Adding	in	JavaScript . 249
CHAPTER 3:	 Understanding	Callbacks	and	Closures . 269
CHAPTER 4:	 Embracing	AJAX	and	JSON . 279
CHAPTER 5: jQuery . 295

Book 5: Creating Web Applications . 311
CHAPTER 1: Building Your Own App . 313
CHAPTER 2:	 Researching	Your	First	Web	Application . 325
CHAPTER 3:	 Coding	and	Debugging	Your	First	Web	Application 341

Book 6: Selecting Data Analysis Tools . 351
CHAPTER 1: Wrapping Your Head around Python . 353
CHAPTER 2:	 Installing	a	Python	Distribution . 367
CHAPTER 3: Working with Real Data . 387

0003081830.INDD vi Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Book 7: Evaluating Data . 405
CHAPTER 1: Conditioning Your Data . 407
CHAPTER 2: Shaping Data . 433
CHAPTER 3:	 Getting	a	Crash	Course	in	MatPlotLib . 451
CHAPTER 4: Visualizing the Data . 467
CHAPTER 5: Exploring Data Analysis . 489
CHAPTER 6:	 Exploring	Four	Simple	and	Effective	Algorithms 511

Book 8: Essentials of Machine Learning . 527
CHAPTER 1: Introducing How Machines Learn . 529
CHAPTER 2:	 Demystifying	the	Math	behind	Machine	Learning 553
CHAPTER 3:	 Descending	the	Right	Curve . 571
CHAPTER 4: Validating Machine Learning . 585

Book 9: Applying Machine Learning . 603
CHAPTER 1: Starting with Simple Learners . 605
CHAPTER 2:	 Leveraging	Similarity . 623
CHAPTER 3: Hitting Complexity with Neural Networks . 643
CHAPTER 4:	 Resorting	to	Ensembles	of	Learners . 661
CHAPTER 5: Real-World Applications . 677

Index . 725

0003081830.INDD vii Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents vii

Table of Contents
INTRODUCTION . 1

About	This	Book .2
Foolish Assumptions .2
Icons Used in This Book .3
Beyond the Book .4
Where to Go from Here .4

BOOK 1: GETTING STARTED WITH CODING 5

CHAPTER 1: What Is Coding? . 7
Defining	What	Code	Is .8

Following instructions .8
Writing code with some Angry Birds. 9

Understanding What Coding Can Do for You . 9
Eating the world with software .10
Coding	on	the	job .11
Scratching	your	own	itch	(and	becoming	rich	and	famous)12

Surveying	the	Types	of	Programming	Languages 13
Comparing	low-level	and	high-level	programming	languages14
Contrasting compiled code and interpreted code15
Programming	for	the	web .16

Taking	a	Tour	of	a	Web	App	Built	with	Code .16
Defining	the	app’s	purpose	and	scope .16
Standing on the shoulders of giants .17

CHAPTER 2:	 Programming	for the Web . 19
Displaying	Web	Pages	on	Your	Desktop	and	Mobile	Device20

Hacking	your	favorite	news	website .20
Understanding	how	the	World	Wide	Web	works23
Watching	out	for	your	front	end	and	back	end24
Defining	web	and	mobile	applications .25

Coding	Web	Applications .26
Starting	with	HTML,	CSS,	and	JavaScript .26
Adding	logic	with	Python,	Ruby,	or	PHP .27

Coding	Mobile	Applications .28
Building	mobile	web	apps .29
Building	native	mobile	apps .30

0003081830.INDD viii Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

viii Coding All-in-One For Dummies

CHAPTER 3: Becoming a Programmer . 33
Writing Code Using a Process .33

Researching	what	you	want	to	build .35
Designing your app .36
Coding your app .37
Debugging	your	code .38

Picking	Tools	for	the	Job .38
Working	offline .39
Working online with Codecademy.com .39

BOOK 2: CAREER BUILDING WITH CODING 43

CHAPTER 1: Exploring Coding Career Paths . 45
Augmenting	Your	Existing	Job .46

Creative	design .46
Content and editorial .47
Human resources .48
Product management .49
Sales and marketing .50
Legal .51

Finding	a	New	Coding	Job .52
Front-end	web	development .53
Back-end	web	development .54
Mobile	application	development. .56
Data analysis .57

CHAPTER 2: Exploring Undergraduate and Graduate Degrees . . . 59
Getting a College Degree .60

College computer science curriculum .60
Doing	extracurricular	activities .61
Two-year	versus	four-year	school .64

Enrolling	in	an	Advanced	Degree	Program .65
Graduate school computer science curriculum66
Performing research .68

Interning	to	Build	Credibility .68
Types of internship programs .69
Securing an internship .71

CHAPTER 3: Training on the Job . 73
Taking	a	Work	Project	to	the	Next	Level .74
Learning	on	the	Job	and	after	Work .75

Training	on	the	job .76
Learning after work .77

Freelancing	to	Build	Confidence	and	Skills .79

0003081830.INDD ix Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents ix

Transitioning to a New Role .80
Assessing your current role .81
Networking	with	developers .81
Identifying roles that match your interest and skills82

CHAPTER 4: Coding Career Myths . 83
Educational Myths .83

You	must	be	good	at	math .84
You	must	have	studied	engineering .84
You can learn coding in a few weeks .85
You need a great idea to start coding .85
Ruby	is	better	than	Python .86

Career Myths .87
Only	college	graduates	receive	coding	offers87
You	must	have	experience .88
Tech	companies	don’t	hire	women	or	minorities89
The	highest	paying	coding	jobs	are	in	San	Francisco90
Your	previous	experience	isn’t	relevant .91

BOOK 3: BASIC WEB CODING . 93

CHAPTER 1: Exploring Basic HTML . 95
What Does HTML Do? .95
Understanding HTML Structure .96

Identifying elements .97
Featuring	your	best	attribute .98
Standing	head,	title,	and	body	above	the	rest 100

Getting Familiar with Common HTML Tasks and Tags 102
Writing headlines .103
Organizing text in paragraphs .104
Linking	to	your	(heart’s)	content .104
Adding images .106

Styling Me Pretty .107
Highlighting	with	bold,	italics,	underline,	and	strikethrough 107
Raising	and	lowering	text	with	superscript	and	subscript108

Building	Your	First	Website	Using	HTML .109

CHAPTER 2: Getting More Out of HTML . 113
Organizing Content on the Page .113
Listing Data .115

Creating ordered and unordered lists .116
Nesting lists .117

0003081830.INDD x Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

x Coding All-in-One For Dummies

Putting	Data	in	Tables .118
Basic	table	structuring .118
Stretching	table	columns	and	rows .120
Aligning	tables	and	cells .121

Filling Out Forms .124
Understanding how forms work .125
Creating	basic	forms .126

Practicing More with HTML .127

CHAPTER 3: Getting Stylish with CSS . 129
What Does CSS Do? .129
CSS Structure .131

Choosing the element to style .131
My	property	has	value .133
Hacking	the	CSS	on	your	favorite	website .133

Common CSS Tasks and Selectors .135
Font gymnastics: Size, color, style, family, and decoration135
Customizing links .139
Adding	background	images	and	styling	foreground	images 142

Styling Me Pretty .146
Adding CSS to your HTML .146
Building	your	first	web	page .148

CHAPTER 4: Next Steps with CSS . 151
Styling	(More)	Elements	on	Your	Page .152

Styling lists .152
Designing	tables .155

Selecting Elements to Style .157
Styling	specific	elements .158
Naming HTML elements .161

Aligning and Laying Out Your Elements .163
Organizing data on the page .163
Shaping	the	div .165
Understanding	the	box	model. .167
Positioning	the	boxes .169

Writing	More	Advanced	CSS .172

CHAPTER 5: Building Floating Page Layouts . 173
Creating a Basic Two-Column Design .173

Designing the page .173
Building the HTML .175
Using	temporary	background	colors .177
Setting	up	the	floating	columns .179
Tuning	up	the	borders .180

0003081830.INDD xi Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents xi

Advantages	of	a	fluid	layout. .181
Using semantic tags .182

Building a Three-Column Design .185
Styling the three-column page .186
Problems	with	the	floating	layout .188
Specifying a min-height .189
Using	height	and	overflow .191

Building a Fixed-Width Layout .193
Setting up the HTML .193
Fixing the width with CSS .194

Building a Centered Fixed-Width Layout .196
Making	a	surrogate	body	with	an	all	div .197
How the jello layout works .198
Limitations of the jello layout .199

CHAPTER 6: Using Alternative Positioning . 201
Working	with	Absolute	Positioning .201

Setting up the HTML .202
Adding position guidelines .203
Making	absolute	positioning	work .204

Managing z-index .206
Handling depth .206
Working with z-index. .207

Building	a	Page	Layout	with	Absolute	Positioning208
Overview	of	absolute	layout .209
Writing the HTML .210
Adding the CSS .210

Creating	a	More	Flexible	Layout .212
Designing with percentages .213
Building the layout .215

Exploring Other Types of Positioning .216
Creating	a	fixed	menu	system .216
Setting up the HTML .218
Setting	the	CSS	values .219

Flexible	Box	Layout	Model .221
Creating	a	flexible	box	layout .222
Viewing	a	flexible	box	layout .223
. . .	And	now	for	a	little	reality .225

BOOK 4: ADVANCED WEB CODING . 231

CHAPTER 1: Working Faster with Twitter Bootstrap 233
Figuring Out What Bootstrap Does .234
Installing Bootstrap .235

0003081830.INDD xii Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

xii Coding All-in-One For Dummies

Understanding the Layout Options .236
Lining up on the grid system .236
Dragging	and	dropping	to	a	website .239
Using	predefined	templates .240
Adapting	layout	for	mobile,	tablet,	and	desktop 241

Coding	Basic	Web	Page	Elements .243
Designing	buttons .243
Navigating	with	toolbars .244
Adding icons .246

Build	the	Airbnb	Home	Page .247

CHAPTER 2: Adding in JavaScript . 249
What	Does	JavaScript	Do? .249
Understanding	JavaScript	Structure .251

Using	semicolons,	quotes,	parentheses,	and	braces252
Coding	Common	JavaScript	Tasks .253

Storing	data	with	variables .253
Making decisions with if-else statements .254
Working	with	string	and	number	methods258
Alerting users and prompting them for input259
Naming code with functions .260
Adding	JavaScript	to	the	web	page .261

Writing	Your	First	JavaScript	Program .263
Working with APIs .263

What do APIs do? .264
Scraping data without an API .266
Researching and choosing an API .267

Using	JavaScript	Libraries .267
jQuery .267
D3.js .268

CHAPTER 3: Understanding Callbacks and Closures 269
What	Are	Callbacks? .269

Passing functions as arguments .270
Writing	functions	with	callbacks .270
Using	named	callback	functions .271

Understanding Closures .274
Using Closures .277

CHAPTER 4: Embracing AJAX and JSON . 279
Working	behind	the	Scenes	with	AJAX .279

AJAX	examples .280
Viewing	AJAX	in	action .282
Using	the	XMLHttpRequest	object .285

0003081830.INDD xiii Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents xiii

Working with the same-origin policy .287
Using	CORS,	the	silver	bullet	for	AJAX	requests 288

Putting	Objects	in	Motion	with	JSON .289

CHAPTER 5: jQuery . 295
Writing More and Doing Less .295
Getting Started with jQuery .296
The	jQuery	Object .297
Is Your Document Ready? .298
Using jQuery Selectors .298
Changing Things with jQuery .300

Getting	and	setting	attributes .300
Changing CSS .300
Manipulating elements in the DOM .301

Events .302
Using	on()	to	attach	events .302
Detaching	with	off() .304
Binding	to	events	that	don’t	exist	yet .304
Other	event	methods .305

Effects .305
Basic	effects .306
Fading	effects .306
Sliding	effects .306
Setting arguments for animation methods307
Custom	effects	with	animate() .307
Playing with jQuery animations .308

AJAX .309
Using	the	ajax()	method .309
Shorthand	AJAX	methods .310

BOOK 5: CREATING WEB APPLICATIONS 311

CHAPTER 1: Building Your Own App . 313
Building	a	Location-Based	Offer	App .313

Understanding the situation .314
Plotting your next steps .314

Following	an	App	Development	Process .315
Planning	Your	First	Web	Application .316
Exploring	the	Overall	Process .317
Meeting	the	People	Who	Bring	a	Web	App	to	Life319

Creating with designers .319
Coding	with	front-	and	back-end	developers 321
Managing with product managers .322
Testing with quality assurance .322

0003081830.INDD xiv Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

xiv Coding All-in-One For Dummies

CHAPTER 2: Researching Your First Web Application 325
Dividing	the	App	into	Steps .326

Finding	your	app’s	functionality .326
Finding	your	app’s	functionality:	My	version326
Finding	your	app’s	form .328
Finding	your	app’s	form:	The	McDuck’s	Offer	App	design332

Identifying Research Sources. .333
Researching	the	Steps	in	the	McDuck’s	Offer	App335
Choosing a Solution for Each Step .338

CHAPTER 3: Coding and Debugging Your First
Web Application . 341
Getting Ready to Code .342
Coding	Your	First	Web	Application .342

Development	environment .343
Prewritten code .343
Coding steps for you to follow .347

Debugging	Your	App .350

BOOK 6: SELECTING DATA ANALYSIS TOOLS 351

CHAPTER 1: Wrapping Your Head around Python 353
What Does Python Do? .354
Defining	Python	Structure .355

Understanding the Zen of Python .355
Styling and spacing .356

Coding	Common	Python	Tasks	and Commands 357
Defining	data	types	and	variables .357
Computing	simple	and	advanced	math .358
Using strings and special characters .360
Deciding with conditionals: if, elif, else .361
Input and output .362

Shaping Your Strings .363
Dot	notation	with	upper(),	lower(),	capitalize(),	and	strip() 363
String formatting with % .364

Building a Simple Tip Calculator Using Python365

CHAPTER 2: Installing a Python Distribution . 367
Choosing	a	Python	Distribution	with	Machine	Learning	in	Mind368

Getting Continuum Analytics Anaconda .369
Getting Enthought Canopy Express .370
Getting	Python(x,y) .371
Getting WinPython .371

0003081830.INDD xv Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents xv

Installing Python on Linux .371
Installing	Python	on	Mac	OS	X .372
Installing Python on Windows .374
Downloading the Data Sets and Example Code378

Using	Jupyter	Notebook .378
Defining	the	code	repository .379
Understanding	the	data	sets	used	in	this	book 385

CHAPTER 3: Working with Real Data . 387
Uploading, Streaming, and Sampling Data .388

Uploading small amounts of data into memory388
Streaming large amounts of data into memory390
Sampling data .391

Accessing Data in Structured Flat-File Form .392
Reading	from	a	text	file .393
Reading CSV delimited format .394
Reading	Excel	and	other	Microsoft	Office	files396

Sending Data in Unstructured File Form .397
Managing	Data	from	Relational	Databases .400
Interacting	with	Data	from	NoSQL	Databases 401
Accessing	Data	from	the	Web .402

BOOK 7: EVALUATING DATA . 405

CHAPTER 1: Conditioning Your Data . 407
Juggling	between	NumPy	and	pandas .408

Knowing when to use NumPy .408
Knowing when to use pandas .408

Validating Your Data .409
Figuring	out	what’s	in	your	data .410
Removing	duplicates .411
Creating a data map and data plan .412

Manipulating	Categorical	Variables .414
Creating	categorical	variables .415
Renaming	levels .417
Combining	levels .417

Dealing with Dates in Your Data .419
Formatting	date	and	time	values .419
Using the right time transformation .420

Dealing with Missing Data .421
Finding the missing data .421
Encoding missingness .422
Imputing missing data .423

0003081830.INDD xvi Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

xvi Coding All-in-One For Dummies

Slicing and Dicing: Filtering and Selecting Data 424
Slicing rows .424
Slicing columns .425
Dicing .426

Concatenating and Transforming .426
Adding	new	cases	and	variables .427
Removing	data .428
Sorting	and	shuffling .429

Aggregating	Data	at	Any	Level .430

CHAPTER 2: Shaping Data . 433
Working with HTML Pages .434

Parsing	XML	and	HTML .434
Using	XPath	for	data	extraction .435

Working with Raw Text .436
Dealing with Unicode .436
Stemming	and	removing	stop	words .438
Introducing regular expressions .440

Using the Bag of Words Model and Beyond .442
Understanding	the	bag	of	words	model .443
Working with n-grams .445
Implementing TF-IDF transformations .446

Working with Graph Data .447
Understanding the adjacency matrix .448
Using	NetworkX	basics .448

CHAPTER 3: Getting a Crash Course in MatPlotLib 451
Starting with a Graph .452

Defining	the	plot .452
Drawing multiple lines and plots .453
Saving	your	work .454

Setting the Axis, Ticks, Grids .455
Getting the axes .455
Formatting the axes .456
Adding grids .457

Defining	the	Line	Appearance .458
Working with line styles .458
Using colors .459
Adding markers .460

Using	Labels,	Annotations,	and	Legends .462
Adding	labels .463
Annotating the chart .464
Creating a legend .465

0003081830.INDD xvii Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents xvii

CHAPTER 4: Visualizing the Data . 467
Choosing the Right Graph .468

Showing parts of a whole with pie charts .468
Creating	comparisons	with	bar	charts .470
Showing	distributions	using	histograms .471
Depicting	groups	using	boxplots .472
Seeing data patterns using scatterplots .474

Creating	Advanced	Scatterplots .475
Depicting groups .476
Showing correlations .477

Plotting Time Series. .478
Representing time on axes .478
Plotting	trends	over	time .480

Plotting Geographical Data .481
Visualizing Graphs .483

Developing	undirected	graphs .484
Developing	directed	graphs .485

CHAPTER 5: Exploring Data Analysis . 489
The EDA Approach. .490
Defining	Descriptive	Statistics	for	Numeric	Data491

Measuring central tendency .492
Measuring	variance	and	range .493
Working with percentiles .494
Defining	measures	of	normality .494

Counting for Categorical Data .495
Understanding frequencies .496
Creating	contingency	tables .497

Creating Applied Visualization for EDA. .498
Inspecting	boxplots .498
Performing	t-tests	after	boxplots .499
Observing	parallel	coordinates .500
Graphing	distributions .501
Plotting scatterplots .502

Understanding Correlation .504
Using	covariance	and	correlation .504
Using nonparametric correlation .507
Considering	chi-square	for	tables .507

Modifying	Data	Distributions .508
Using	the	normal	distribution .508
Creating a z-score standardization .509
Transforming	other	notable	distributions .509

0003081830.INDD xviii Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

xviii Coding All-in-One For Dummies

CHAPTER 6:	 Exploring	Four	Simple	and	Effective	Algorithms . . . 511
Guessing	the	Number:	Linear	Regression .512

Defining	the	family	of	linear	models .512
Using	more	variables .513
Understanding	limitations	and	problems .514

Moving	to	Logistic	Regression .515
Applying logistic regression .516
Considering when classes are more .517

Making	Things	as	Simple	as	Naïve	Bayes .518
Finding	out	that	Naïve	Bayes	isn’t	so	naïve519
Predicting	text	classifications .521

Learning	Lazily	with	Nearest	Neighbors .522
Predicting	after	observing	neighbors .523
Choosing your k parameter wisely .525

BOOK 8: ESSENTIALS OF MACHINE LEARNING 527

CHAPTER 1: Introducing How Machines Learn 529
Getting	the	Real	Story	about	AI .530

Moving	beyond	the	hype .530
Dreaming of electric sheep .532
Overcoming	AI	fantasies .535
Considering	the	relationship	between	AI	and	
machine learning .538
Considering	AI	and	machine	learning	specifications539
Defining	the	divide	between	art	and	engineering 540

Learning in the Age of Big Data .541
Defining	big	data .542
Considering	the	sources	of	big	data .543
Specifying the role of statistics in machine learning 546
Understanding the role of algorithms .547
Defining	what	training	means .550

CHAPTER 2: Demystifying the Math behind
Machine Learning . 553
Working with Data .554

Creating a matrix .556
Understanding	basic	operations .558
Performing matrix multiplication .558
Glancing	at	advanced	matrix	operations .561
Using	vectorization	effectively .561

Exploring	the	World	of	Probabilities .563
Operating	on	probabilities .564
Conditioning	chance	by	Bayes’	theorem .565

Describing	the	Use	of	Statistics .568

0003081830.INDD xix Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents xix

CHAPTER 3: Descending the Right Curve . 571
Interpreting Learning as Optimization .572

Supervised	learning .572
Unsupervised	learning .573
Reinforcement learning .573
The learning process .573

Exploring Cost Functions .576
Descending	the	Error	Curve .578
Updating	by	Mini-Batch	and	Online .581

CHAPTER 4: Validating Machine Learning . 585
Checking Out-of-Sample Errors .586

Looking for generalization .587
Getting to Know the Limits of Bias .589
Keeping Model Complexity in Mind .591
Keeping Solutions Balanced. .592

Depicting	learning	curves .593
Training, Validating, and Testing .595
Resorting to Cross-Validation .596
Looking	for	Alternatives	in	Validation. .597
Optimizing Cross-Validation Choices .598

Exploring the space of hyper-parameters .599
Avoiding	Sample	Bias	and	Leakage	Traps .601

Watching out for snooping .602

BOOK 9: APPLYING MACHINE LEARNING 603

CHAPTER 1: Starting with Simple Learners . 605
Discovering	the	Incredible	Perceptron .606

Falling short of a miracle .606
Touching	the	nonseparability	limit .608

Growing	Greedy	Classification	Trees .610
Predicting	outcomes	by	splitting	data .610
Pruning	overgrown	trees .614

Taking	a	Probabilistic	Turn .615
Understanding	Naïve	Bayes .615
Estimating	response	with	Naïve	Bayes .618

CHAPTER 2: Leveraging Similarity . 623
Measuring	Similarity	between	Vectors .624

Understanding similarity .624
Computing distances for learning .625

0003081830.INDD xx Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

xx Coding All-in-One For Dummies

Using Distances to Locate Clusters .626
Checking assumptions and expectations. .628
Inspecting the gears of the algorithm .629

Tuning the K-Means Algorithm .630
Experimenting	K-means	reliability .631
Experimenting	with	how	centroids	converge634

Searching	for	Classification	by	k-Nearest	Neighbors637
Leveraging	the	Correct	K	Parameter .638

Understanding the k parameter .638
Experimenting	with	a	flexible	algorithm .639

CHAPTER 3: Hitting Complexity with Neural Networks 643
Learning and Imitating from Nature. .644

Going forth with feed-forward .645
Going	even	deeper	down	the	rabbit	hole .647
Getting	back	with	backpropagation .650

Struggling	with	Overfitting .653
Understanding	the	problem .653
Opening	the	black	box .654

Introducing Deep Learning .657

CHAPTER 4: Resorting to Ensembles of Learners 661
Leveraging	Decision	Trees .662

Growing a forest of trees .663
Understanding the importance measures .667

Working with Almost Random Guesses .670
Bagging	predictors	with	Adaboost .670

Boosting Smart Predictors .673
Meeting again with gradient descent .674

Averaging	Different	Predictors .676

CHAPTER 5: Real-World Applications . 677
Classifying Images .677

Working with a set of images .678
Extracting	visual	features .683
Recognizing faces using eigenfaces .684
Classifying images .688

Scoring Opinions and Sentiments .691
Introducing natural language processing .691
Understanding how machines read .692
Processing and enhancing text .694
Scraping	textual	data	sets	from	the	web .699

0003081830.INDD xxi Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Table of Contents xxi

Handling	problems	with	raw	text .702
Using	Scoring	and	Classification .703

Performing	classification	tasks .704
Analyzing	reviews	from	e-commerce .706

Recommending	Products	and	Movies .710
Realizing	the	revolution .711
Downloading rating data .712
Trudging	through	the	MovieLens	data	set .712
Navigating	through	anonymous	web	data 714
Encountering the limits of rating data .715
Leveraging	SVD .716

INDEX . 725

0003081830.INDD xxii Trim size: 7.375 in × 9.25 in March 31, 2017 4:06 AM

Introduction 1

0003081831.INDD 1 Trim size: 7.375 in × 9.25 in March 30, 2017 11:20 PM

Introduction

The ability to read, write, and understand code has never been more impor-
tant, useful, or lucrative than it is today. Computer code has forever changed
our lives. Many people can’t even make it through the day without inter-

acting with something built with code. Even so, for many people, the world of
coding seems complex and inaccessible. Maybe you participated in a tech-related
business meeting and did not fully understand the conversation. Perhaps you tried
to build a web page for your family and friends, but ran into problems displaying
pictures or aligning text. Maybe you’re even intimidated by the unrecognizable
words on the covers of books about coding, words such as HTML, CSS, JavaScript,
Python, or Ruby.

If you’ve previously been in these situations, then Coding All-in-One For Dummies
is for you. This book explains basic concepts so you can participate in technical
conversations and ask the right questions, and it goes even further than Coding
For Dummies by covering additional topics in data science, machine learning, and
coding careers. Don’t worry — this book assumes you’re starting with little to
no previous coding knowledge, and I haven’t tried to cram every possible coding
concept into these pages. Additionally, I encourage you here to learn by doing and
by actually creating your own programs. Instead of a website, imagine that you
want to build a house. You could spend eight years studying to be an architect, or
you could start today by learning a little bit about foundations and framing. This
book kick-starts your coding journey today.

The importance of coding is ever-increasing. As author and technologist Douglas
Rushkoff famously said, “program or be programmed.” When humans invented
languages and then the alphabet, people learned to listen and speak, and then read
and write. In our increasingly digital world, it’s important to learn not just how to
use programs but also how to make them. For example, observe this transition in
music. For over a century, music labels decided what songs the public could listen
to and purchase. In 2005, three coders created YouTube, which allowed anyone to
release songs. Today more songs have been uploaded to YouTube than have been
released by all the record labels combined in the past century.

Accompanying this book are examples at www.codecademy.com, whose exercises
are one of the easiest ways to learn how to code without installing or download-
ing anything. The Codecademy website includes examples and exercises from this
book, along with projects and examples for additional practice.

2 Coding All-in-One For Dummies

0003081831.INDD 2 Trim size: 7.375 in × 9.25 in March 30, 2017 11:20 PM

About This Book
This book is designed for readers with little to no coding experience, and gives an
overview of programming to non-programmers. In plain English, you learn how
code is used to create web programs, who makes those programs, and the pro-
cesses they use. The topics covered include

 » Explaining what coding is and answering the common questions
related to code

 » Building basic websites using the three most common languages: HTML, CSS,
and JavaScript

 » Surveying other programming languages such as Python

 » Creating an application using HTML, CSS, and JavaScript

 » Analyzing data using machine learning algorithms and techniques

 » Exploring coding careers paths and different ways to learn how to code

As you read this book, keep the following in mind:

 » The book can be read from beginning to end, but feel free to skip around if
you like. If a topic interests you, start there. You can always return to the
previous chapters, if necessary.

 » At some point, you will get stuck, and the code you write will not work as
intended. Do not fear! There are many resources to help you, including
support forums, others on the Internet, and me! Using Twitter, you can send
me a public message at @nikhilgabraham with the hashtag #codingFD.
Additionally, you can sign up for book updates and explanations for changes
to programming language commands by visiting http://tinyletter.com/
codingfordummies.

 » Code in the book will appear in a monospaced font like this:
<h1>Hi there!</h1>.

Foolish Assumptions
I do not make many assumptions about you, the reader, but I do make a few.

Introduction 3

0003081831.INDD 3 Trim size: 7.375 in × 9.25 in March 30, 2017 11:20 PM

I assume you don’t have previous programming experience. To follow along, then,
you only need to be able to read, type, and follow directions. I try to explain as
many concepts as possible using examples and analogies you already know.

I assume you have a computer running the latest version of Google Chrome. The
examples in the book have been tested and optimized for the Chrome browser,
which is available for free from Google. Even so, the examples may also work in
the latest version of Firefox. Using Internet Explorer for the examples in this book,
however, is discouraged.

I assume you have access to an Internet connection. Some of the examples in the
book can be done without an Internet connection, but most require one so that you
can access and complete the exercises on www.codecademy.com.

For the books on data analysis and machine learning, I assume you are able to
download and install the Python programming language and associated program-
ming libraries, both of which are available for free. I also assume you have some
math background and understand how algorithms work.

Icons Used in This Book
Here are the icons used in the book to flag text that should be given extra attention
or that can be skipped.

This icon flags useful information or explains a shortcut to help you understand
a concept.

This icon explains technical details about the concept being explained. The details
might be informative or interesting, but are not essential to your understanding
of the concept at this stage.

Try not to forget the material marked with this icon. It signals an important con-
cept or process that you should keep in mind.

Watch out! This icon flags common mistakes and problems that can be avoided if
you heed the warning.

4 Coding All-in-One For Dummies

0003081831.INDD 4 Trim size: 7.375 in × 9.25 in March 30, 2017 11:20 PM

Beyond the Book
A lot of extra content that you won’t find in this book is available at www.dummies.
com. Go online to find the following:

 » The source code for the examples in this book: You can find it at

www.dummies.com/go/codingaiodownloads.

The source code is organized by chapter. The best way to work with a chapter
is to download all the source code for it at one time.

 » The links to the Codecademy and other exercises: You can find these at

www.dummies.com/go/codingaiolinks.

 » Cheat Sheet: You can find a list of common HTML, CSS, and JavaScript
commands, among other useful information.

To view this book’s Cheat Sheet, simply go to www.dummies.com and search
for “Coding For Dummies All-in-One Cheat Sheet” in the Search box.

 » Updates: Code and specifications are constantly changing, so the commands
and syntax that work today may not work tomorrow. You can find any updates
or corrections by visiting

http://tinyletter.com/codingfordummies.

Where to Go from Here
All right, now that all the administrative stuff is out of the way, it’s time to get
started. You can totally do this. Congratulations on taking your first step into the
world of coding!

1
0003053962.INDD 5 Trim size: 7.375 in × 9.25 in March 30, 2017 11:07 PM

 Getting Started
with Coding

0003053962.INDD 6 Trim size: 7.375 in × 9.25 in March 30, 2017 11:07 PM

Contents at a Glance
CHAPTER 1: What Is Coding? . 7

Defining What Code Is . 8
Understanding What Coding Can Do for You 9
Surveying the Types of Programming Languages 13
Taking a Tour of a Web App Built with Code 16

CHAPTER 2: Programming for the Web . 19
Displaying Web Pages on Your Desktop and Mobile Device 20
Coding Web Applications . 26
Coding Mobile Applications . 28

CHAPTER 3: Becoming a Programmer . 33
Writing Code Using a Process . 33
Picking Tools for the Job . 38

CHAPTER 1 What Is Coding? 7

0003053971.INDD 7 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

 What Is Coding?
“A million dollars isn’t cool, you know what’s cool? A billion dollars.”

 — SEAN PARKER, The Social Network

 E very week the newspapers report on another technology company that has
raised capital or sold for millions of dollars. Sometimes, in the case of com-
panies like Instagram, WhatsApp, and Uber, the amount in the headline is

for billions of dollars. These articles may pique your curiosity, and you may want
to see how code is used to build the applications that experience these fi nancial
outcomes. Alternatively, your interests may lie closer to work. Perhaps you work
in an industry in decline, like print media, or in a function that technology is rap-
idly changing, like marketing. Whether you are thinking about switching to a new
career or improving your current career, understanding computer programming
or “coding” can help with your professional development. Finally, your interest
may be more personal — perhaps you have an idea, a burning desire to create
something, a website or an app, to solve a problem you have experienced, and you
know reading and writing code is the fi rst step to building your solution. Whatever
your motivation, this book will shed light on coding and programmers, and help
you think of both not as mysterious and complex but approachable and something
you can do yourself.

 In this chapter, you will understand what code is, what industries are aff ected by
computer software, the diff erent types of programming languages used to write
code, and take a tour of a web app built with code.

Chapter 1

 IN THIS CHAPTER

 » Seeing what code is and what it
can do

 » Touring your fi rst program using code

 » Understanding programming
languages used to write code

0003053971.INDD 8 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

8 BOOK 1 Getting Started with Coding

Defining What Code Is
Computer code is not a cryptic activity reserved for geniuses and oracles. In fact,
in a few minutes you will be writing some computer code yourself! Most computer
code performs a range of tasks in our lives from the mundane to the extraor-
dinary. Code runs our traffic lights and pedestrian signals, the elevators in our
buildings, the cell phone towers that transmit our phone signals, and the space
ships headed for outer space. We also interact with code on a more personal level,
on our phones and computers, and usually to check email or the weather.

Following instructions
Computer code is a set of statements, like sentences in English, and each state-
ment directs the computer to perform a single step or instruction. Each of these
steps is very precise, and followed to the letter. For example, if you are in a res-
taurant and ask a waiter to direct you to the restroom, he might say, “head to the
back, and try the middle door.” To a computer, these directions are so vague as to
be unusable. Instead, if the waiter gave instructions to you as if you were a com-
puter program he might say, “From this table, walk northeast for 40 paces. Then
turn right 90 degrees, walk 5 paces, turn left 90 degrees, and walk 5 paces. Open
the door directly in front of you, and enter the restroom.” Figure 1-1 shows lines
of code from the popular game, Pong. Do not worry about trying to understand
what every single line does, and don’t feel intimated. You will soon be reading and
writing your own code.

One rough way to measure a program’s complexity is to count its statements or
lines of code. Basic applications like the Pong game have 5,000 lines of code, while
more complex applications like Facebook currently have over 10 million lines of
code. Whether few or many lines of code, the computer follows each instruction
exactly and effortlessly, never tiring like the waiter might when asked the hun-
dredth time for the location of the restroom.

FIGURE 1-1:
Computer code

from the
game Pong.

W
ha

t
Is

 C
od

in
g?

0003053971.INDD 9 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

CHAPTER 1 What Is Coding? 9

Be careful of only using lines of code as a measure for a program’s complexity.
Just like when writing in English, 100 well written lines of code can perform the
same functionality as 1,000 poorly written lines of code.

Writing code with some Angry Birds
If you’ve never written code before, now is your chance to try! Go to http://
csedweek.org/learn, where you will see a beginner student experience, scroll
down the page, and click the tile labeled “Write Your First Computer Program,”
the link with the Angry Birds icon, as shown in Figure 1-2. This tutorial is meant
for those with no previous computer programming experience, and it introduces
the basic building blocks used by all computer programs. You can also click the tile
labeled “Star Wars: Building a Galaxy with Code.” The most important takeaway from
these tutorials is to understand that computer programs use code to literally and
exactly tell the computer to execute a set of instructions.

Computer Science Education Week is an annual program dedicated to elevating
the profile of computer science during one week in December. In the past, Presi-
dent Obama, Bill Gates, basketball player Chris Bosh, and singer Shakira, among
others, have supported and encouraged people from the United States and around
the world to participate.

Understanding What Coding
Can Do for You

Coding can be used to perform tasks and solve problems that you experience every
day. The “everyday” situations in which programs or apps can provide assistance

FIGURE 1-2:
Write your

first computer
program with a

gamelike tutorial
using Angry Birds.

0003053971.INDD 10 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

10 BOOK 1 Getting Started with Coding

continue to grow at an exponential pace, but this was not always the case. The rise
of web applications, Internet connectivity, and mobile phones inserted software
programs into daily life, and lowered the barrier for you to become a creator, solv-
ing personal and professional problems with code.

Eating the world with software
In 2011, Marc Andreessen, creator of Netscape Navigator and now venture capi-
talist, noted that “software is eating the world.” He predicted that new software
companies would disrupt existing tech companies at a rapid pace. Traditionally,
code-powered software used on desktops and laptops had to first be installed, and
then you had to supply data to the program. However, three trends have dramati-
cally increased the use of code in everyday life:

 » Web-based software: This software operates in the browser without requiring
installation. For example, to check your email, you previously had to install an
email client either by downloading the software or from a CD-ROM. Sometimes
issues arose when the software wasn’t available for your operating system,
or conflicted with your operating system version. Hotmail, a web-based
email client, rose to popularity, in part, because it allowed users visiting www.
hotmail.com to instantly check their email without worrying about installation
issues or software incompatibility. Web applications increased consumer
appetite to try more applications, and developers in turn were incentivized to
write more applications.

 » Internet broadband connectivity: Broadband connectivity has increased,
providing a fast Internet connection to more people in the last few years than
in the previous decade. Today more than 2 billion people can access web-
based software, up from approximately 50 million only a decade ago.

 » Mobile phones: Today’s smartphones bring programs with you wherever
you go, and help supply data to programs. Many software programs became
more useful when accessed on-the-go than when limited to a desktop com-
puter. For instance, use of maps applications greatly increased thanks to
mobile phones, which makes sense, because users need directions the most
when lost, not just when planning a trip at home on the computer. In addi-
tion, through GPS technology, mobile phones are equipped with sensors that
measure and supply data to programs like orientation, acceleration, and
current location. Now instead of having to input all the data to programs
yourself, mobile devices can help. For instance, a fitness application like
RunKeeper doesn’t require you to input start and end times in order to keep
track of your runs. You can press Start at the beginning of your run, and the
phone will automatically track your distance, speed, and time.

W
ha

t
Is

 C
od

in
g?

0003053971.INDD 11 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

CHAPTER 1 What Is Coding? 11

The combination of these trends have created software companies that have
upended incumbents in almost every industry, especially those typically immune
to technology. Here are some notable examples:

 » Airbnb: Airbnb is a peer-to-peer lodging company that owns no rooms, yet
books more nights than the Hilton and Intercontinental, the largest hotel
chains in the world. (See Figure 1-3.)

 » Uber: Uber is a car transportation company that owns no vehicles, books
more trips, and has more drivers in the largest 200 cities than any other car or
taxi service.

 » Groupon: Groupon, the daily deals company, generated almost $1 billion
after just two years in business, growing faster than any other company in
history, let alone any other traditional direct marketing company.

Coding on the job
Coding can be useful in the workplace as well. Outside the technology sector, coding
in the workplace is common for some professions like financial traders, econo-
mists, and scientists. However, for most professionals outside the technology sec-
tor, coding is just beginning to penetrate the workplace, and gradually starting to
increase in relevance. Here are areas where coding is playing a larger role on the job:

 » Advertising: Spend is shifting from print and TV to digital campaigns, and
search engine advertising and optimization rely on keywords to bring visitors

FIGURE 1-3:
Airbnb booked
5 million nights
after 3.5 years,

and its next
5 million nights
6 months later.

0003053971.INDD 12 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

12 BOOK 1 Getting Started with Coding

to websites. Advertisers who understand code see successful keywords used
by competitors, and use that data to create more effective campaigns.

 » Marketing: When promoting products, personalizing communication is one
strategy that often increases results. Marketers who code can query customer
databases and create personalized communications that include customer
names and products tailored to specific interests.

 » Sales: The sales process always starts with leads. Salespeople who code
retrieve their own leads from web pages and directories and then sort and
quantify those leads.

Retrieving information by copying text on web pages and in directories is
referred to as scraping.

 » Design: After creating a web page or a digital design, designers must per-
suade other designers and eventually developers to actually program their
drawings into a product. Designers who code can more easily bring their
designs to life and can more effectively advocate for specific designs by
creating working prototypes that others can interact with.

 » Public relations: Companies constantly measure how customers and the
public react to announcements and news. For instance, if a celebrity spokes-
person for a company does or says something offensive, should the company
dump the celebrity? Public relations people who code query social media
networks like Twitter or Facebook and analyze hundreds of thousands of
individual messages in order to understand market sentiment.

 » Operations: Additional profit can be generated, in part, by analyzing a
company’s costs. Operations people who code write programs to try millions
of combinations in an attempt to optimize packaging methods, loading
routines, and delivery routes.

Scratching your own itch (and becoming
rich and famous)
Using code built by others and coding in the workplace may cause you to think of
problems you personally face that you could solve with code of your own. You may
have an idea for a social network website, a better fitness app, or something new
altogether. The path from idea to functioning prototype used by others involves a
good amount of time and work, but might be more achievable than you think. For
example, take Coffitivity, a productivity website that streams ambient coffee shop
sounds to create white noise. The website was created by two people who had just
learned how to program a few months prior. Shortly after Coffitivity launched,
Time magazine named the website as one of 50 Best Websites of 2013, and the
Wall Street Journal also reviewed the website. While not every startup or app will

W
ha

t
Is

 C
od

in
g?

0003053971.INDD 13 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

CHAPTER 1 What Is Coding? 13

initially receive this much media coverage, it can be helpful to know what is pos-
sible when a solution really solves a problem.

Having a goal, like a website or app you want to build, is one of the best ways to
learn how to code. When facing a difficult bug or a hard concept, the idea of bring-
ing your website to life will provide the motivation you need to keep going. Just
as important, do not learn how to code to become rich and famous, as the prob-
ability of your website or app becoming successful is largely due to factors out of
your control.

The characteristics that make a website or app addictive are described using the
“hook model” at http://techcrunch.com/2012/03/04/how-to-manufacture-
desire. Products are usually made by companies, and the characteristics of an
enduring company are described at http://www.sequoiacap.com/grove/posts/
yal6/elements-of-enduring-companies, which is based on a review of compa-
nies funded by Sequoia, one of the most successful venture capital firms in the
world and an early investor in Apple, Google, and PayPal.

Surveying the Types of
Programming Languages

Code comes in different flavors called programming languages. Some popular
 programing languages are shown in Figure 1-4.

FIGURE 1-4:
Some popular
programming

languages.

0003053971.INDD 14 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

14 BOOK 1 Getting Started with Coding

You can think of programming languages as being similar to spoken languages
because they both share many of the same characteristics, such as the following:

 » Functionality across languages: Programming languages can all create the
same functionality similar to how spoken languages can all express the same
objects, phrases, and emotions.

 » Syntax and structure: Commands in programming languages can overlap
just like words in spoken languages overlap. To output text to a screen in
Python or Ruby, you use the Print command, just like imprimer and imprimir
are the verbs for “print” in French and Spanish.

 » Natural lifespan: Programming languages are “born” when a programmer
thinks of a new or easier way to express a computational concept. If other
programmers agree, they adopt the language for their own programs, and
the programming language spreads. However, just like Latin or Aramaic, if the
programming language is not adopted by other programmers or a better
language comes along, then the programming language slowly dies from
lack of use.

Despite these similarities, programming languages also differ from spoken
 languages in a few key ways:

 » One creator: Unlike spoken languages, programming languages can be
created by one person in a short period of time, sometimes in just a few days.

Popular languages with a single creator include JavaScript (Brendan Eich),
Python (Guido van Rossum), and Ruby (Yukihiro Matsumoto).

 » Written in English: Unlike spoken languages (except, of course, English),
almost all programming languages are written in English. Whether they’re
programming in HTML, JavaScript, Python, or Ruby, Brazilian, French, or
Chinese, almost all programmers use the same English keywords and syntax
in their code. Some non-English programming languages do exist, such as
languages in Hindi or Arabic, but none of these programming languages are
widespread or mainstream.

Comparing low-level and high-level
programming languages
One way to classify programming languages is as either low-level languages
or high-level languages. Low-level languages interact directly with the com-
puter processor or CPU, are capable of performing very basic commands, and are
 generally hard to read. Machine code, one example of a low-level language, uses

W
ha

t
Is

 C
od

in
g?

0003053971.INDD 15 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

CHAPTER 1 What Is Coding? 15

code that consists of just two numbers, 0 and 1. Figure 1-5 shows an example of
machine code. Assembly language, another low-level language, uses keywords to
perform basic commands, such as read data, move data, and store data.

By contrast, high-level languages use natural language, so it is easier for people
to read and write. Once code is written in a high-level language, like C++, Python,
or Ruby, an interpreter or compiler must translate this high-level language into
low-level code that a computer can understand.

Contrasting compiled code
and interpreted code
Interpreted languages are considered more portable than compiled languages,
while compiled languages execute faster than interpreted languages. However,
the speed advantage compiled languages have is starting to fade in importance as
improving processor speeds make performance differences between interpreted
and compiled languages negligible.

High-level programming languages like JavaScript, Python, and Ruby are
 interpreted. For these languages, the interpreter executes the program directly,
translating each statement one line at a time into machine code. High-level
 programming languages like C++, COBOL, and Visual Basic are compiled. For
these languages, after the code is written, a compiler translates all the code into
machine code, and an executable file is created. This executable file is then dis-
tributed via the Internet, CD-ROMs, or other media and run. Software you install
on your computer, like Microsoft Windows or Mac OS X, are coded using compiled
 languages, usually C or C++.

FIGURE 1-5:
Machine code

consists of
0s and 1s.

0003053971.INDD 16 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

16 BOOK 1 Getting Started with Coding

Programming for the web
Software accessible on websites is gradually starting to take over installed
 software. Think of the last time you downloaded and installed software for your
 computer — you may not even remember! Installed software like Windows Media
Player and Winamp that play music and movies have been replaced with websites
like YouTube and Netflix. Traditional installed word processor and spreadsheet
software like Microsoft Word and Excel is starting to see competition from
web software like Google Docs and Sheets. Google is even selling laptops called
Chromebooks that contain no installed software, and instead rely exclusively on
web software to provide functionality.

The remainder of this book focuses on developing and creating web software, not
just because web software is growing rapidly but also because programs for the
web are easier to learn and launch than traditional installed software.

Taking a Tour of a Web
App Built with Code

With all this talk of programming, let us actually take a look at a web application
built with code. Yelp.com is a website that allows you to search and find crowd-
sourced reviews for local businesses like restaurants, nightlife, and shopping. As
shown in Figure 1-6, Yelp did not always look as polished as it does today, but its
purpose has stayed relatively constant over the years.

Defining the app’s purpose and scope
Once you understand an app’s purpose, you can identify a few actionable tasks a
user should be able to perform to achieve that purpose. Regardless of design, the
Yelp’s website has always allowed users to do the following:

FIGURE 1-6:
Yelp’s website in

2004 and in 2014.

W
ha

t
Is

 C
od

in
g?

0003053971.INDD 17 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

CHAPTER 1 What Is Coding? 17

 » Search local listings based on venue type and location.

 » Browse listing results for address, hours, reviews, photos, and location on a map.

Successful web applications generally allow for completing only a few key tasks
when using the app. Adding too many features to an app is called scope creep,
which dilutes the strength of the existing features, and so is avoided by most
developers. For example, it took Yelp, which has 30,000 restaurant reviews,
exactly one decade after its founding to allow users to make reservations at those
restaurants directly on its website.

Whether you’re using or building an app, have a clear sense of the app’s purpose.

Standing on the shoulders of giants
Developers make strategic choices and decide which parts of the app to code
themselves, and on which parts of the app to use code built by others. Develop-
ers often turn to third-party providers for functionality that is either not core to
the business or not an area of strength. In this way, apps stand on the shoulders
of others, and benefit from others who have come before and solved challenging
problems.

Yelp, for instance, displays local listing reviews and places every listing on a map.
While Yelp solicits the reviews and writes the code to display basic listing data, it
is Google, as shown in Figure 1-7, that develops the maps used on Yelp’s website.
By using Google’s map application instead of building its own, Yelp created the
first version of the app with fewer engineers than otherwise would have been
required.

FIGURE 1-7:
Google maps

used for the Yelp
web application.

0003053971.INDD 18 Trim size: 7.375 in × 9.25 in March 31, 2017 4:07 AM

CHAPTER 2 Programming for the Web 19

0003053972.INDD 19 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

 Programming
for the Web

“To think you can start something in your college dorm room . . . and build
something a billion people use is crazy to think about. It’s amazing.”

 — MARK ZUCKERBERG

 P rogramming for the web allows you to reach massive audiences around the
world faster than ever before. Four years after its 2004 launch, Facebook
had 100 million users, and by 2012 it had over a billion. By contrast, it took

desktop software years to reach even one million people. These days, mobile
phones are increasing the reach of web applications. Although roughly 300 million
desktop computers are sold every year, almost two billion mobile phones are sold
in that time — and the number is steadily increasing.

 In this chapter, you discover how websites are displayed on your computer or
mobile device. I introduce the languages used to program websites and show you
how mobile-device applications are made.

Chapter 2

 IN THIS CHAPTER

 » Seeing the code powering websites
you use every day

 » Understanding the languages used to
make websites

 » Finding out how applications are
created for mobile devices

0003053972.INDD 20 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

20 BOOK 1 Getting Started with Coding

Displaying Web Pages on Your Desktop
and Mobile Device

On desktop computers and mobile devices, web pages are displayed by applications
called browsers. The most popular web browsers include Google Chrome, Mozilla
Firefox (formerly Netscape Navigator), Microsoft Internet Explorer, and Apple
Safari. Until now, you have likely interacted with websites you visit as an obedient
user, and followed the rules the website has created by pointing and clicking when
allowed. The first step to becoming a producer and programmer of websites is to
peel back the web page, and see and play with the code underneath it all.

Hacking your favorite news website
What’s your favorite news website? By following a few steps, you can see and
even modify the code used to create that website. (No need to worry; you won’t be
breaking any rules by following these instructions.)

Although you can use almost any modern browser to inspect a website’s code,
these instructions assume you’re using the Google Chrome browser. Install the
latest version by going to www.google.com/chrome/browser.

To “hack” your favorite news website, follow these steps:

1. Open your favorite news website using the Chrome browser.

In this example, I use www.huffingtonpost.com.

2. Place your mouse cursor over any static fixed headline and right-click
once, which opens a contextual menu.

3. Then left-click once on the Inspect Element menu choice. (See Figure 2-1.)

If using a Macintosh computer, you can right-click by holding down the Control
key and clicking once.

The Developer Tools panel opens at the bottom of your browser. This panel
shows you the code used to create this web page! Highlighted in blue is the
specific code used to create the headline where you originally put your mouse
cursor. (See Figure 2-2.)

Look at the left edge of the highlighted code. If you see a right-pointing arrow,
left-click once on the arrow to expand the code.

Pr
og

ra
m

m
in

g
fo

r
th
e
W
eb

0003053972.INDD 21 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

CHAPTER 2 Programming for the Web 21

4. Scan the highlighted code carefully for the text of your headline. When
you find it, double-click the headline text.

This allows you to edit the headline. (See Figure 2-3.)

Be careful not to click anything that begins with http, which is the headline
link. Clicking a headline link will open a new window or tab and loads the link.

5. Insert your name in the headline and press Enter.

Your name now appears on the actual web page. (See Figure 2-4.) Enjoy your
newfound fame!

FIGURE 2-1:
Right-click a head-

line and select
Inspect Element
from the menu

that appears.

FIGURE 2-2:
The blue

 highlighted code
is used to create

the web page
headline.

0003053972.INDD 22 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

22 BOOK 1 Getting Started with Coding

If you were unable to edit the headline after following these steps, visit
http://goggles.webmaker.org for an easier, more guided tutorial. It’s a fool-
proof teaching aid that shows that any code on the Internet can be edited and
modified. On that page, follow the instructions to add the bookmark to your
web browser bookmark toolbar, and click the “Sample activity page” button to
try a step-by-step tutorial. Try again to hack your favorite news website by
following the “Remix the News” activity instructions.

If you successfully completed the preceding steps and changed the original head-
line, it’s time for your 15 minutes of fame to come to an end. Reload the web page,
and the original headline reappears. What just happened? Did your changes appear
to everyone visiting the web page? And why did your edited headline disappear?

FIGURE 2-3:
Double-click the
headline text to
edit it with your

own headline.

FIGURE 2-4:
You successfully

changed the
headline of a

major news
website.

Pr
og

ra
m

m
in

g
fo

r
th
e
W
eb

0003053972.INDD 23 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

CHAPTER 2 Programming for the Web 23

To answer these questions, you first need to understand how the Internet delivers
web pages to your computer.

Understanding how the
World Wide Web works
After you type a URL, such as huffingtonpost.com, into your browser, the
 following steps happen behind the scenes in the seconds before your page loads
(see Figure 2-5):

1. Your computer sends your request for the web page to a router. The router
distributes Internet access throughout your home or workplace.

2. The router passes your request on to your Internet service provider (ISP).

In the United States, your ISP is a company like Comcast, Time Warner, AT&T,
or Verizon.

3. Your ISP then converts the words and characters in your URL —  “huffington-
post.com,” in my example — into a numerical address called the Internet
Protocol address (or, more commonly, IP address).

An IP address is a set of four numbers separated by periods (such as
192.168.1.1). Just like your physical address, this number is unique, and every
computer has one. Your ISP has a digital phone book, similar to a physical
phonebook, called a domain name server that’s used to convert text URLs into
IP addresses.

4. With the IP address located, your ISP knows which server on the Internet to
forward your request to, and your personal IP address is included in this
request.

5. The website server receives your request and sends a copy of the web page
code to your computer for your browser to display.

6. Your web browser renders the code onto the screen.

When you edited the website code using the Developer Tools, you modified only
the copy of the website code that exists on your computer, so only you could see
the change. When you reloaded the page, you started Steps 1 through 6 again, and
retrieved a fresh copy of the code from the server, overwriting any changes you
made on your computer.

You may have heard of a software tool called an ad blocker. Ad blockers work by
editing the local copy of website code, as you just did, to remove website adver-
tisements. Ad blockers are controversial because websites use advertising revenue
to pay for operating costs. If ad blockers continue rising in popularity, ad revenue
could dry up, and websites may demand that readers pay to see their content.

0003053972.INDD 24 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

24 BOOK 1 Getting Started with Coding

Watching out for your front end
and back end
Now that you know how your browser accesses websites, let us dive deeper into
the way the actual website is constructed. As shown in Figure 2-6, the code for
websites, and for programs in general, can be divided into four categories, accord-
ing to the code’s function:

 » Appearance: Appearance is the visible part of the website, including content
layout and any applied styling, such as font size, font typeface, and image size.
This category is called the front end and is created using languages like HTML,
CSS, and JavaScript.

 » Logic: Logic determines what content to show and when. For example,
a New Yorker accessing a news website should see New York weather,
whereas Chicagoans accessing the same site should see Chicago weather.
This category is part of the group called the back end and is created using
 languages like Ruby, Python, and PHP. These back end languages can modify
the HTML, CSS, and JavaScript that is displayed to the user.

 » Storage: Storage saves any data generated by the site and its users. User-
generated content, preferences, and profile data must be stored for retrieval
later. This category is part of the back end and is stored in databases like
MongoDB and MySQL.

 » Infrastructure: Infrastructure delivers the website from the server to you, the
client machine. When the infrastructure is properly configured, no one notices
it, but it can become noticeable when a website becomes unavailable because
of high traffic from events like presidential elections, the Super Bowl, and
natural disasters.

FIGURE 2-5:
Steps followed to
deliver a website
to your browser.

Pr
og

ra
m

m
in

g
fo

r
th
e
W
eb

0003053972.INDD 25 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

CHAPTER 2 Programming for the Web 25

Usually, website developers specialize in one or at most two of these categories.
For example, an engineer might really understand the front end and logic lan-
guages or specialize only in databases. Website developers have strengths and
specializations, and outside these areas their expertise is limited, much in the
same way that Jerry Seinfeld, a terrific comedy writer, would likely make a terrible
romance novelist.

The rare website developer proficient in all four categories is referred to as a full
stack developer. Usually, smaller companies hire full stack developers, whereas
larger companies require the expertise that comes with specialization.

Defining web and mobile applications
Web applications are websites you visit using a web browser on any device. Web-
sites optimized for use on a mobile device, like a phone or tablet, are called mobile
web applications. By contrast, native mobile applications cannot be viewed using a
web browser. Instead, native mobile applications are downloaded from an app
store like the Apple App Store or Google Play and are designed to run on a specific
device such as an iPhone or an Android tablet. Historically, desktop computers
outnumbered and outsold mobile devices, but recently two major trends in mobile
usage have occurred:

 » In 2014, people with mobile devices outnumbered people with desktop
computers. This gap is projected to continue increasing, as shown in
Figure 2-7.

 » Mobile-device users spend 80 percent of their time using native mobile
applications and 20 percent of their time browsing mobile websites.

FIGURE 2-6:
Every website is
made up of four

different parts.

0003053972.INDD 26 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

26 BOOK 1 Getting Started with Coding

The increase in mobile devices happened so quickly over the past 10 years that
many companies are becoming “mobile first,” designing and developing the
mobile version of their applications before the desktop version. WhatsApp and
Instagram, two popular mobile applications, first built mobile applications, which
continue to have more functionality than their regular websites.

Coding Web Applications
Web applications are easier to build than mobile applications, require little to no
additional software to develop and test, and run on all devices, including desktops,
laptops, and mobile devices. Although mobile applications can perform many com-
mon web-application tasks, such as email, some tasks are still easier to perform
using web applications. For example, booking travel is easier using web applica-
tions, especially since the steps necessary — reviewing flights, hotels, and rental
cars, and then purchasing all three — are best achieved with multiple windows,
access to a calendar, and the entry of substantial personal and payment information.

The programming languages used to code basic web applications, further defined
in the following sections, include HTML (Hypertext Markup Language), CSS (Cas-
cading Style Sheets), and JavaScript. Additional features can be added to these
websites using languages like Python, Ruby, or PHP.

Starting with HTML, CSS, and JavaScript
Simple websites, such as the one shown in Figure 2-8, are coded using HTML,
CSS, and JavaScript:

 » HTML is used to place text on the page.

 » CSS is used to style that text.

FIGURE 2-7:
Mobile devices

have increased at
a faster pace than

desktops.

Pr
og

ra
m

m
in

g
fo

r
th
e
W
eb

0003053972.INDD 27 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

CHAPTER 2 Programming for the Web 27

 » JavaScript is used to add interactive effects like the Twitter or Facebook Share
button that allows you to share content on social networks and updates the
number of other people who have shared the same content.

Websites conveying mainly static, unchanging information are often coded only
in these three languages. You read about each of these languages in Book 3.

Adding logic with Python, Ruby, or PHP
Websites with more advanced functionality, such as user accounts, file uploads,
and e-commerce, typically require a programming language to implement these
features. Although Python, Ruby, and PHP aren’t the only programming lan-
guages these sites can use, they are among the most popular ones. This popularity
means that there are large online communities of online developers who program
in these languages, freely post code that you can copy to build common features,
and host public online discussions that you can read for solutions to common
issues.

Each of these languages also has popular and well-documented frameworks.
A framework is a collection of generic components, such as user accounts and
authentication schemes that are reused frequently, allowing developers to build,
test, and launch websites more quickly.

Think of a framework as being similar to the collection of templates that comes
with a word processor. You can design your resume, greeting card, or calendar
from scratch, but using the built-in template for each of these document types
helps you create your document faster and with greater consistency.

FIGURE 2-8:
The lindaliukas.
fi website, built

with HTML, CSS,
and JavaScript.

0003053972.INDD 28 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

28 BOOK 1 Getting Started with Coding

Popular frameworks for these languages include

 » Django and Flask for Python

 » Rails and Sinatra for Ruby

 » Zend and Laravel for PHP

Coding Mobile Applications
Mobile applications are hot topics today, in part because mobile apps such as
WhatsApp and Instagram were acquired for billions of dollars, and mobile app
companies like Rovio, makers of Angry Birds, and King Digital, makers of Candy
Crush, generate annual revenues of hundreds of millions to billions of dollars.

When coding mobile applications, developers can build in one of the following ways:

 » Mobile web applications, using HTML, CSS, and JavaScript.

 » Native mobile applications using a specific language. For example, Apple
devices are programmed using Objective-C or Swift, and Android devices are
programmed using Java.

The choice between these two options may seem simple, but there are a few fac-
tors at play. Consider the following:

 » Companies developing mobile web applications must make sure the mobile
version works across different browsers, different screen sizes, and even
different manufacturers, such as Apple, Samsung, RIM, and Microsoft. This
requirement results in thousands of possible phone combinations, which can
greatly increase the complexity of testing needed before launch. Native
mobile apps run on only one phone platform, so there is less variation to
account for.

 » Despite running on only one platform, native mobile apps are more expensive
and take longer to build than mobile web apps.

 » Some developers have reported that mobile web applications have more
performance issues and load more slowly than native mobile applications.

Pr
og

ra
m

m
in

g
fo

r
th
e
W
eb

0003053972.INDD 29 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

CHAPTER 2 Programming for the Web 29

 » As mentioned earlier, users are spending more time using native mobile
applications and less time using browser-based mobile web apps.

 » Native mobile apps are distributed through an app store, which may require
approval from the app store owner, whereas mobile web apps are accessible
from any web browser. For example, Apple has a strict approval policy and
takes up to six days to approve an app for inclusion in the Apple App Store,
while Google has a more relaxed approval policy and takes two hours to
approve an app.

In one famous example of an app rejected from an app store, Apple blocked Google
from launching the Google Voice app in the Apple App Store because it overlapped
with Apple’s own phone functionality. Google responded by creating a mobile web
app accessible from any browser, and Apple could do nothing to block it.

If you’re making this choice, consider the complexity of your application. Simple
applications, like schedules or menus, can likely be cheaply developed with a
mobile web app, whereas more complex applications, like messaging and social
networking, may benefit from having a native mobile app. Even well-established
technology companies struggle with this choice. Initially, Facebook and LinkedIn
created mobile web applications, but both have since shifted to primarily promot-
ing and supporting native mobile apps. The companies cited better speed, memory
management, and developer tools as some of the reasons for making the switch.

Building mobile web apps
Although any website can be viewed with a mobile browser, those websites not
optimized for mobile devices look a little weird; that is, they look as though the
regular website font size and image dimensions are decreased to fit on a mobile
screen. (See Figure 2-9.) By contrast, websites optimized for mobile devices have
fonts that are readable, images that scale to the mobile device screen, and a verti-
cal layout suitable for a mobile phone.

Building mobile web apps is done using HTML, CSS, and JavaScript. CSS controls
the website appearance across devices based on the screen width. Screens with a
small width, such as those on phones, are assigned one vertically based layout,
whereas screens with a larger width, like those on tablets, are assigned a horizon-
tally based layout. Because mobile web apps are accessed from the browser and
aren’t installed on the user’s device, these web apps can’t send push notifications
(alerts) to your phone, run in the background while the browser is minimized, or
communicate with other apps.

0003053972.INDD 30 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

30 BOOK 1 Getting Started with Coding

Although you can write HTML, CSS, and JavaScript for your mobile web app from
scratch, mobile web frameworks allow you to develop from a base of prewritten
code, much like the frameworks for programming languages I mention earlier.
These mobile web frameworks include a collection of generic components that are
reused frequently and allow developers to build, test, and launch websites more
quickly. Twitter’s Bootstrap is one such mobile web framework, which I introduce
in Book 4, Chapter 1.

Building native mobile apps
Native mobile apps can be faster and more reliable and can look more polished
than mobile web apps, as shown in Figure 2-10. Built using Java for use on Android
devices, and Objective-C or Swift for use on Apple devices (iOS), native mobile
apps must be uploaded to an app store, which may require approvals. The main
benefit of an app store is its centralized distribution, and the app may be featured
in parts of the app store that can drive downloads. Also, since native mobile appli-
cations are programs that are installed on the mobile device, they can be used in
more situations without an Internet connection. Finally, and most importantly,
users appear to prefer native mobile apps to mobile web apps by a wide margin,
one that continues to increase.

Native mobile apps can take advantage of features that run in the background while
the app is minimized, such as push notifications, and communicate with other
apps, and these features aren’t available when you’re creating a mobile web app.

FIGURE 2-9:
Left: starbucks.

com not
 optimized for
mobile. Right:

starbucks.com
optimized for

mobile.

Pr
og

ra
m

m
in

g
fo

r
th
e
W
eb

0003053972.INDD 31 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

CHAPTER 2 Programming for the Web 31

Additionally, native mobile apps perform better when handling graphics-intensive
applications, such as games. To be clear, native mobile apps offer better perfor-
mance and a greater number of features, but they require longer development
times and are more expensive to build than mobile web apps.

There is an alternative way to build a native mobile app — a hybrid approach
that involves building an app using HTML, CSS, and JavaScript, packaging that
code using a “wrapper,” and then running the code inside a native mobile app
container. The most popular “wrapper” is a product called PhoneGap, and it
 recognizes specific JavaScript commands that allow access to device-level func-
tionality that’s normally inaccessible to mobile web applications. After one
 version of the app is built, native mobile app containers can be launched for up to
nine platforms, including Apple, Android, BlackBerry, and Windows Phone. The
major advantage to using this hybrid approach is building your app once, and then
releasing it to many platforms simultaneously.

Imagine you knew how to play the piano, but you wanted to also learn how to play
the violin. One way you could do this is to buy a violin and start learning how to
play. Another option is to buy a synthesizer keyboard, set the tone to violin, and
play the keyboard to sound like a violin. This is similar to the hybrid approach,
except in this example, the piano is HTML, CSS, and JavaScript, the violin is a
native iOS app, and the synthesizer keyboard is a wrapper like PhoneGap. Just like
the synthesizer keyboard can be set to violin, cello, or guitar, so too can PhoneGap
create native apps for Apple, Android, and other platforms.

FIGURE 2-10:
Left: facebook.

com native
mobile app.

Right: facebook.
com mobile

web app.

0003053972.INDD 32 Trim size: 7.375 in × 9.25 in April 4, 2017 2:45 AM

32 BOOK 1 Getting Started with Coding

WHAT ABOUT ALL THOSE OTHER
PROGRAMMING LANGUAGES?
(C, JAVA, AND SO ON)
You may wonder why so many languages exist, and what they all do. Programming
languages are created when a developer sees a need not addressed by the current
languages. For example, Apple recently created the Swift programming language to
make developing iPhone and iPad apps easier than Objective-C, the current program-
ming language used. After they’re created, programming languages are very similar
to spoken languages, like English or Latin. If developers code using the new language,
then it thrives and grows in popularity, like English has over the past six centuries;
 otherwise, the programming language suffers the same fate as Latin, and becomes a
dead language.

You may remember languages like C++, Java, and FORTRAN. These languages still exist
today, and they’re used in more places than you might think. C++ is preferred when
speed and performance are extremely important and is used to program web brows-
ers, such as Chrome, Firefox, and Safari, along with games like Call of Duty and Counter
Strike. Java is preferred by many large-scale businesses and is also the language used to
program apps for the Android phone. Finally, FORTRAN isn’t as widespread or popular
as it once was, but it is popular within the scientific community, and it powers some
functionality in the financial sector, especially at some of the largest banks in the world,
many of which continue to have old code.

As long as programmers think of faster and better ways to program, new programming
languages will continue to be created, while older languages will fall out of favor.

CHAPTER 3 Becoming a Programmer 33

0003053973.INDD 33 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

 Becoming a Programmer
“The way to get started is to quit talking and begin doing.”

 — WALT DISNEY

 P rogramming is a skill that can be learned by anyone. You might be a student
in college wondering how to start learning or a professional hoping to fi nd a
new job or improve your performance at your current job. In just about every

case, the best way to grasp how to code is pretty straightforward:

 » Have a goal of what you would like to build.

 » Actually start coding.

 In this chapter, you discover the process every programmer follows when pro-
gramming, and the diff erent roles programmers play to create a program (or,
more commonly these days, to create an app). You also fi nd out about the tools to
use when coding either offl ine or online.

 Writing Code Using a Process
 Writing code is much like painting, furniture making, or cooking — it isn’t always
obvious how the end product was created. However, all programs, even mysterious

Chapter 3

 IN THIS CHAPTER

 » Discovering the process programmers
follow when coding

 » Understanding the diff erent roles
people play to create a program

 » Picking tools to start coding offl ine or
online

0003053973.INDD 34 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

34 BOOK 1 Getting Started with Coding

ones, are created using a process. Here are two of the most popular processes used
today:

 » Waterfall: A set of sequential steps followed to create a program.

 » Agile: A set of iterative steps followed to create a program. (See Figure 3-1.)

Let me describe a specific scenario to explain how these two processes work. Imag-
ine that you want to build a restaurant app that does the following two things:

 » It displays restaurant information, such as the hours of operation
and the menu.

 » It allows users to make or cancel reservations.

Using the waterfall method, you define everything the app needs to do: You design
both the information-display and the reservation parts of the app, code the entire
app, and then release the app to users. In contrast, using the agile method, you
define, design, and code only the information-display portion of the app, release it
to users, and collect feedback. Based on the feedback collected, you then redesign
and make changes to the information-display to address major concerns. When
you’re satisfied with the information-display piece, you then define, design, and
build the reservation part of the app. Again, you collect feedback and refine the
reservation feature to address major concerns.

The agile methodology stresses shorter development times and has increased
in popularity as the pace of technological change has increased. The waterfall
approach, on the other hand, demands that the developer code and release the
entire app at once, but since completing a large project takes an enormous amount
of time, changes in technology may occur before the finished product arrives. If
you use the waterfall method to create the restaurant-app example, the technol-
ogy needed to take reservations may change by the time you get around to coding
that portion of the app. Still, the waterfall approach remains popular in certain
contexts, such as with financial and government software, where requirements

FIGURE 3-1:
The waterfall and

agile processes
are two different
ways of creating

software.

Be
co

m
in

g
a

Pr
og

ra
m

m
er

0003053973.INDD 35 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

CHAPTER 3 Becoming a Programmer 35

and approval are obtained at the beginning of a project, and whose documentation
of a project must be complete.

The healthcare.gov website, released in October 2013, was developed using a
waterfall style process. Testing of all the code occurred in September 2013, when
the entire system was assembled. Unfortunately, the tests occurred too late and
weren’t comprehensive, resulting in not enough time to fix errors before launch-
ing the site publicly.

Regardless of whether you pick the agile or waterfall methodology, coding an app
involves four steps:

1. Researching what you want to build

2. Designing your app

3. Coding your app

4. Debugging your code

On average, you’ll spend much more time researching, designing, and debugging
your app than doing the actual coding, which is the opposite of what you might
expect.

These steps are described in the sections that follow. You’ll use this process when
you create your own app in Book 5, Chapter 1.

Researching what you want to build
You have an idea for a web or mobile application, and usually it starts with,
“Wouldn’t it be great if. . . .” Before writing any code, it helps to do some inves-
tigating. Consider the possibilities in your project as you answer the following
questions:

 » What similar website/app already exists? What technology was used
to build it?

 » Which features should I include — and more importantly exclude — in my app?

 » Which providers can help create these features? For example, companies like
Google, Yahoo, Microsoft, or others may have software already built that you
could incorporate into your app.

To illustrate, consider the restaurant app I discussed earlier. When conducting
market research and answering the three preceding questions, using Google to
search is usually the best choice. Searching for restaurant reservation app shows

0003053973.INDD 36 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

36 BOOK 1 Getting Started with Coding

existing restaurant apps that include OpenTable, SeatMe, and Livebookings.
OpenTable, for example, allows users to reserve a table from restaurants displayed
on a map using Google Maps.

In the restaurant app example, you want to research exactly what kinds of restau-
rant information you need to provide and how extensive the reservation system
portion of the app should be. In addition, for each of these questions, you must
decide whether to build the feature from scratch or to use an existing provider.
For example, when providing restaurant information, do you want to show only
name, cuisine, address, telephone number, and hours of operation, or do you also
want to show restaurant menus? When showing restaurant data, do you prefer
extensive coverage of a single geographical area, or do you want national coverage
even if that means you cover fewer restaurants in any specific area?

Designing your app
Your app’s visual design incorporates all of your research and describes exactly
how your users will interact with every page and feature. Because your users will
be accessing your site from desktop, laptop, and mobile devices, you want to make
sure you create a responsive (multi-device) design and carefully consider how
your site will look on all these devices. At this stage of the process, a general web
designer, illustrator, or user interface specialist will help create visual designs for
the app.

Many responsive app designs and templates can be found on the Internet and used
freely. For specific examples, see Book 4, Chapter 1, or search Google using the
query responsive website design examples.

There are two types of visual designs (see Figure 3-2):

 » Wireframes: These are low-fidelity website drawings that show structurally
the ways your content and your site’s interface interact.

 » Mockups: These are high-fidelity website previews that include colors,
images, and logos.

Balsamiq is a popular tool used to create wireframes, and Photoshop is a popular
tool to create mockups. However, you can avoid paying for additional software by
using PowerPoint (PC), Keynote (Mac), or the free and open-source OpenOffice to
create your app designs.

Professional designers create mockups with Adobe Photoshop and use layers,
which isolate individual site elements. A properly created layered Photoshop file
helps developers more easily write the code for those website elements.

Be
co

m
in

g
a

Pr
og

ra
m

m
er

0003053973.INDD 37 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

CHAPTER 3 Becoming a Programmer 37

In addition to visual design, complex apps also have technical designs and deci-
sions to finalize. For example, if your app stores and retrieves user data, you need
a database to perform these tasks. Initial decisions here include the type of data-
base to add, the specific database provider to use, and the best way to integrate the
database into the application. Additionally, developers must design the database
by choosing the fields to store. The process is similar to the process of creat-
ing a spreadsheet to model a company’s income — you first decide the number
of columns to use, whether you’ll include fields as a percentage of revenue or a
numerical value, and so on. Similarly, other features like user logins or credit card
payments all require you to make choices for how to implement these features.

Coding your app
With research and design done, you’re now ready to code your application. In
everyday web development, you begin by choosing which pages and features to
start coding. As you work through the projects in this book, however, I will guide
you on what to code first.

Knowing how much to code and when to stop can be tough. Developers call the
first iteration of an app the minimum viable product — meaning you’ve coded just
enough to test your app with real users and receive feedback. If no one likes your
app or thinks it’s useful, it’s best to find out as soon as possible.

An app is the sum of its features, and for any individual feature, it’s a good idea to
write the minimum code necessary and then add to it. For example, your restau-
rant app may have a toolbar at the top of the page with drop-down menus. Instead
of trying to create the whole menu at once, it’s better to just create the main menu
and then later create the drop-down menu.

FIGURE 3-2:
Wireframes

(left) are simple
site renderings,

whereas
 mockups (right)

show full site
previews.

0003053973.INDD 38 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

38 BOOK 1 Getting Started with Coding

Projects can involve front-end developers, who write code to design the appear-
ance of the app, and back-end developers, who code the logic and create data-
bases. A “full stack developer” is one who can do both front-end and back-end
development. On large projects, it’s more common to see specialized front-end
and back-end developers, along with project managers who ensure everyone is
communicating with each other and adhering to the schedule so that the project
finishes on time.

Debugging your code
Debugging is going to be a natural part of creating an application. The computer
always follows your instructions exactly, yet no program ever works as you expect
it to. Debugging can be frustrating. Three of the more common mistakes to watch
out for are

 » Syntax errors: These are errors caused by misspelling words/commands, by
omitting characters, or by including extra characters. Some languages, such as
HTML and CSS, are forgiving of these errors, and your code will still work even
with some syntax errors; whereas other languages, such as JavaScript, are
more particular, and your code won’t run when even one such error
is present.

 » Logic errors: These are harder to fix. With logic errors, your syntax is correct,
but the program behaves differently than you expected, such as when the
prices of the items in the shopping cart of an e-commerce site don’t add up to
the correct total.

 » Display errors: These are common mainly in web applications. With display
errors, your program might run and work properly, but it won’t appear
properly. Web apps today run on many devices, browsers, and screen sizes,
so extensive testing is the only way to catch these types of errors.

The word debugging was popularized in the 1940s by Grace Hopper, who fixed a
computer error by literally removing a moth from a computer.

Picking Tools for the Job
Now you’re ready to actually start coding. You can develop websites either offline,
by working with an editor, or online, with a web service such as Codecademy.com.

Be
co

m
in

g
a

Pr
og

ra
m

m
er

0003053973.INDD 39 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

CHAPTER 3 Becoming a Programmer 39

Especially if you haven’t done any coding before, I strongly recommend that you
code with access to an Internet connection using the Codecademy.com platform,
because you don’t have to download and install any software to start coding, you
don’t have to find a web host to serve your web pages, and you don’t need to
upload your web page to a web host. As you code, the Codecademy.com platform
does these tasks for you automatically.

Working offline
To code offline, you need the following:

 » Editor: This refers to the text editor you use to write all the code this book
covers, including HTML, CSS, JavaScript, Ruby, Python, and PHP.

The editor you use will depend on the type of computer you have:

• PC: Use the preinstalled Notepad or install Notepad++, a free editor
available for download at http://notepad-plus-plus.org.

• Mac: Use the preinstalled TextEdit or install TextMate 2.0, an open-source
editor available for download at http://macromates.com.

 » Browser: Many browsers exist, including Firefox, Safari, Internet Explorer,
and Opera.

I recommend you use Chrome, because it offers the most support for the
latest HTML standards. It’s available for download at www.google.com/
chrome/browser.

 » Web host: In order for your website code to be accessible to everyone on the
Internet, you need to host your website online. Freemium web hosts include
Weebly (www.weebly.com) and Wix (www.wix.com); these sites offer basic
hosting but charge for additional features such as additional storage or
removal of ads. Google provides free web hosting through Google Sites
(http://sites.google.com) and Google Drive (http://drive.google.com).

Working online with Codecademy.com
Codecademy.com is the easiest way to start coding online, and lessons from the
site form the basis for this book. The site doesn’t require you to install a code edi-
tor or sign up for a web host before you start coding, and it’s free to individual
users like you.

The site can be accessed using any up-to-date modern browser, but Google
Chrome or Mozilla Firefox are recommended. After you access the site, you can

0003053973.INDD 40 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

40 BOOK 1 Getting Started with Coding

sign up for a free account that will save your course progress and allow you to
access more advanced content. As you use the site, you may see offers to upgrade
to Codecademy Pro, which includes extra quizzes, projects, and live help. For the
purposes of completing this book, purchasing a Codecademy Pro subscription is
completely optional.

Touring the learning environment
After signing up or signing into the site, you will see either an interactive card or
the coding interface, depending on the content you learn. (See Figure 3-3.)

The interactive cards allow you to click toggle buttons to demonstrate effects of
prewritten code, whereas the coding interface has a coding editor and a live pre-
view window that shows you the effects of the code entered into the coding editor.

The coding interface has four parts:

 » Background information on the upper-left side of the screen tells you about
the coding task you’re about to do.

 » The lower-left side of the screen shows instructions to complete in the coding
window.

 » The coding window allows you to follow the exercise’s instructions and write
code. The coding window also includes a preview screen that shows a live
preview of your code as you type.

 » After completing the coding instructions, press Save & Submit, Next, or Run. If
you successfully followed the instructions, you advance to the next exercise;
otherwise, the site will give you an error message along with a helpful hint for
correcting it.

FIGURE 3-3:
Codecademy.com

interactive cards
(left) and the

coding interface
(right).

Be
co

m
in

g
a

Pr
og

ra
m

m
er

0003053973.INDD 41 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

CHAPTER 3 Becoming a Programmer 41

The interactive cards have three parts:

 » Background information about a coding concept.

 » A coding window to complete one simple coding task. A preview window also
shows a live preview of your code as you type.

 » After completing the coding instructions, press the Got It button. You can
review any previous interactive cards by clicking the Go Back button.

Receiving support from the community
If you run into a problem or have a bug you cannot fix, try the following steps:

 » Click the hint below the instructions.

 » Use the Q&A Forums to post your problem or question or to review questions
others have posted.

 » Subscribe to this book’s mailing list at http://tinyletter.com/coding
fordummies for book updates and explanations for changes to programming
language commands.

 » Tweet me at @nikhilgabraham with your question or problem, and include
the hashtag #codingFD at the end of your tweet.

0003053973.INDD 42 Trim size: 7.375 in × 9.25 in March 31, 2017 4:13 AM

2
0003053963.INDD 43 Trim size: 7.375 in × 9.25 in March 30, 2017 11:13 PM

 Career Building
with Coding

0003053963.INDD 44 Trim size: 7.375 in × 9.25 in March 30, 2017 11:13 PM

Contents at a Glance
CHAPTER 1: Exploring Coding Career Paths . 45

Augmenting Your Existing Job . 46
Finding a New Coding Job . 52

CHAPTER 2: Exploring Undergraduate and
Graduate Degrees . 59
Getting a College Degree . 60
Enrolling in an Advanced Degree Program . 65
Interning to Build Credibility . 68

CHAPTER 3: Training on the Job . 73
Taking a Work Project to the Next Level . 74
Learning on the Job and after Work . 75
Freelancing to Build Confidence and Skills . 79
Transitioning to a New Role . 80

CHAPTER 4: Coding Career Myths . 83
Educational Myths . 83
Career Myths . 87

CHAPTER 1 Exploring Coding Career Paths 45

0003053974.INDD 45 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

 Exploring Coding
Career Paths

“We shall not cease from exploration, and the end of all our exploring will be
to arrive where we started and know the place for the fi rst time.”

 — T.S. ELIOT

 F or many people, the words “coding career” evoke an image of a person
sitting in a dimly lit room typing incomprehensible commands into a
computer. The stereotype has persisted for decades — just watch actors such

as Matthew Broderick in War Games (1983), Keanu Reeves in The Matrix (1999),
or Jesse Eisenberg in The Social Network (2010). Fortunately, these movies are
not accurate representations of reality. Just like a career in medicine can lead to
 psychiatry, gynecology, or surgery, a career in coding can lead to an equally broad
range of options.

 In this chapter, you see how coding can augment your existing job across a mix
of functions, and you explore increasingly popular careers based primarily on
coding.

Chapter 1

 IN THIS CHAPTER

 » Using coding in your existing job

 » Exploring entry-level full-time coding
roles

 » Understanding skills and tasks in
various coding roles

0003053974.INDD 46 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

46 BOOK 2 Career Building with Coding

Augmenting Your Existing Job
Many people find coding opportunities in their existing job. It usually starts inno-
cently enough, and with something small. For example, you may need a change
made to the text on the company’s website, but the person who would normally
do that is unavailable before your deadline. If you knew how to alter the website’s
code, you could perform your job faster or more easily. This section explores how
coding might augment your existing job.

Creative design
Professionals in creative design include those who

 » Shape how messages are delivered to clients.

 » Create print media such as brochures and catalogs.

 » Design for digital media such as websites and mobile applications.

CHOOSING A CAREER PATH
Coding career paths are extremely varied. For some people, the path starts with using
code to more efficiently perform an existing job. For others, coding is a way to transition
to a new career. As varied as the career path is, so too are the types of companies that
need coders.

As more people carry Internet-capable mobile phones, businesses of every type are
turning to coders to reach customers and to optimize existing operations. No business
is immune. For example, FarmLogs is a company that collects data from farm equip-
ment to help farmers increase crop yields and forecast profits. FarmLogs needs coders
to build the software that collects and analyzes data, and farmers with large operations
may need coders to customize the software.

To build or customize software, you’ll need to learn new skills. Surprisingly, the time
required to learn and start coding can range from an afternoon of lessons to a ten-week
crash course to more time-intensive options, such as a four-year undergraduate degree
in computer science.

Ex
pl

or
in

g
Co

di
ng

Ca

re
er

 P
at

hs

0003053974.INDD 47 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

CHAPTER 1 Exploring Coding Career Paths 47

Traditionally, digital designers, also known as visual designers, created mockups,
static illustrations detailing layout, images, and interactions, and then sent these
mockups to developers who would create the web or mobile product. This process
worked reasonably well for everyday projects, but feedback loops started becom-
ing longer as mockups became more complex. For example, a designer would cre-
ate multiple mockups of a website, and then the developer would implement them
to create working prototypes, after which the winning mockup would be selected.
As another example, the rise of mobile devices has led to literally thousands of
screen variations between mobile phones and tablets created by Apple, Samsung,
and others. Project timelines increased because designers had to create five or
more mockups to cover the most popular devices and screen sizes.

As a designer, one way to speed up this process is to know just enough code to cre-
ate working prototypes of the initial mockups that are responsive, which means
one prototype renders on both desktop and mobile devices. Then project manag-
ers, developers, and clients can use these early prototypes to decide which ver-
sions to further develop and which to discard. Additionally, because responsive
prototypes follow a predictable set of rules across all devices, creating additional
mockups for each device is unnecessary, which further decreases design time. As
mobile devices have become more popular, the demand for designers who under-
stand how to create good user interactions (UI) and user experiences (UX) has
greatly increased.

Prototyping tools such as InVision and Axure provide a middle option between
creating static illustrations and coding clickable prototypes by allowing design-
ers to create working prototypes without much coding. Still, a person with basic
coding skills can improve a prototype generated with these tools by making it
more interactive and realistic. Designers who can design and code proficiently are
referred to as “unicorns” because they are rare and in high demand.

Content and editorial
Professionals in content and editorial perform tasks such as the following:

 » Maintain the company’s presence on social networks such as Twitter
and Facebook.

 » Create short posts for the company blog and for email campaigns.

 » Write longer pieces for articles or presentations.

At smaller companies, content creation is usually mixed with other responsi-
bilities. At larger companies, creating content is a full-time job. Whether you’re
blogging for a startup or reporting for The Wall Street Journal, writers of all types
face the same challenges of identifying relevant topics and backing it up with data.

0003053974.INDD 48 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

48 BOOK 2 Career Building with Coding

Traditionally, content was written based on a writer’s investigation and leads
from a small group of people. For example, you might write a blog post about a
specific product’s feature because a major customer asked about it during a sales
call. But what if most of your smaller customers, whom you don’t speak with
regularly, would benefit from a blog post about some other product feature?

As a writer, you can produce more relevant content by writing code to analyze
measurable data and use the conclusions to author content. I Quant NY (http://
iquantny.tumblr.com), an online blog, is one shining example of data driving
content creation. In 2014, the site’s author, Ben Wellington, analyzed public data
on New York City parking tickets, bike usage, and traffic crashes, and wrote about
his conclusions. His analysis led to original stories and headlines in major news-
papers such as The New York Times and New York Post (see Figure 1-1).

Human resources
Those who work in human resources might be expected to do the following:

 » Source and screen candidates for open company jobs.

 » Manage payroll, benefits, performance, and training for employees.

 » Ensure company compliance with relevant laws, and resolve disputes.

Traditionally, HR professionals have not performed much coding in the workplace.
The human- and process-driven components of the job generally outweighed
the need for automation that coding typically provides. For example, a dispute
between coworkers is usually resolved with an in-person meeting organized by

FIGURE 1-1:
Article about a

ticket-generating
fire hydrant.

Ex
pl

or
in

g
Co

di
ng

Ca

re
er

 P
at

hs

0003053974.INDD 49 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

CHAPTER 1 Exploring Coding Career Paths 49

HR, not by a computer program. However, the recruiting function in HR may ben-
efit from coding. Hiring employees has always been challenging, especially for
technical positions where the demand for employees far exceeds the supply of
available and qualified candidates.

If you’re responsible for technical recruiting and want to increase the number of
candidates you reach out to and source, one solution is to develop some coding
experience that enables you to discover people who may not meet the traditional
hiring criteria. For example, a company might ordinarily look for developers from
a specific university with at least a 3.0 grade point average.

However, increasingly developers are self-taught and may have dropped out or
not attended university at all. A technical recruiter who can evaluate code that
self-taught developers have written and made publicly available on sites such
as GitHub or Bitbucket can qualify candidates who previously would have been
rejected. Additionally, recruiters working with technical candidates improve out-
comes by being able to speak their language.

Companies such as Google and Facebook have taken a technical approach to
managing the expensive and difficult problem of finding and retaining employ-
ees. These companies perform people analytics on their employees by looking at
everyone who applies and analyzing factors that contribute to hiring, promotion,
and departure, such as undergraduate GPA, previous employer, interview perfor-
mance, and on-the-job reviews. At Google, this analysis requires some serious
coding because more than two million people apply each year.

Product management
Product managers, especially those working on software and hardware products,
perform tasks like the following:

 » Manage processes and people to launch products on time and on budget,
maintain existing products, and retire old products.

 » Connect all departments that create a product, including sales, engineering,
marketing, design, operations, and quality control.

 » Guide the product definition, roadmap, and business model based on
understanding the target market and customers.

The product manager’s role can vary greatly because it is a function of the com-
pany culture and the product being built. This is especially true for technical
products; in some companies, product managers define the problem and engi-
neers design hardware and software to solve those problems. In other companies,

0003053974.INDD 50 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

50 BOOK 2 Career Building with Coding

product managers not only define the problem but also help design the technical
solution.

One of the hardest challenges and main responsibilities of a product manager is
to deliver a product on time and within budget. Timelines can be difficult to esti-
mate, especially when new technology is used or existing technology is used in a
new way. When you manufacture, say, a chair, it has a set product definition. For a
product with a technical component, additional features can creep into the project
late in development, or a single feature might be responsible for the majority of
time or cost overruns. The product manager helps to keep these variables in check.

The product manager working on a technical product who has some coding skill
will be able to better estimate development cycles and anticipate the moving pieces
that must come together. In addition, solving technical challenges that arise and
understanding the tradeoffs of one solution versus another are easier with some
coding background.

Business analysts or integration specialists translate business requirements from
customers into technical requirements that are delivered to project managers and
that are eventually implemented by back-end engineers.

Sales and marketing
Sales and marketing professionals perform tasks such as

 » Segment existing customers and identify new potential customers.

 » Generate and convert prospective leads into sold customers.

 » Craft product and brand images to reflect company and customer values.

Salespeople and marketers expend a great deal of effort placing the right message
at the right time before the right customer. For decades, these messages were
delivered in newspapers, in magazines, and on television and radio. Measuring
their effect in these channels was difficult, part art and part science. With the
movement of messages to the Internet, we can now measure and analyze every
customer view and click. Online marketing has created another problem: Online
customers generate so much data that much of it goes unanalyzed.

The salesperson or marketer who can code is able to better target customers
online. If you’re a salesperson, generating leads is the start of the sales funnel,
and coding enables you to find and prioritize online website visitors as poten-
tial customers. For example, when Uber launched their mobile application, it was
available only in San Francisco. The company tracked and analyzed the location of
users who opened the app to decide which city to launch in next.

Ex
pl

or
in

g
Co

di
ng

Ca

re
er

 P
at

hs

0003053974.INDD 51 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

CHAPTER 1 Exploring Coding Career Paths 51

If you’re in marketing, identifying whom to market to is as important as identifying
what message to market. Website visitors reveal behavioral and demographic data
about themselves, including location, web pages visited, visit duration, and often
gender, age, employer, and past online purchases. Even moderately successful web-
sites generate tens of millions of records a month, and coding can help spot trends
such as the 25-to-29-year-old females in Nebraska who are suddenly interested
in but aren’t purchasing your product. Marketing messages become more efficient
when you know the segments you’re targeting and how they are responding.

Legal
Professionals providing legal services might perform the following tasks:

 » Identify and manage legal risks in agreements and transactions.

 » Ensure ongoing compliance with relevant laws and regulations.

 » Review documents such as prior cases, business records, and legal filings.

 » Resolve disputes through litigation, mediation, and arbitration.

Historically, the legal profession has been resilient to advances in technology. I
include it here because if lawyers who code are able to more efficiently perform
their jobs, professionals in any other industry should be able to benefit from cod-
ing as well.

Coding knowledge may not assist a lawyer with delivering a passionate argument
in court or finalizing a transaction between two Fortune 500 companies, but the
bulk of a lawyer’s time is spent on document review, a task that could benefit
from coding knowledge.

When reviewing legal documents, a lawyer might read previous cases in a litiga-
tion, check existing patent filings before filing a new patent, or examine a compa-
ny’s contracts in preparation for a merger. All these tasks involve processing large
amounts of text, and current legal tools enable, for example, wildcard searching
(such as using new* to find New York, New Jersey, and New Hampshire).

However, the use of regular expressions — code that searches for patterns in text —
could help lawyers review documents faster and more efficiently. See Figure 1-2.

For example, suppose you are a government lawyer investigating an investment
bank for fraudulently selling low-quality mortgages. The investment bank has
produced two million documents, and you want to find every email address men-
tioned in these documents. You could spend months reviewing every page and
noting the email addresses, or you could spend a few minutes writing a regular
expression that returns every email address automatically.

0003053974.INDD 52 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

52 BOOK 2 Career Building with Coding

As the government lawyer reviewing those documents, one of many regular
expressions you could use to find email addresses is .+@.+\..+. Much like the *
wildcard character, each symbol represents a pattern to match. I show it here
only as an example, so don’t let the code intimidate you. This regular expression
first looks for a least one character before and after the @ symbol, and at least
one character before and after a period that appears following the @ symbol. This
pattern matches the username@domain.com email address format.

David Zvenyach, a government lawyer and computer programmer, has created
two websites of interest to lawyers:

 » The first site, SCOTUS Servo, logs a message whenever the Supreme Court
changes an already issued opinion and is available at https://twitter.
com/scotus_servo.

 » The second site, Coding for Lawyers, teaches lawyers code that could be helpful
in the practice of law and is available at http://codingforlawyers.com.

Finding a New Coding Job
The career changer looking to transition to a coding job can choose from a vari-
ety of roles. This section describes the most popular coding jobs today. In these
roles at the entry level, your coding knowledge will be used daily. As you become
more skilled and senior, however, your people-management responsibilities will
increase while the number of lines of code you write will decrease. For example,
Mark Zuckerberg wrote the code for the initial version of Facebook and continued

FIGURE 1-2:
Use RegExr.

com to practice
searching

with regular
 expressions.

Ex
pl

or
in

g
Co

di
ng

Ca

re
er

 P
at

hs

0003053974.INDD 53 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

CHAPTER 1 Exploring Coding Career Paths 53

to write code for two years after the website launched, after which he stopped
coding for almost six years to focus on managing the team’s growth.

Some coding roles may appeal to you to more than others. In addition to under-
standing jobs available in the market, some self-reflection can help you make the
best choice possible. As you review the role descriptions in this section, take a
personal inventory of

 » Tasks you enjoy and dislike in your current role

 » Skills you already possess, and the skills you will need to learn

 » Interests you want to pursue that will make you excited about working
every day

Although no job is completely secure, the demand for technical roles is high and
continues to grow. The US government estimates that by 2020, more than 1 mil-
lion computer science-related jobs will be unfilled, with 1.4 million available jobs
and only 400,000 computer science students trained to fill them.

Front-end web development
Web developers create websites. There are two types of web developers: front-
end developers and back-end developers. Each requires different skills and tasks,
which are discussed in this section.

Front-end web developers code everything visible on the web page, such as the
layout, image placement and sizing, input features including buttons and text
boxes, and the site’s general look and feel. These effects are created with three
major programming languages: HTML (Hypertext Markup Language), which is
used to place text on the page, CSS (Cascading Style Sheet), which styles the text
and further contributes to its appearance, and JavaScript, which adds interactivity.

In addition to these three languages, front-end developer job postings reveal a
common set of skills that employers are looking for:

 » SEO (search engine optimization): Creating web pages for humans might
seem like the only goal, but machines, specifically search engines, are the
primary way most users find websites. Search engines “view” web pages
differently than humans, and certain coding techniques can make it easier for
search engines to index an individual web page or an entire website.

 » Cross-browser testing: Users navigate web pages by using four major
browsers (Chrome, Firefox, Internet Explorer, and Safari), each with two or
three active versions. As a result, a web developer must be skilled in testing

0003053974.INDD 54 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

54 BOOK 2 Career Building with Coding

websites across eight or more browser versions. Developing for older
browsers is typically more difficult because they support fewer features and
require more code to achieve the same effect as modern browsers.

 » CSS tools: Developers use precompilers and CSS frameworks to make coding
in CSS easier:

• Precompilers extend CSS functionality with features such as variables and
functions, which make it easier to read and maintain CSS code.

• CSS frameworks, such as Bootstrap and Base, provide prewritten HTML and
CSS code that makes it easier to develop a website with a consistent look
across desktop and mobile devices.

Proficiency in all precompilers and frameworks is unnecessary, but knowledge
of one precompiler and framework can be helpful.

 » JavaScript frameworks: Developers use prewritten JavaScript code called a
JavaScript framework to add features to web pages. Some popular JavaScript
frameworks are Angular.js and Ember.js. Proficiency in the over 30 JavaScript
frameworks is unnecessary, but knowing one or two can be helpful.

Words like HTML, CSS, and JavaScript might seem intimidating at first, especially
if you have no prior experience in web development. I mention some terminology
here and also in the glossary because knowing the names of these programming
language is the first step to learning more about each of them.

None of the work a web developer does would be possible without product man-
agers and designers. Developers work with product managers to ensure that the
product scope and timelines are reasonable. Additionally, product managers make
sure that the technical and nontechnical teams are communicating and aligned.
Developers also work with designers who create mockups, or illustrations of the
website, images, and the flow users take to move between web pages. After the
mockups are created, front-end developers code the website to match the mock-
ups as closely as possible.

Back-end web development
Back-end web developers code everything that is not visible on the web page but
is necessary to support the front-end developer’s work. Back-end development
happens in the following three places:

 » Server: The server is the computer hosting the coding files that include the
website application and the database. When you visit www.google.com, for
example, your web browser requests the web page from Google servers,
which respond with a copy of the web page you see in your browser.

Ex
pl

or
in

g
Co

di
ng

Ca

re
er

 P
at

hs

0003053974.INDD 55 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

CHAPTER 1 Exploring Coding Career Paths 55

 » Application: The application handles the content in web pages sent to users
and the changes made to the database. Applications are written using
programming languages like Ruby, Python, and PHP, and run only on the
server. Proficiency in one language is usually sufficient.

 » Database: The database stores website and user data so it is available for
future browsing sessions. The simplest database is an Excel spreadsheet,
which is ill suited for web development. Databases such as PostgreSQL and
MongoDB are optimized for website use; usually only one these databases is
used per website.

As an example of back-end web development, suppose that you visit www.
amazon.com using your web browser. Your computer makes a request to the
 Amazon server, which runs an application to determine what web content to serve
you. The application queries a database, and past purchases and browsing show
that you have an interest in technology, legal, and travel books. The application
creates a web page that displays books matching your interests, and sends it to
your computer. You see a book on bike trails in New York, and click to purchase
it. After you enter your credit card and shipping details, the application stores the
information in a database on the server for easy checkout in the future.

For back-end developers, one major part of the job is writing code for the applica-
tion and database to render web pages in the browser. Employers are interested in
additional skills such as these:

 » Scaling: Back-end developers must change and optimize application code,
servers, and databases to respond to increases in website traffic. Without the
right planning, a mention of your website on a morning talk show or in the
newspaper could result in a “website not available” error message instead of
thousands of new customers. Scaling involves balancing the cost of optimizing
the website with leaving the configuration as-is.

 » Analytics: Every online business, whether large or small, has key website
performance indicators, such as new user signups and retention of existing
users. Back-end developers can implement and track these metrics by
querying information from the website database.

 » Security: Websites with a substantial number of users become a target for all
types of security risks. Attackers may automate signups, in which fake profiles
post spam that promotes unrelated products. Additionally, you may receive a
massive amount of traffic in a short period of time, called a denial of service
attack, which prevents legitimate customers from accessing your website. Or
attackers might try to detect weaknesses in your servers to gain unauthorized
access to sensitive information such as email addresses, passwords, and

0003053974.INDD 56 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

56 BOOK 2 Career Building with Coding

credit card numbers. In 2014, major data breaches were uncovered at large
corporations including Sony, Target, and JP Morgan. Prevention of these
attacks rests, in part, with back-end developers.

The back-end developer is a part of the product team and works closely with
front-end developers and product managers. Unlike front-end developers, back-
end developers do not interact frequently with designers because the job is not as
visual or based on website appearance.

Mobile application development
Mobile application developers create applications that run on cell phones, tablets,
and other mobile devices. Mobile applications can be more challenging to create
than browser-based websites because users expect the same functionality on a
device without a dedicated keyboard and with a smaller screen.

In 2014, users purchased and spent more time on mobile devices than traditional
PC desktops, marking a major milestone and the continuation of a trend years in
the making.

Users today prefer to download and use native mobile applications from an app
store, though it is possible to create mobile optimized websites that run in the
browser using HTML, CSS, and JavaScript. The two most popular app stores are

 » The Apple App Store, which hosts apps for iOS devices such as
iPhones and iPads

 » The Google Play Store, which hosts apps for phones and tablets running the
Android operating system

Developers code apps for iOS devices by using the Objective-C and Swift program-
ming languages, and they code apps for Android devices by using Java.

Objective-C, which was invented in 1983, is traditionally and currently used to
create iOS apps. Swift is a new programming language that Apple created and
released in 2014. This programming language was designed from the ground up
as a replacement for Objective-C.

Mobile developers are in high demand as mobile usage overtakes browsing on
traditional PCs. In addition to creating apps, employers also value these skills:

 » Location services: The service most frequently integrated into and used in
mobile applications is location. Maps, reservation, and transportation applica-
tions all become more useful when they take into account your current location.

Ex
pl

or
in

g
Co

di
ng

Ca

re
er

 P
at

hs

0003053974.INDD 57 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

CHAPTER 1 Exploring Coding Career Paths 57

Location services consume battery life rapidly, although specialized tech-
niques can reduce battery drain. Mobile developers who understand these
techniques will have a leg up on the competition.

 » Application testing: The number of devices that a mobile developer has to
consider is staggering. In addition, an errant line of code can cause a mobile
application to install incorrectly or to leak memory until the application
crashes. Mobile application-testing software automates the process of testing
your application across a variety of device types, saving a huge amount of
time and a drawer full of phones. Mobile developers who can integrate testing
software such as Crashlytics into their applications will get the data needed to
continuously improve their application code.

Mobile application developers work with designers to create easy and intuitive
mobile experiences, with back-end developers to ensure that data submitted by
or received from the phone is in sync with data on the website, and with product
managers so that the application launches smoothly.

Data analysis
Data analysts sift through large volumes of data, looking for insights that help
drive the product or business forward. This role marries programming and sta-
tistics in the search for patterns in the data. Popular examples of data analysis
in action include the recommendation engines used by Amazon to make product
 suggestions to users based on previous purchases and by Netflix to make movie
suggestions based on movies watched.

The data analyst’s first challenge is simply importing, cleaning, and processing
the data. A website can generate daily millions of database entries of users’ data,
 requiring the use of complicated techniques, referred to as machine learning, to create
classifications and predictions from the data. For example, half a billion messages are
sent per day using Twitter; some hedge funds analyze this data and classify whether
a person talking about a stock is expressing a positive or negative sentiment. These
sentiments are then aggregated to see whether a company has a positive or negative
public opinion before the hedge fund purchases or sells any stock.

Any programming language can be used to analyze data, but the most popular
programming languages used for the task are R, Python, and SQL. Publicly shared
code in these three languages makes it easier for individuals entering the field to
build on another person’s work. While crunching the data is important, employers
also look for data analysts with skills in the following:

 » Visualization: Just as important as finding insight in the data is communicating
that insight. Data visualization uses charts, graphs, dashboards, infographics,

0003053974.INDD 58 Trim size: 7.375 in × 9.25 in March 31, 2017 4:14 AM

58 BOOK 2 Career Building with Coding

and maps, which can be interactive, to display data and reduce the complexity
such that one or two conclusions appear obvious, as shown in Figure 1-3
(courtesy of I Quant NY). Common data visualization tools include D3.js, a
JavaScript graphing library, and ArcGIS for geographic data.

 » Distributed storage and processing: Processing large amounts of data on
one computer can be time-intensive. One option is to purchase a single faster
computer. Another option, called distributed storage and processing, is to
purchase multiple machines and divide the work. For example, imagine that
we want to count the number of people living in Manhattan. In the distributed
storage and processing approach, you might ring odd-numbered homes, I
would ring even-numbered homes, and when we finished, we would total our
counts.

Data analysts work with back-end developers to gather data needed for their
work. After the data analysts have drawn conclusions from the data and come up
with ideas on improving the existing product, they meet with the entire team to
help design prototypes to test the ideas on existing customers.

FIGURE 1-3:
The two

 Manhattan
addresses

 farthest away
from Starbucks.

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 59

0003053975.INDD 59 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

 Exploring Undergraduate
and Graduate Degrees

“When I was in college, I wanted to be involved in things that would change
the world.”

 — ELON MUSK

 G oing to college to learn how to code is probably the most traditional and
expensive path you can take. A bachelor’s degree, designed to take four
years, is rooted in the tradition of the English university system and was

made popular by the GI Bill after World War II. More recently, the two-year asso-
ciate degree has become more popular. It costs less than a bachelor’s degree, but
many are designed as a way to eventually transfer to a four-year bachelor degree
program.

 But when it comes to computer programmers, you likely know more people who
didn’t graduate from college than did. Entrepreneurs such as Bill Gates, Steve
Jobs, Mark Zuckerberg, and Larry Ellison dropped out of college to create tech-
nology companies worth billions of dollars. Still, the world’s biggest technology
companies continue to hire mainly college graduates.

 Whether you’re thinking about going to college, are already in college, or attended
college and want another degree, this chapter is for you. I explore learning to code
in college or graduate school, and then building your credibility with an internship.

Chapter 2

 IN THIS CHAPTER

 » Learning to code with a bachelor’s or
master’s degree

 » Coding outside class in clubs and
hackathons

 » Securing an internship to learn on
the job

0003053975.INDD 60 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

60 BOOK 2 Career Building with Coding

Getting a College Degree
The recent media attention on coding, with movies such as The Social Network and
TV shows such as Silicon Valley, might make it seem like everyone in college is
learning how to program. Although computer science (CS) graduates earn some
of the highest salaries in the United States (see Figure 2-1), less than 3 percent of
students major in computer science, and less than 1 percent of AP exams taken in
high school are in computer science.

The supply of students is low but is improving relative to the jobs that are avail-
able. Companies such as Apple, Microsoft, Yahoo!, Facebook, and Twitter recruit
computer science engineers from schools such as Carnegie Mellon, MIT, and
Stanford. It’s not just the companies you read about in the news that are hiring
either. CS graduates are in high demand — the Bureau of Labor Statistics esti-
mates that by 2020, there will be 1.4 million computing jobs but only 400,000
trained computer science students to fill those jobs.

Yet far more important to employers than the name of the school you went to is
what you did while you were in school. Employers will ask how you challenged
yourself with your course load, and the applications you built and why.

College computer science curriculum
College CS courses offer a sweeping survey of entire computer systems from the
hardware used to allocate memory to the high-level software that runs programs
and the theories used to write that software. As a result, you gain a great sense
of why computer systems behave as they do, which gives you the foundation to
advance a technology or a programming language when the need arises.

FIGURE 2-1:
Bachelor’s

degrees awarded
in CS over the
past 40 years,

courtesy of NPR.
Source: Digest of Educational Statistics; credit: Quoctrung Bui/NPR

Ex
pl

or
in

g
U

nd
er

gr
ad

ua
te

an

d
G

ra
du

at
e

D
eg

re
es

0003053975.INDD 61 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 61

This approach differs dramatically from the learning you’d typically do by your-
self or in a boot camp, where the focus is only on software development in a
specific language such as Python or Ruby. Given the typical 12-week duration of a
boot camp, there isn’t much time for anything else.

The core CS curriculum across universities is similar. Table 2-1 compares select
core curriculum classes required as part of the Computer Science degree at Stanford
and Penn State — a private university on the West Coast and a public university
on the East Coast, respectively. Both have introductory classes to acquaint you
with programming topics, math classes that cover probability, hardware classes
for low-level programming and memory storage, software classes for designing
algorithms, and higher level classes that cover advanced topics such as artificial
intelligence and networking.

Until recently, universities generally did not teach web programming courses. As
web programming has increased in popularity, this has begun to change — for
example, Stanford offers a web programming class (CS 142) that teaches HTML,
CSS, and Ruby on Rails, and Penn State has a similar class that teaches web
 programming with Java.

Doing extracurricular activities
Many students complement their coursework by applying what they’ve learned in
a tangible way. Your coursework will include project work, but projects assigned
in class may not have changed in a few years to make it easier for the instructor to
provide support and grade your work. Also, with so many technologies constantly
popping up, using your coding skills outside the classroom will help build confi-
dence and skill.

One option is to code side projects, which are personal coding projects that per-
form some small basic utility and can be built in a short amount of time, over
a weekend to a few months at most. For example, not many people know that
before Mark Zuckerberg built Facebook, he had coded many side projects, includ-
ing an instant messaging client for his dad’s dental practice, an MP3 player that
suggested the next song to listen to, and a tool that helped students choose their
semester schedule based on which classes their friends were enrolling in. In
another example, three students at Tufts University wanted an easy way to find
the cheapest place to buy all their textbooks. They created a site called Getcha-
Books, which lets students select the classes they would be taking in a semester
and then retrieved the full list of books needed and the total prices across many
stores to find the cheapest price. Although the site is no longer actively devel-
oped, all the code is open sourced and can be viewed either at getchabooks.com or
github.com/getchabooks/getchabooks.

0003053975.INDD 62 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

62 BOOK 2 Career Building with Coding

In addition to coding on your own, coding and discussing technology topics with
others can be more engaging. On-campus clubs are usually formed by students
and cater to almost every interest. You can find clubs on robotics, financial tech-
nologies such as bitcoin, technology investing from the venture capital stage to
the public equities stage, and more.

The Dorm Room Fund is a student-run venture capital firm with locations in San
Francisco, Boston, New York, and Philadelphia that invests in student-run com-
panies. Backed by First Round Capital, the goal is to nurture and support young
technology companies, teach students how to evaluate and invest in technology
companies, and find the next billion-dollar company on a college campus.

TABLE 2-1	 CS Select Core Curriculum at Stanford and Penn State
Course name Course description Stanford Penn State

Programming Abstractions Intro to programming using C++ with sorting
and searching

CS 106B CMPSC 121

Programming with Web
Applications

Intro to graphics, virtual machines, and
programming concepts using Java

N/A CMPSC 221

Math Foundations
of Computing

Topics include proofs, logic, induction, sets,
and functions

CS 103 CMPSC 360

Probability Probability and statistics relevant to
computer science

CS 109 STAT 318

Algorithms Algorithm types (e.g., random) and complexity CS 161 CMPSC 465

Hardware systems Machine registers, assembly language, and
compilation

CS 107 CMPSC 311

Computer systems Storage and file management, networking, and
distributed systems

CS 110 N/A

Operating systems Designing and managing operating and
system tasks

CS 140 CMPSC 473

Computer and
network security

Principles of building and breaking
secure systems

CS 155 CMPSC 443

Intro to Artificial Intelligence AI concepts such as searching, planning,
and learning

CS 121 CMPSC 448

Intro to Databases Database design and using SQL and
NoSQL systems

CS 145 CMPSC 431W

Ex
pl

or
in

g
U

nd
er

gr
ad

ua
te

an

d
G

ra
du

at
e

D
eg

re
es

0003053975.INDD 63 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 63

The most intense extracurricular pursuit for a student is participating in
 hackathons. A hackathon is a one-day to weekend-long event with the goal of
brainstorming, designing, and building a small useful app. Hackathons are most
popular among students, who often stay up all night coding their apps, while the
hosts are often technology companies. However, some of the largest hackathons,
such as Cal Hacks, which is hosted by UC Berkeley, and PennApps, which is hosted
by the University of Pennsylvania (see Figure 2-2), are organized by students and
attended by thousands of students from schools around the country.

TECHNICAL VERSUS PRACTICAL
EDUCATION
As you look at the courses offered in the Stanford and Penn State CS programs, you’ll
notice that the overwhelming majority speak to the theory of computer science and
aren’t always used every day. For example, as a person interested in software develop-
ment, you likely aren’t going to use much if any of your hardware systems courses. Note
that some classes will be very relevant — algorithms and databases are two topics fre-
quently used in web programming.

However, understanding the theory is useful. For example, database systems were
initially created assuming that storage was expensive and the amount of data that
needed to be stored would grow linearly. The reality turned out to be different — the
cost of hardware plummeted and hard drives became bigger and cheaper, while people
generated more data at a faster pace than ever before. Computer scientists, with a solid
understanding of databases, took advantage of cheap hardware and created distrib-
uted databases, which store data across multiple computers instead of a single one.

Whether or not you should learn programming in college comes down to your goal. If
you want to one day be in a position to change the industry or work on cutting-edge
technology, the theory you learn studying computer science is without substitute or
comparison. There are few other places where you can engage with a professional, in
this case a professor, of a high caliber to push the limits of fundamental understanding.
Also, specific programming languages and technologies are constantly changing, while
the underlying concepts and theories stay the same. Python and Ruby, for example, are
only 20 years old.

On the other hand, if your goal is to use these concepts to make a living in the industry
instead of trying to change the industry, you could learn to code in a less expensive and
less time-intensive way than obtaining a computer science degree.

0003053975.INDD 64 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

64 BOOK 2 Career Building with Coding

Two-year versus four-year school
You may not be able to afford the time, expense, or commitment demanded by
a four-year degree. Even though some colleges offer financial aid, not earning
money for four years or earning a far-reduced wage may not be feasible, especially
if you have to support yourself or family members.

One alternative to the Bachelor of Arts (BA) degree is the Associate of Arts (AA)
degree, which is typically granted by community colleges or technical schools. You
can complete an AA degree in two years. In addition to taking less time, according
to the College Board, tuition and fees are on average $3,200 per year, compared to
$9,000 per year at public four-year institutions. Courses are also offered during
evenings and on weekends, so students can work while attending school. When
evaluating an institution that grants the AA degree, review the instructors teach-
ing the courses and make sure they are experienced practitioners in the field.
Additionally, see the types of jobs recent graduates went on to do and the employ-
ers they worked for to make sure that both match with your goals.

A close relative of the AA degree is a certificate granted by a school of continu-
ing education. Certificates are noncredit offerings completed within a year. They
usually cost less than $10,000 but don’t result in a degree. To get the most bang
for your buck, get your certificate from a school with a good regional or even

FIGURE 2-2:
Students show

a mentor
their mobile

 application at
PennApps.

Credit: Andrew Mager via Flickr

Ex
pl

or
in

g
U

nd
er

gr
ad

ua
te

an

d
G

ra
du

at
e

D
eg

re
es

0003053975.INDD 65 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 65

national reputation. For example, NYU has a Certificate in Web Development that
teaches web development basics with HTML, CSS, and JavaScript along with more
advanced topics such as PHP, a popular programming language for the web, and
SQL, a language used to query databases. (See Figure 2-3.) Learning these topics
in a structured way from an instructor can help jumpstart your learning so you
can teach yourself additional topics on your own.

When enrolling in a certificate program, keep in mind that instructor quality can
be highly variable. Make sure you talk to current students or find some student
reviews before signing up for either the certificate program or courses that the
certificate requires.

Enrolling in an Advanced Degree Program
The options for learning how to code never seem to end, and advanced degrees
typically appeal to a particular group of people. While not necessary for either
learning to code or obtaining a coding job, an advanced degree can help accelerate
your learning and differentiate you from other job candidates. Here are the two
types of advanced degree programs:

 » Master’s degree: A technical degree that allows you to explore and specialize
in a particular area of computer science such as artificial intelligence, security,
database systems, or machine learning. Based on the course load, the degree
typically takes one or two years of full-time, in-person instruction to complete.

FIGURE 2-3:
NYU’s Certificate

in Web
 Development

offers classes in
SQL and PHP.

0003053975.INDD 66 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

66 BOOK 2 Career Building with Coding

Upon completion, the degree can be a way for a student who pursued a
nontechnical major to transition into the field and pursue a coding job.
Alternatively, some students use the master’s degree experience as a way to
gauge their interest in or improve their candidacy for a PhD program.

A growing number of part-time online master’s degree programs are becom-
ing available. For example, Stanford and Johns Hopkins both offer a master’s
degree in Computer Science with a concentration in one of ten topics as part
of an online part-time degree that takes on average three to five years to
complete. Similarly, Northwestern University offers a master’s degree in
Predictive Analytics, an online part-time program in big data that teaches
students SQL, NoSQL, Python, and R.

 » Doctorate degree: A program typically for people interested in conducting
research into a specialized topic. PhD candidates can take six to eight years to
earn their degree, so it’s not the most timely way to learn how to code. PhD
graduates, especially those with cutting-edge research topics, differentiate
themselves in the market and generally work on the toughest problems in
computer science. For example, Google’s core search algorithm is technically
challenging in a number of ways — it takes your search request, compares it
against billions of indexed web pages, and returns a result in less than a
second. Teams of PhD computer scientists work to write algorithms that
predict what you’re going to search for, index more data (such as from social
networks), and return results to you five to ten milliseconds faster than
before.

Students who enroll and drop out of PhD programs early have often done
enough coursework to earn a master’s degree, usually at no cost to the
student because PhD programs are typically funded by the school.

Graduate school computer
science curriculum
The master’s degree school curriculum for computer science usually consists of
10 to 12 computer science and math classes. You start with a few foundational
classes, and then specialize by focusing on a specific computer science topic. The
PhD curriculum follows the same path, except after completing the coursework,
you propose a previously unexplored topic to further research, spend three to
five years conducting original research, and then present and defend your results
before other professors appointed to evaluate your work.

Table 2-2 is a sample curriculum to earn a master’s degree in CS with a concen-
tration in Machine Learning from Columbia University. Multiple courses can be
used to meet the degree requirements, and the courses offered vary by semester.

Ex
pl

or
in

g
U

nd
er

gr
ad

ua
te

an

d
G

ra
du

at
e

D
eg

re
es

0003053975.INDD 67 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 67

The curriculum, which in this case consists of ten classes, begins with three
 foundational classes, and then quickly focuses on an area of concentration.
 Concentrations vary across programs, but generally include the following:

 » Security: Assigning user permissions and preventing unauthorized access,
such as preventing users from accessing your credit card details on an
e-commerce site

 » Machine learning: Finding patterns in data, and making future predictions,
such as predicting what movie you should watch next based on the movies
you’ve already seen and liked

 » Network systems: Protocols, principles, and algorithms for how computers
communicate with each other, such as setting up wireless networks that work
well for hundreds of thousands of users

TABLE 2-2	 Columbia University MS in Computer Science
Course Number Course Name Course Description

W4118 Operating Systems I Design and implementation of operating systems including
topics such as process management and synchronization

W4231 Analysis of Algorithms I Design and analysis of efficient algorithms including sorting
and searching

W4705 Natural Language
Processing

Natural language extraction, summarization, and analysis
of emotional speech

W4252 Computational
Learning Theory

Computational and statistical possibilities and limitations
of learning

W4771 Machine Learning Machine learning with classification, regression, and
inference models

W4111 Intro to Databases Understanding of how to design and build
relational databases

W4246 Algorithms for
Data Science

Methods for organizing, sorting, and searching data

W4772 Advanced
Machine Learning

Advanced machine learning tools with applications in
perception and behavior modeling

E6232 Analysis of Algorithms II Graduate course on design and analysis of efficient
approximation algorithms for optimization problems

E6998 Advanced Topic in
Machine Learning

Graduate course covers current research on Bayesian
networks, inference, Markov models, and regression

0003053975.INDD 68 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

68 BOOK 2 Career Building with Coding

 » Computer vision: Duplicating the ability of the human eye to process and
analyze images, such as counting the number of people who enter or exit a
store based on a program analyzing a live video feed

 » Natural language processing: Automating the analysis of text and speech,
such as using voice commands to convert speech to text

Performing research
Students are encouraged in master’s degree programs and required in PhD pro-
grams to conduct original research. Research topics vary from the theoretical,
such as estimating how long an algorithm will take to find a solution, to the prac-
tical, such optimizing a delivery route given a set of points.

Sometimes this academic research is commercialized to create products and com-
panies worth hundreds of millions to billions of dollars. For example, in 2003
university researchers created an algorithm called Farecast that analyzed 12,000
airline ticket prices. Later, it could analyze billions of ticket prices in real time,
and predict whether the price of your airline ticket would increase, decrease, or
stay the same. Microsoft purchased the technology for $100 million and incorpo-
rated it into its Bing search engine.

In another example, Shazam was based on an academic paper that analyzed how
to identify an audio recording based on a short, low-quality sample, usually an
audio recording from a mobile phone. Today, Shazam lets a user record a short
snippet of a song, identifies the song title, and offers the song for purchase. The
company has raised over $100 million in funding for operations and is privately
valued at over $1 billion. Both products were based on published research papers
that identified a problem that could be addressed with technology and presented a
technology solution that solved existing constraints with high accuracy.

Your own research may not lead to the creation of a billion-dollar company, but it
should advance, even incrementally, a solution for a computer science problem or
help eliminate an existing constraint.

Interning to Build Credibility
Your classroom work helps create a theoretical foundation but can be divorced
from the real world. Actual real-world problems often have inaccurate or incom-
plete data and a lack of obvious solutions. One way to bridge the gap from the
classroom to the real world is to take on an internship.

Ex
pl

or
in

g
U

nd
er

gr
ad

ua
te

an

d
G

ra
du

at
e

D
eg

re
es

0003053975.INDD 69 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 69

Internships are 10- to 12-week engagements, usually over the summer, with an
employer on a discrete project. The experience is meant to help an intern assess
whether the company and the role are a good fit for permanent employment and
for the company to assess the intern’s abilities.

The competition for interns is just as strong as it is for full-time employees, so
interns can expect to be paid. Top tech companies pay interns between $6,000 and
$8,000 per month, with Palantir, LinkedIn, and Twitter topping the list. After the
internship is finished, companies offer successful interns anywhere from $5,000
to $100,000 signing bonuses to return to the firm to work full time.

Types of internship programs
Companies structure their internship program differently, but the following con-
figurations are more common than others:

 » Summer internship: The majority of internships happen during the summer.
Because of the work involved in organizing an intern class, larger companies
usually have a formal process with application deadlines and fixed dates when
interviews for the internship are conducted. After offers are extended, compa-
nies ideally screen projects given to interns to make sure the work is interesting
and substantive. There are also a significant number of social events so that
full-time employees and interns can meet in an environment outside work.

 » School-year internship: Some internships take place during the school year,
from September to May. These programs are usually smaller, hiring is on an
as-needed basis, and the entire process is less formalized. Usually, the intern
does more work to find divisions who need extra help, networks with
managers of those divisions, and then finally interviews for and accepts an
internship position. You can get a more realistic view of what working at the
company is like because there likely aren’t many other interns working with
you, and you might be able to integrate more closely with the team.

 » Fellowship: Many students get the itch to try a longer professional experience
before graduation. These experiences, called fellowship programs, last six to
twelve months and give a person enough time to work on a project to make a
substantive contribution. For undergraduates, the work confirms an existing
interest or creates an interest in a new area of technology. For graduate
students, the work can highlight the difference between theory and practice,
inform an area of research, or help them break into a new industry.

0003053975.INDD 70 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

70 BOOK 2 Career Building with Coding

HOW BOB REN LEARNED TO CODE
Between classes, clubs, hackathons, and internships, the possibilities seem endless for
students in college or graduate school to learn how to code. Here is how Bob Ren, a
college senior, stitched together his learning experiences while in school.

Bob attended the University of Illinois at Urbana-Champaign. After his first two years,
he decided to take a break from school and gain some real-world experience at a
 technology company. He applied to and joined the fellowship program at Codecademy,
a startup in New York. As a Codecademy fellow, Bob worked at the startup for one year
as a full-time employee, was paid $80,000, and contributed to product development as
an engineer. While at Codecademy, Bob contributed to a number of projects and wrote
code to redesign the main website, add language support for Spanish and French,
and develop an open-source platform called EventHub, which allows companies to
 understand various actions that visitors perform on a website.

While at Codecademy, Bob also kept busy outside work. A few months into his
 fellowship, he attended the Techcrunch Disrupt hackathon, and created a common
application for startups based on issues he faced applying for jobs at startups.
Like the common application for college, the app was designed so students could
enter their information once and apply to multiple startups at the same time.
TechCrunch, the startup blog and event organizer, wrote about the project at www.
techcrunch.com/2013/04/28/startup_common_application_hackathon.

After the Disrupt Hackathon, Bob continued coding and built the following, either by
himself or with a team before eventually joining Facebook as a software engineer:

• LivingLanguage: A Chrome extension that translates random words on any web
page into a foreign language you want to learn. The app won first place at the
Facebook Summer Hackathon in 2013.

• SnapMeNow: Like Snapchat for your computer, this web app uses your computer’s
camera to create images that self-destruct after up to 10 seconds. Bob released the
app on Reddit, where it was barely noticed. After ten months, however, the app was
reposted to HackerNews and ProductHunt, went viral with hundreds of thousands
of people using the product, and was covered by media outlets such as MTV and
BuzzFeed.

• ClassTranscribe: An open-source project that uses crowdsourcing to quickly and
accurately transcribe college lectures. After the lectures are transcribed, students
can search for keywords in the lectures to better understand concepts presented
in class. The app is available at http://classtranscribe.com.

Ex
pl

or
in

g
U

nd
er

gr
ad

ua
te

an

d
G

ra
du

at
e

D
eg

re
es

0003053975.INDD 71 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

CHAPTER 2 Exploring Undergraduate and Graduate Degrees 71

Positions for internships are often more selective than positions for full-time jobs,
so apply early and for more than one internship position. If you don’t receive an
internship, try again for a full-time position. Companies have large hiring needs,
and one purpose for hiring summer interns is to ensure that the interns have a
great time at the company so when they return to campus they tell other students,
who then feel more comfortable applying.

Securing an internship
Much of the advice in Book 2 for obtaining a full-time job applies to securing an
internship offer as well. There are a few strategies to keep in mind when pursuing
an internship.

Choose products and companies you’re passionate about. As an intern, you join a
company for three months at most, and much of that time is spent meeting new
people, understanding the company, and fitting into existing processes. As a pas-
sionate power user of the product, your excitement will naturally show, and your
ideas will give the company a sense for what you want to work on and provide
a fresh and valuable perspective to the team, which likely feels that they have
already explored every possible idea. Be able to describe how you use the product
and what additional features would help increase your engagement or retention.

For any product that has a public profile, link to your profile so team members can
easily see how frequently you use the product.

After you’ve chosen a few companies, start looking for current students who have
worked at the company as well as school alumni who currently work at the com-
pany. Reach out by email and schedule short phone calls or a coffee chat no longer
than 30 minutes to try and build a connection. Current students can share infor-
mation about their experience, tell you which groups have the greatest need, and
share some of the company culture, such as what the company values. Alumni will
be able to share much of the same information, but they can also send a recom-
mendation to HR on your behalf or may be able to hire you.

There is a balance between the response rate, ability to help, and seniority of a
person you reach out to. Try to reach for the most senior alumni you can find at a
company, because a quick email from them to HR will guarantee an interview, but
recognize that they may not always have the time to respond. Alternatively, more
junior employees will likely have more time to chat with you but likely do not have
as much influence over interview or hiring decisions.

0003053975.INDD 72 Trim size: 7.375 in × 9.25 in March 31, 2017 4:15 AM

72 BOOK 2 Career Building with Coding

Finally, include a mix of startups and more established companies in your search
process. Given the number of interviews they do, established companies can be
formulaic in their interview and hiring decisions, often looking for candidates
from specific schools with a minimum GPA. If you aren’t attending a top school or
have below a 3.0 (out of 4.0) GPA, you should still apply to the larger companies
and include an explanation for your lower GPA if one applies. Another option is to
apply to startups, which will likely care more about the products you’ve built than
your grade in chemistry. The trade-off is that startups likely have less time and
people to help train you and a smaller selection of projects for you to choose from.
After you join a company and finish a brief orientation period, you’ll often need to
start coding right away and contributing to the product.

Be careful of startups formed by a nontechnical founder who has not yet built a
product. Sometimes these companies are looking for cheap labor to help build the
first version — the experience can involve many hours, unreasonable deadlines,
and low to no compensation, especially if you’re paid in equity. As an example,
you can see a sample of recruiting pitches for coders that nontechnical founders
sent to the University of Pennsylvania CS mailing list at http://whartonite
seekscodemonkey-blog.tumblr.com.

CHAPTER 3 Training on the Job 73

0003053976.INDD 73 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

 Training on the Job
“I hated every minute of training, but I said, ‘Don’t quit. Su� er now and live
the rest of your life as a champion. ’”

 — MUHAMMAD ALI

 A s an employee, whether you’re a marketer, a sales person, or a designer,
you likely fi nd that technology dominates more and more of your conver-
sations with your boss, coworkers, and clients. Perhaps your boss wants to

know which customer segments the company should target with online advertis-
ing, and you need to analyze millions of customer records to provide an answer.
Or maybe a client wants to add or change a feature and will double the contract if
the process can be done in six weeks, and you need to know whether it’s possible.
More tangibly, you might fi nd yourself performing mundane and repetitive tasks
that you know a computer could do.

 You have probably found that an ability to code could help you perform your
 current job more effi ciently. Companies are also noticing the value of having non-
technical employees learn to code, and off ering various on-site training options
and support. This chapter shows you how to learn to code on the job and ways to
incorporate what you’ve learned into your job.

Chapter 3

 IN THIS CHAPTER

 » Choosing a task to practice coding
at work

 » Learning to code during and
after work

 » Transitioning to a coding role

0003053976.INDD 74 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

74 BOOK 2 Career Building with Coding

Taking a Work Project to the Next Level
As a busy professional with a full work schedule, you need a tangible project to
work toward to keep you motivated while you find out how to code. Think of all
the tasks you perform during the week — how many could be automated if you
had the right tools and skills?

The following sample tasks can be done more efficiently with some coding and
could help you think of a goal of your own:

 » Spreadsheet consolidation: You have 15 team members who submit
timesheets to you using spreadsheets, and you create a consolidated weekly
report by manually cutting and pasting entries from each spreadsheet.

 » Content updates: You cut and paste the latest press stories every week into a
content management system to update the company’s website.

 » Data retrieval: You work for a financial services company, and monitor
acquisitions and sales made by ten private equity firms. Every day you visit
each firm’s website to look for updates.

 » Quality assurance: You test updates made to the company’s website by
clicking the same set of links to make sure they work as expected.

 » Prototyping designs: You create website designs, but it’s difficult to explain
to clients the user experience and interactions through static illustrations.

Whatever task you choose, make sure that you can describe how to complete it
from start to finish. For example, the steps to complete the data retrieval task
might be listed as follows:

1. Visit the first firm’s website, and download the list of companies on the
acquisitions page.

2. Permanently store the list. If the acquisition list has previously been retrieved,
compare the list downloaded today with yesterday’s version, and note any
additions or deletions.

3. Display the additions or deletions.

4. Repeat Steps 1–3 for the next firm, until all the firm websites have been visited.

5. Repeat Steps 1–4 daily.

You may be part of a technical process, such as a designer who hands off mockups
to a developer to create. Instead of automating your existing work, you could try
to complete work the technical team normally does after you. For example, if you

Tr
ai

ni
ng

 o
n

th
e

Jo
b

0003053976.INDD 75 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

CHAPTER 3 Training on the Job 75

do customer or sales support, you regularly receive customer and client feedback
and file support tickets for issues that require an engineer. The number of support
tickets always exceeds the number of engineers, so choose a low-priority non-
mission-critical issue to fix.

Don’t worry about choosing a task that seems too simple. Fixing an issue on a live
site currently in use is always more complex than it initially appears. However, try
to choose a work-related task so you can ask for help from coworkers.

Learning on the Job and after Work
After you’ve selected a task, you need to learn some coding to be able to fix the
issue. Given that you’re already working, going back to school or taking a hia-
tus from work to learn full-time is likely not feasible. Your next best option is
to learn coding on the job, ideally with your company’s support. Companies are
increasingly supporting employees who want to expand their technical skill-set
by providing resources to help them learn and by incentivizing those who learn
tangible skills.

WISTIA CODE SCHOOL
Companies are starting to recognize the demand for coding education and the ben-
efits of having more employees who can code. Wistia, a video-hosting and analytics
company, hosts a code school so that nontechnical employees can learn how to code.
Employees work as customer champions, or customer support agents, and are paired
with a developer who conducts an hourly mentoring session every week for five to six
months.

Normally, people learning to code practice their skills on personal projects. One advan-
tage Wistia employees have is that the programming skills they learn are used to solve
real problems that customers are experiencing. Solving coding issues, no matter how
small, for a live website is difficult because the fix will immediately affect customers
using the website.

As employees learn more, they still refer complex issues to the technical staff but
are able to handle the easier technical problems themselves, resulting in quicker
 resolution times.

0003053976.INDD 76 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

76 BOOK 2 Career Building with Coding

Training on the job
You are likely familiar with the compliance and leadership training available at
your company, especially in medium- to large-sized firms. However, you may
have never looked for the technical training options available to you. Here are
some tips for getting started learning on the job:

 » Virtual training resources: Corporate training libraries such as Safari,
Skillsoft, Lynda, and Pluralsight are popular among companies, and are a
good place to start learning programming fundamentals. (See Figure 3-1.)
Each provider has a mix of text and video content, which you can read and
view on-demand. Additionally, look for company-generated wikis and other
training resources that describe internal programming tools and procedures.

 » In-person training programs: Company employees often teach orientation
training courses to introduce new engineers to basic concepts and the way to
code in the company. Additionally, outside vendors may occasionally conduct
specific training courses on more advanced programming topics and lan-
guages. Ask whether you can view the list of training topics typically made
available to engineers, and then attend introductory training sessions.

FIGURE 3-1:
Lynda.com is a
popular online

training tool used
in companies.

Tr
ai

ni
ng

 o
n

th
e

Jo
b

0003053976.INDD 77 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

CHAPTER 3 Training on the Job 77

Let your supervisor know that learning to code is a development goal, and
include it in any reviews. Your supervisor can help you access training
programs not traditionally offered to nontechnical employees. Additionally,
letting as many coworkers as possible know about your goals will increase
your accountability and motivation.

 » Support from company developers: Your company likely has developers
who already assist you with the technical side of your projects. Whether
you’ve chosen a project to improve the efficiency of your own workflow or are
trying to complete work a developer would typically do, make sure to recruit a
developer, usually one you already have a relationship with, so you have a
resource to help you answer questions when you get stuck.

Your coworkers, especially on technical teams, are just as busy as you are. Before
asking for help, try finding the answer by reviewing internal materials, using
a search engine, or posting a question on a question-and-answer site such as
Stack Overflow. Include where you looked because developers might use the same
resources to answer questions.

Learning after work
Your company may be too small to have on-site technical training, or your office
may not have any developers. Don’t fret! You can take classes after work to learn
how to code. Look for classes that meet twice a week in the evenings, and set aside
time to do coursework during the weekend.

Companies often partially or fully reimburse the cost for employees who success-
fully complete a job-related course. Think of a few tangible ways that learning to
code would help you do your job better, or take on a new project and then make
the pitch to your manager. If you receive approval, make sure to keep up with the
coursework so you’re ready to contribute at work after the class is over.

A few places teach in-person coding classes designed for working professionals.
Because a live instructor is teaching and assisting you, many charge a fee.

Lower cost and free options are usually taught exclusively online, though comple-
tion rates for in-person classes are usually higher than online classes. Examples
of online coding websites include www.codecademy.com and www.udacity.com.

Here are some places where you can learn to code from a live instructor:

 » General Assembly: Teaches part-time, in-person classes across a range of
subjects, and has a presence in major cities in the United States and internation-
ally. Topics include front-end, back-end, data science, and mobile development.

0003053976.INDD 78 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

78 BOOK 2 Career Building with Coding

Classes typically meet twice a week for three hours over 12 weeks. General
Assembly is one of the largest companies teaching coding classes. You can view
their classes at www.generalassemb.ly.

 » Local boot camps: As coding has become more popular, coding boot camps
have sprung up in many cities around the world. Many of these boot camps
offer part-time programs that don’t require you to quit your job. You can
search boot camps by subject, location, and cost by using Course Report,
available at www.coursereport.com, and CourseHorse, available at www.
coursehorse.com.

Before signing up, make sure you review the instructor, the physical location,
and the cost, which should be no more than $4,000 for a part-time program
with 70 hours of instruction. Course Report profiles ten part-time boot camps
at www.coursereport.com/blog/learn-web-development-at-these-
10-part-time-bootcamps.

CODING ON THE JOB WITH
KELSEY MANNING
Kelsey Manning worked in media during and immediately after graduating from college.
At Notre Dame, she was a sports editor for the school newspaper and wrote blog posts
for various outlets. In addition to writing, she also did marketing and publicity for a PR
agency and then Hachette, a book publisher. Hachette needed a developer to design
responsive web pages, ones that display correctly on desktop and mobile devices, and
hired Kelsey for the job.

Without any previous coding experience, Kelsey had to learn to code on the job to com-
plete her work. During her first few weeks, she had to redesign real pages being used
on the website. She tackled the problem by first taking online classes at Codecademy,
and solving as many problems as she could on her own by searching with Google.
When she hit a wall, she would ask coworkers how to solve her problem. She also kept
learning and supplemented her learning with in-person coding classes taught locally in
New York.

Kelsey’s journey has been far from easy, but it appears to have paid off. You probably
will have more time to learn with less pressure than she did, but I hope her story gives
you confidence that it’s possible to learn to code while working a full-time job. You can
read more about Kelsey’s journey at www.levo.com/articles/skills/learning-
to-code-on-the-job.

Tr
ai

ni
ng

 o
n

th
e

Jo
b

0003053976.INDD 79 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

CHAPTER 3 Training on the Job 79

 » College courses: Traditionally, college computer science courses were
theoretical, but colleges have recently started offering more applied web
development and data science courses. Check your local university or
community college’s continuing education departments to see what’s offered.
For example, the City College of New York offers an Intro to Web Development
class with 16 hours of instruction for $280.

 » Library classes: Public libraries offer desktop productivity and other com-
puter classes, and have recently started offering web development classes as
well. For example, the New York Public Library has a free, ten-week program
called Project_<code>, in which you build a website for a small business.

Freelancing to Build Confidence and Skills
You’ve taken training classes at work, found a coding mentor, and solved your
first problem by using code. Congratulations! So where do you go from here? Like
a foreign language, if you stop coding, you’ll forget what you’ve learned. The most
important thing is to keep coding and building your confidence and skills.

Here are a few ideas for you to practice coding in the workplace:

 » Clone a website: Unlike programs that may have code you can’t access,
company websites allow you to see and save text and images. You may not be
able to re-create all the functionality, but choose a specific company’s web
page and try creating a copy of the layout, images, and text. This process will
help you practice your HTML, CSS, and JavaScript skills.

 » Build a mobile app: People purchase more mobile devices and spend more
time on them than on desktops and laptops. Still, some companies have been
slow to adapt, and don’t have a mobile presence. Create a mobile website
using HTML and CSS, or a native application using Swift for the iPhone or Java
for Android devices.

 » Code a small workplace utility app: There are many tasks that everyone at
your company and in your office performs. Your coworkers come to the office
around the same time, eat lunch at the same places, and leave work using the
same modes of transportation. They also share the same frustrations, some
of which might be solved with a simple program. Try building an app that
solves a small workplace annoyance — no one knows what would appeal to
your coworkers better than you. For example, build a website that sends an
email to those who opt-in whenever there is a traffic jam on the highway that

0003053976.INDD 80 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

80 BOOK 2 Career Building with Coding

everyone uses to leave work. Similarly, you could build an app that sends an
alert if any of the restaurants close to work fails a health inspection. The goal
here is to learn a new technology to solve a problem, and get real feedback
from other users.

After you’ve practiced and built a few things, publish your code on a hosting ser-
vice such as GitHub and create a portfolio website pulling everything you’ve built
into one place. You’ll be able to share and others will be able to find your work,
and the progression in your coding skills will be visible for anyone to see.

If you are stuck and can’t think of anything to build, try freeCodeCamp, available
at www.freecodecamp.com. The website, shown in Figure 3-2, connects working
professionals with nonprofits that need a website or app built. After you complete
the challenges, you’ll start working on a vetted nonprofit project. Current proj-
ects include an animal adoption database for Latin America through the nonprofit
People Saving Animals, and a charity fundraiser website for the Save a Child’s
Heart Foundation.

Transitioning to a New Role
Like any skill, coding can take a lifetime to master, but after you learn a little,
you may find that you want to move into a technology-based role. The first step
is to do a self-assessment and evaluate what you like and dislike about your cur-
rent role, and how that matches with the technology role you want. You’ll likely
also need input from others; networking and chatting with developers you trust
will help give you a balanced view of the job. If you decide to take the leap, you
have the big advantage of being inside a company, so you’ll know what they need
before a job posting is ever written.

FIGURE 3-2:
freeCodeCamp

connects
 professionals

who code
together for
nonprofits.

Tr
ai

ni
ng

 o
n

th
e

Jo
b

0003053976.INDD 81 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

CHAPTER 3 Training on the Job 81

Assessing your current role
You’ve worked hard to get to where you are — perhaps you just landed a job in a
competitive industry or have been working and advancing in your role for a few
years. In either case, if you’re thinking about switching to a coding job, you should
do a self-assessment and decide whether a new role would be a better fit for you.

Think about what you like and dislike about your current job. For some people,
the issue is office politics or poor team dynamics, but these are present in every
role that involves working with other people, and switching to a coding job car-
ries the risk of seeing the same issues. On the other hand, if you’re ready to learn
a new topic or have limited advancement opportunities, switching roles could be
a good idea.

After evaluating your current job, think about what you would like or dislike about
a coding job. For some, tech jobs seem attractive because companies overnight can
become worth billions of dollars and employee salaries are reportedly in the millions.
It is true that companies such as Facebook and Twitter are worth billions of dollars,
and engineers at these companies are well compensated, but these are the exceptions
not the rule. According to the federal Bureau of Labor Statistics, web developers and
computer programmers make on average between $65,000 and $75,000, which is
higher than many jobs but will not make you a millionaire overnight.

Networking with developers
One major benefit you have over other job seekers is that you probably work with
developers who hold the position you’re trying to obtain. Seek out some of these
developers, either from people you already work with or in a department that you
think is interesting.

After you connect with a few people, ask them how they spend their days, what
they enjoy and what they would change about their job, and for any advice they
have for you on how to make the transition. These types of conversations happen
less frequently than you might think, so don’t be shy about reaching out — you
might be surprised to find that some developers are happy to chat with you
because they are wondering how to transition into a nontechnical or business role.

The biggest constraint any company faces when hiring externally is not finding
people who are technically capable of doing the job but finding people who will
fit in with the company and the team culturally. As a current employee, you’ve
already passed one culture screen, and you’re in a good position to learn about
how you might fit in with the existing developer culture at the company. After you
build relationships with developers, maintain them and keep them updated on
your goals. At some point, they’ll likely be asked how serious you are and whether
you’d be a good fit.

0003053976.INDD 82 Trim size: 7.375 in × 9.25 in March 31, 2017 4:16 AM

82 BOOK 2 Career Building with Coding

Identifying roles that match
your interest and skills
Technical roles are just as numerous and varied as nontechnical roles. The posi-
tions include data analysts who analyze big data, traffic analysts who monitor
website traffic and patterns, web developers who create website front ends and
back ends, app developers who create mobile web apps and native apps for mobile
devices, and quality assurance testers who test for and help solve bugs in new
releases.

Apply for roles in which you have a strong interest. If you like working with sta-
tistics and math, a data analyst or traffic analytics role might suit you best. Or
if you’re a visual person and like creating experiences others can see, consider a
front-end developer role.

No matter the role, you should aim for a junior title and be committed to learn-
ing a lot on the job. Don’t be afraid of starting over. For example, if you’ve been
in marketing for four years and are interested in being a web developer, you will
likely start as a junior developer. Your previous job experience will help you be a
better team member and manager, which could help you advance more quickly,
but you’ll need to show that you’re able to complete basic technical tasks first.
Also, no matter the role, you’ll be spending a lot of time learning on the job, and
will be relying on your coworkers to teach you, so choose your role and team
carefully.

CHAPTER 4 Coding Career Myths 83

0003053977.INDD 83 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

 Coding Career Myths
“Nothing is more di� cult than competing with a myth.”

 — FRANÇOISE GIROUD

 T he tech profession is fi lled with myths and rumors. It can be hard to
separate fact from fi ction, especially given the reports of eye-popping
 salaries and prices for company acquisitions in the news. After you cut

through the hype, the tech industry is like any other, with demand for talent far
exceeding supply.

 The following myths about coding just aren’t true. These myths mainly apply to
people learning to code for the fi rst time. Read on to separate myth from reality.

 Educational Myths
 It ’ s common to think that coding careers are reserved for the few technical
wizards in the world. In fact, it ’ s a regular job for regular folks. If you ’ re persis-
tent, conscientious, and curious, I ’ ll bet you can do it. Don ’ t sell yourself short by
buying into ideas that just aren ’ t true.

Chapter 4

 IN THIS CHAPTER

 » Understanding myths about how to
learn to code

 » Reviewing myths related to securing
a career in coding

 » Developing a response to myths that
may apply to you

0003053977.INDD 84 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

84 BOOK 2 Career Building with Coding

You must be good at math
Developers who are building cutting-edge games, data scientists trying to create
the next big machine-learning algorithm, or engineers working in the financial
services industry likely need some proficiency in physics, statistics, or financial
math. However, many developers, such as those building e-commerce applica-
tions or typical web pages, do not need much more math than basic addition and
subtraction and high school algebra.

A good deal of math operates and powers applications, but there often isn’t a need
to understand everything that is happening. Computer languages and programs
are designed to manage complexity by requiring that you understand the inputs
and outputs — but not what happens in between, a concept called abstraction. For
example, when driving a car, you don’t need to understand how the internal com-
bustion engine works or the physics behind converting the energy from the piston
to the wheels. To drive a car, you need to understand how to operate the accelera-
tor, the brake, and the clutch for stick-shift cars. Similarly, programs have func-
tions that perform operations, but you need to understand only the inputs you
send a function and the output it returns.

In other words, you need to be able to understand math and have some basic math
skills, but you do not need to be the next Einstein to be able to program.

You must have studied engineering
Many people who study engineering learn how to program, but you do not need
to be an engineer to learn how to code. Engineering teaches skills that are useful
to programmers, such as how to solve a problem step-by-step as well as working
within and then designing around real-world constraints. These are useful skills,
but you can learn them outside the engineering curriculum.

Many topics that are part of an engineering curriculum vary in usefulness for
learning how to code. Topics such as algorithms can be directly applicable, espe-
cially if you’re working on cutting-edge problems. Other topics, such as assembly
language and computational theory, provide a good background but are rarely
used by most coders.

If your goal is to push the cutting edge of computer programs, a degree in computer
engineering might be useful. However, if you want to create a website to solve a
problem, learning to code in three to six months is probably sufficient to start.

Many colleges offer scholarships that can subsidize or completely cover the cost of
attendance for women and minorities pursuing science and engineering degrees.

Co
di

ng
 C

ar
ee

r
M

yt
hs

0003053977.INDD 85 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

CHAPTER 4 Coding Career Myths 85

You can learn coding in a few weeks
Like any passion or profession, coding is an art, and coders hone their skills over
decades. Although you don’t need decades of study to start coding, the amount of
time needed to learn depends on your goals. For example:

 » One week: Learn enough HTML to put text, images, and other basic content
on the page. You’ll be able to operate site builders to create and customize
informational websites.

 » One month: Develop your front-end CSS skills so you can position and style
elements on the page. You’ll also be able to edit sites built with website
builders such as Wix, Weebly, and SquareSpace. For data science, you can
learn to import and handle large data sets and use Python or R to find insights
about the data.

 » Three to six months: Learn front-end and back-end development skills to
take a concept, build a working prototype that can store data in a database,
and then code a version that can handle hundreds of thousands of users. In
addition, learn how to use a programming language’s external libraries to add
additional functionality, user management, and version control systems such
as Git so multiple people can work on a project at the same time. For data
science, you’ll be able to build an interactive visualization using a JavaScript
library such as d3.js. Whether learning web development or data science, it
will take approximately 800 hours of effort to be proficient enough to be hired
for a job.

You need a great idea to start coding
Learning to code is a lengthy process, filled with ups and downs. You might get
stuck for days and not see much progress. During periods of inevitable frustration,
having a bigger idea or a concrete reason to motivate you to keep learning can be
helpful. Instead of trying to build the next Facebook, YouTube, or Google, try to
build something that solves a problem you’ve personally faced. Here are people
who learned to code and remained motivated with a project:

 » Coffitivity.com: Four college students wanted to fight writer’s block by
listening to ambient sound. While learning to code, Tommy Nicholas built a
site that streams coffee shop sounds to add background noise to otherwise
silent offices and workspaces.

 » Outgrow.me: Sam Fellig is a Kickstarter enthusiast who wanted a simple way
to browse and purchase items from successful crowdfunded projects. He took
the leap and learned to code so he could build his website, shown in Figure 4-1,
which turned into one of Time magazine’s Top 50 websites of 2013.

0003053977.INDD 86 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

86 BOOK 2 Career Building with Coding

 » Sworkit: Ryan Hanna liked to work out but often became bored at the gym.
While learning JavaScript and Ruby, he built an app that guided users through
military-style workouts in five minutes or less. The app had over one million
downloads, and Ryan eventually sold it to Nexercise, an exercise company.

Each of these sites enjoyed a degree of popularity and was noticed by a huge num-
ber of users. If something similar happens with a site you design, it serves as a
nice bonus. But even if it doesn’t, you’ll feel satisfied having solved your own
problem.

Ruby is better than Python
You might wonder what language to learn first, especially given all the choices out
there. You could start with Ruby, Python, JavaScript, PHP, Swift, Objective-C —
the list goes on. To resolve this debate, you might search for which language is the
best, or which language to learn first. You’ll find articles and posts advocating one
language or another. Unlike comparing TVs or toasters, a clear winner is unlikely
to emerge. Sometimes you can spend more time deciding which language to learn
first than getting down to learning the language.

The most important thing is to learn a few easy scripting languages first and then
choose one all-purpose beginner programming language to learn thoroughly.

Usually, beginners start with HTML, CSS, and JavaScript. These languages are
the most forgiving of syntax mistakes and the easiest to learn. Then, after you
learn these basics, choose Python or Ruby if you’re interested in web develop-
ment. You’ll find many online tutorials and help for both.

FIGURE 4-1:
Outgrow.me

sells products
from successful

 crowdfunded
projects.

Co
di

ng
 C

ar
ee

r
M

yt
hs

0003053977.INDD 87 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

CHAPTER 4 Coding Career Myths 87

If you plan on doing work with a content management system such as WordPress
or Drupal, consider learning PHP.

Don’t spend too much time deciding which language to learn first, and don’t try
to learn all of them at the same time. Sometimes people hit a roadblock with one
language, give up, and start learning another language. However, the end result is
learning a little bit about many languages, instead of mastering a single language
and being able to build a complete and functioning website.

Career Myths
Like careers in medicine or law, a career in coding was often a long road. Much
has changed in the industry, and today it’s possible to get started without being
accepted at a prestigious university or working for years on an advanced degree. In
fact, you can probably go to work right away after learning the skills that employ-
ers require. Don’t sell yourself short with these common misbeliefs.

Only college graduates
receive coding offers
Both Bill Gates and Mark Zuckerberg left college before graduating to start their
own technology companies. To encourage more college dropouts, Peter Thiel, the
billionaire founder of PayPal and investor in Facebook, created a fellowship to pay
students $100,000 to start businesses and forgo school. Still, whether you can get
a coding offer without a degree varies by company type:

 » Elite technology companies: Google, Apple, Facebook, Microsoft, Twitter,
and Yahoo! are some of the world’s most elite technology companies. Because
of their sheer size and name recognition, they employ recruiters who screen
for certain attributes, such as college affiliation. College graduates from top
schools apply to these companies in overwhelming numbers. Although it is
not impossible to be hired at one of these companies without a college
degree, it is very difficult.

To find out which colleges serve as feeder schools for the top technology
companies, read the Wired article at www.wired.com/2014/05/alumni-
network-2.

 » Fortune 1000 companies: Large companies such as Verizon and AT&T hire
thousands of engineers a year, making their initial requirements for hiring
slightly more flexible. These companies typically look for a college degree or two
to three years of relevant experience with a specific programming language.

0003053977.INDD 88 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

88 BOOK 2 Career Building with Coding

 » Startups and small companies: Startups are sympathetic to nondegree
holders, and many startup employees are currently in college or are college
dropouts. Although startups don’t require a college degree, a great deal of
emphasis is put on what you’ve built previously and your ability to code under
tight deadlines. Well-funded startups are often a good place to gain experi-
ence because they need talent to keep growing and often compensate
employees as well as the more mature companies do.

 » Freelancing and contracting: When working for contracting websites such
as Upwork or for yourself, the main consideration is whether you can
complete the job. Few employers check whether you have a college degree; a
portfolio of past work, even if it was unpaid, is much more important to
securing the job and conveying the confidence that you’ll be able to deliver
the project on time and within budget.

Interest in nontraditional candidates is growing. Companies such as www.entelo.
com specialize in sourcing and scoring candidates with nontraditional markers of
success, such as blog posts, Stack Exchange answers, Twitter comments, and code
posted to GitHub.

You must have experience
Studies have shown that there is no correlation between experience and perfor-
mance in software development. For the new programmer, after you master some
basic skills, your performance is affected by much more than the amount of time
you’ve spent on a job. Despite the research, however, some companies still screen
for years of experience when filling open positions.

Much of the same logic that applies to getting a coding job without a college degree
applies here as well. Elite technology companies receive so many resumes and are
in such high demand that they can be more selective and look first at experienced
candidates. Fortune 1000 companies usually take one of two approaches: They
look for a minimum one to two years of experience, or they understand that as a
new hire, you’ll need training and use existing staff to help support you.

Startups and small companies typically pay the least attention to the number of
years of experience and more attention to your previous projects. Your contribu-
tions to an open-source project or a weekend project that attracted real users will
generate plenty of interest and enthusiasm for you as a candidate. Although it can
be easier to get your foot in the door at a startup, remember that the company’s
small size likely means there are fewer people and less money to devote to your
training and support, so much of your learning will be self-supported.

Co
di

ng
 C

ar
ee

r
M

yt
hs

0003053977.INDD 89 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

CHAPTER 4 Coding Career Myths 89

Companies of any size willing to invest in developing your programming abilities
will typically look for a positive attitude, a willingness to learn, and the persis-
tence to keep trying to solve problems and overcome obstacles.

Tech companies don’t hire women
or minorities
Whether in the Law and Order: SVU portrayal of women in technology or the
national media reports of the high-powered lawsuit filed by Ellen Pao about her
treatment in the technology industry, the tech industry has not had the best year
for welcoming women and minorities.

Admittedly, the numbers show a story that has improved but still has plenty of
room to grow, with the tech industry workforce made up of 25 percent women and
5 percent minority workers, which is below the national averages for both groups.

The Wall Street Journal has compiled publicly released diversity data from top tech
companies broken down by leadership and technology positions (see Figure 4-2). To
see the report, go to http://graphics.wsj.com/diversity-in-tech-companies.

Although many contributing causes have been identified, including the lack of a
pipeline of candidates studying computer science or applying to tech firms, many
leading companies and nonprofits are actively trying to increase the recruitment
and support of women and minorities in the workplace.

FIGURE 4-2:
WSJ compilation

of diversity in
tech companies
based on public

filings.

0003053977.INDD 90 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

90 BOOK 2 Career Building with Coding

On the corporate side, larger companies are creating programs that train and
increase the number of pathways to join the workforce. For example, Google
recently launched a $50 million campaign called Made with Code to highlight
women in tech and provide opportunities for girls to learn to code.

Similarly, nonprofit organizations such as Code 2040 connect Black and Latino
talent to companies. On the training side, nonprofits such as Yes We Code, Girls
Who Code, Black Girls Who Code, and Women Who Code teach technical skills to
increase the number of women and minorities entering the jobs pipeline.

The highest paying coding jobs
are in San Francisco
Many of the most famous tech companies, including Apple, Facebook, Google,
Twitter, and Yahoo!, are located in Silicon Valley. While these and other compa-
nies in the San Francisco and Silicon Valley area hire a large number of tech work-
ers each year, that paints only part of the picture.

Cities across the United States pay tech salaries comparable to San Francisco but
have a much lower cost of living, as shown in Table 4-1. Two numbers to keep in
mind when evaluating a city are the average salaries paid to tech workers and the
average cost of living. Salary minus rent provides a simple and rough estimate
of take-home pay, though it doesn’t take into account taxes, transportation, and
cost of goods and services.

TABLE 4-1	 Salary and Median Rent by City
City Annual Salary Annual Rent Salary Less Rent

Austin, TX $98,672 $16,200 $82,472

New York, NY $106,263 $25,856 $80,407

Seattle, WA $103,309 $23,400 $79,909

Washington, D.C. $102,873 $24,000 $78,873

Houston, TX $95,575 $17,000 $78,575

St. Louis, MO $83,582 $11,700 $71,882

San Francisco, CA $118,243 $50,400 $67,843

Sources: Dice.com Annual Salary Survey, Zillow.com median rent prices

Co
di

ng
 C

ar
ee

r
M

yt
hs

0003053977.INDD 91 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

CHAPTER 4 Coding Career Myths 91

Although San Francisco does pay the most of any city in the country, it looks less
attractive after subtracting the cost of rent from annual pay. By contrast, cities
such as St. Louis and Seattle offer strong salaries with a much lower cost of living.

A cost of living calculator will help you compare salaries in different cities. See,
for example, the PayScale cost of living calculator by visiting www.payscale.com/
cost-of-living-calculator.

Your previous experience isn’t relevant
Coding skill is one important factor that tech companies evaluate when hiring
coders. But just as important is your domain knowledge and ability to work and
lead a team. For example, perhaps you’re a lawyer looking to switch careers and
become a coder. Your legal knowledge will far exceed that of the average pro-
grammer, and if you target companies making software for lawyers, your per-
spective will be valuable.

Similarly, whether you previously were in finance or marketing, the issues around
managing and leading teams are similar. It is natural for a team of people to dis-
agree, have trouble communicating, and end up short of the intended goal. Your
previous experiences handling this type of situation and turning it into a positive
outcome will be valued in a tech company, where much of the coding is performed
in teams.

Finally, your current or previous job might not seem technical, but others like you
have made the transition into a coding job. People from a variety of professions —
such as lawyers, teachers, and financial analysts — have learned how to code, and
found ways to incorporate their past work experiences into their current coding
careers.

0003053977.INDD 92 Trim size: 7.375 in × 9.25 in March 31, 2017 4:17 AM

3
0003053964.INDD 93 Trim size: 7.375 in × 9.25 in March 30, 2017 11:15 PM

 Basic Web Coding

0003053964.INDD 94 Trim size: 7.375 in × 9.25 in March 30, 2017 11:15 PM

Contents at a Glance
CHAPTER 1: Exploring Basic HTML . 95

What Does HTML Do? . 95
Understanding HTML Structure . 96
Getting Familiar with Common HTML Tasks and Tags 102
Styling Me Pretty . 107
Building Your First Website Using HTML . 109

CHAPTER 2: Getting More Out of HTML . 113
Organizing Content on the Page . 113
Listing Data . 115
Putting Data in Tables . 118
Filling Out Forms . 124
Practicing More with HTML . 127

CHAPTER 3: Getting Stylish with CSS . 129
What Does CSS Do? . 129
CSS Structure . 131
Common CSS Tasks and Selectors . 135
Styling Me Pretty . 146

CHAPTER 4: Next Steps with CSS . 151
Styling (More) Elements on Your Page . 152
Selecting Elements to Style . 157
Aligning and Laying Out Your Elements . 163
Writing More Advanced CSS . 172

CHAPTER 5: Building Floating Page Layouts 173
Creating a Basic Two-Column Design . 173
Building a Three-Column Design . 185
Building a Fixed-Width Layout . 193
Building a Centered Fixed-Width Layout . 196

CHAPTER 6: Using Alternative Positioning . 201
Working with Absolute Positioning . 201
Managing z-index . 206
Building a Page Layout with Absolute Positioning 208
Creating a More Flexible Layout . 212
Exploring Other Types of Positioning . 216
Flexible Box Layout Model . 221

CHAPTER 1 Exploring Basic HTML 95

0003053978.INDD 95 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

 Exploring Basic HTML
 “You a� ect the world by what you browse.”

 — TIM BERNERS-LEE

 H TML, or HyperText Markup Language , is used in every single web page you
browse on the Internet. Because the language is so foundational, a good
fi rst step for you is to start learning HTML.

 In this chapter, you discover the HTML basics, including basic HTML structure
and how to make text appear in the browser. Next, you fi nd out how to format
text and display images in a web browser. Finally, you create your own, and pos-
sibly fi rst, HTML website. You may fi nd that HTML without any additional styling
appears to be very plain, and doesn’t look like the websites you normally visit on
the Internet. After you code a basic website using HTML, you will use additional
languages in later chapters to add even more style to your websites.

 What Does HTML Do?
 HTML instructs the browser on how to display text and images in a web page.
Recall the last time you created a document with a word processor. Whether you
use Microsoft Word or WordPad, Apple Pages, or another application, your word
processor has a main window in which you type text, and a menu or toolbar with
multiple options to structure and style that text (see Figure 1-1). Using your word

Chapter 1

 IN THIS CHAPTER

 » Learning the purpose of HTML

 » Understanding basic HTML structure

 » Adding headlines, paragraphs,
hyperlinks, and images

 » Formatting web page text

 » Creating a basic HTML website

0003053978.INDD 96 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

96 BOOK 3 Basic Web Coding

processor, you can create headings, write paragraphs, insert pictures, or under-
line text. Similarly, you can use HTML to structure and style text that appears on
websites.

Markup language documents, like HTML documents, are just plain text files.
Unlike documents created with a word processor, you can view an HTML file using
any web browser on any type of computer.

HTML files are plain text files that appear styled only when viewed with a browser.
By contrast, the rich text file format used by word processors add unseen format-
ting commands to the file. As a result, HTML written in a rich text file won’t ren-
der correctly in the browser.

Understanding HTML Structure
HTML follows a few rules to ensure that a website always displays in the same way
no matter which browser or computer is used. Once you understand these rules,
you’ll be better able to predict how the browser will display your HTML pages, and
to diagnose your mistakes when (not if!) the browser displays your web page dif-
ferently than you expected. Since its creation, HTML has evolved to include more
effects, but the following basic structural elements remain unchanged.

You can use any browser to display your HTML files, though I strongly recom-
mend you download, install, and use Chrome or Firefox. Both of these browsers
are updated often, are generally fast, and support and consistently render the
widest variety of HTML tags.

FIGURE 1-1:
The layout of a

word processor.

0003053978.INDD 97 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 97

Ex
pl

or
in

g
Ba

si
c

H
TM

L

Identifying elements
HTML uses special text keywords called elements to structure and style a website.
The browser recognizes an element and applies its effect if the following three
conditions exist:

 » The element is a letter, word, or phrase with special meaning. For example, h1
is an element recognized by the browser to apply a header effect, with bold
text and an enlarged font size.

 » The element is enclosed with a left-angle bracket (<) and right-angle bracket
(>). An element enclosed in this way is called a tag (such as, for example,
<h1>).

 » An opening tag (<element>) is followed by a closing tag (</element>). Note
that the closing tag differs from the opening tag by the addition of a forward
slash after the first left bracket and before the element (such as, for example,
</h1>).

Some HTML tags are self-closing, and don’t need separate closing tags, only a
forward slash in the opening tag. For more about this topic, see the section,
“Getting Familiar with Common HTML Tasks and Tags,” later in this chapter.

When all three conditions are met, the text between the opening and closing tags
is styled with the tag’s defined effect. If even one of these conditions is not met,
the browser just displays plain text.

For a better understanding of these three conditions, see the following example
code:

<h1>This is a big heading with all three conditions</h1>

h1 This is text without the < and > sign surrounding the tag /h1

<rockstar>This is text with a tag that has no meaning to the browser</rockstar>

This is regular text

You can see how a browser displays this code in Figure 1-2.

FIGURE 1-2:
The example

code displayed in
a browser.

0003053978.INDD 98 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

98 BOOK 3 Basic Web Coding

The browser applies a header effect to “This is a big heading with all three condi-
tions” because h1 is a header tag and all three conditions for a valid HTML tag
exist:

 » The browser recognizes the h1 element.

 » The h1 element is surrounded with a left (<) and right angle bracket (>).

 » The opening tag (<h1>) is followed by text and then a closing tag (</h1>).

Notice how the h1 tag itself does not display in the heading. The browser will
never display the actual text of an element in a properly formatted HTML tag.

The remaining lines of code display as plain text because they each are missing
one of the conditions. On the second line of code, the <h1> tag is missing the left
and right brackets, which violates the second condition. The third line of code
violates the first condition because rockstar is not a recognized HTML element.
(Once you finish this chapter, however, you may feel like a rockstar!) Finally, the
fourth line of code displays as plain text because it has no opening tag preceding
the text, and no closing tag following the text, which violates the third condition.

Every left angle-bracket must be followed after the element with a right angle-
bracket. In addition, every opening HTML tag must be followed with a closing
HTML tag.

Over 100 HTML elements exist, and I cover the most important elements in the
following sections. For now, don’t worry about memorizing individual element
names.

HTML is a forgiving language, and may properly apply an effect even if you’re
missing pieces of code, like a closing tag. However, if you leave in too many errors,
your page won’t display correctly.

Featuring your best attribute
Attributes provide additional ways to modify the behavior of an element or specify
additional information. Usually, but not always, you set an attribute equal to a
value enclosed in quotes. Here’s an example using the title attribute and the
hidden attribute:

<h1 title="United States of America">USA</h1>

<h1 hidden>New York City</h1>

The title attribute provides advisory information about the element that appears
when the mouse cursor hovers over the affected text (in other words, a tooltip). In

0003053978.INDD 99 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 99

Ex
pl

or
in

g
Ba

si
c

H
TM

L

this example, the word USA is styled as a header using the <h1> tag with a title
attribute set equal to “United States of America”. In a browser, then when you
place your mouse cursor over the word USA, the text United States of America
displays as a tooltip. (See Figure 1-3.)

The hidden attribute indicates that the element is not relevant, so the browser
won’t render any elements with this attribute. In this example, the words New
York City never appear in the browser window because the hidden attribute is in
the opening <h1> tag. More practically, hidden attributes are often used to hide
fields from users so they can’t edit them. For example, an RSVP website may want
to include but hide from users’ view a date and time field.

The hidden attribute is new in HTML5, which means it may not work on some
older browsers.

You don’t have to use one attribute at a time. You can include multiple attributes
in the opening HTML tag, like this:

<h1 title="United States of America" lang="en">USA</h1>

In this example, I used the title attribute, and the lang attribute, setting it equal
to “en” to specify that the content of the element is in the English language.

When including multiple attributes, separate each attribute with one space.

Keep the following rules in mind when using attributes:

 » If using an attribute, always include the attribute in the opening HTML tag.

 » Multiple attributes can modify a single element.

 » If the attribute has a value, then use the equal sign (=) and enclose the value in
quotes.

FIGURE 1-3:
A heading with

title attribute
has a tooltip.

0003053978.INDD 100 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

100 BOOK 3 Basic Web Coding

Standing head, title, and body
above the rest
HTML files are structured in a specific way so browsers can correctly interpret the
file’s information. Every HTML file has the same five elements: four whose open-
ing and closing tags appear once and only once, and one that appears once and
doesn’t need a closing tag. These are as follows:

 » !DOCTYPE html must appear first in your HTML file, and it appears only once.
This tag lets browsers know which version of HTML you’re using. In this case,
it’s the latest version, HTML5. No closing tag is necessary for this element.

For HTML4 websites, the first line in the HTML file reads <!DOCTYPE HTML
PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/TR/
html4/strict.dtd”>

 » html represents the root or beginning of an HTML document. The <html> tag
is followed by first an opening and closing <head> tag, and then an opening
and closing <body> tag.

 » head contains other elements, which specify general information about the
page, including the title.

 » title defines the title in the browser’s title bar or page tab.

Search engines like Google use title to rank websites in search results.

 » body contains the main content of an HTML document. Text, images, and
other content listed between the opening and closing body tag is displayed by
the browser.

Here is an example of a properly structured HTML file with these five tags (see
Figure 1-4):

<!DOCTYPE html>

<html>

<head>

 <title>Favorite Movie Quotes</title>

</head>

<body>

 <h1>"I'm going to make him an offer he can't refuse"</h1>

 <h1>"Houston, we have a problem"</h1>

 <h1>"May the Force be with you"</h1>

 <h1>"You talking to me?"</h1>

</body>

</html>

0003053978.INDD 101 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 101

Ex
pl

or
in

g
Ba

si
c

H
TM

L

Using spaces to indent and separate your tags is highly recommended. It helps you
and others read and understand your code. These spaces are only for you and any
other human that reads the code, however. Your browser won’t care. As far as your
browser is concerned, you could run all your tags together on one line. (Don’t do
this, though. The next person who reads your code will be most unhappy.) HTML
does recognize and display the first whitespace character in text between opening
and closing HTML tags.

The example had many h1 tags but only one opening and closing html, head,
title, and body tag.

FIGURE 1-4:
A web page

 created with basic
HTML elements.

HISTORY OF HTML
A computer engineer, Tim Berners-Lee, wanted academics to easily access academic
papers and collaborate with each other. To accomplish this goal, in 1989 Mr. Berners-
Lee created the first version of HTML, which had the same hyperlink elements you find
in this chapter, and hosted the first website in 1991. Unlike with most other computer
software, Mr. Berners-Lee made HTML available royalty-free, allowing widespread
adoption and use around the world. Shortly after creating the first iteration of HTML,
Mr. Berners-Lee formed the W3C (World Wide Web Consortium), which is a group of
people from academic institutions and corporations who define and maintain the HTML
language. The W3C continues to develop the HTML language, and has defined more
than 100 HTML elements, far more than the 18 that Mr. Berners-Lee originally created.
The latest version of HTML is HTML5, and it has considerable new functionality. In addi-
tion to supporting elements from previous HTML versions, HTML5 allows developers to
write code for browsers to play audio and video files, easily locate a user’s physical loca-
tion, and build charts and graphs.

0003053978.INDD 102 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

102 BOOK 3 Basic Web Coding

Getting Familiar with Common HTML
Tasks and Tags

Your browser can interpret over a hundred HTML tags, but most websites use just
a few tags to do most of the work within the browser. To understand this, let’s
try a little exercise: Think of your favorite news website. Have one in mind? Now
connect to the Internet, open your browser, and type the address of that website.
Bring this book with you, and take your time — I can wait!

In the event you can’t access the Internet right now, take a look at the article from
my favorite news website, The New York Times, found in Figure 1-5.

Look closely at the news website on your screen (or look at mine). Four HTML ele-
ments are used to create the majority of the page:

 » Headlines: Headlines are displayed in bold and have a larger font size than
the surrounding text.

FIGURE 1-5:
A New York

Times article
with headline,

paragraphs,
hyperlinks, and

images.

0003053978.INDD 103 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 103

Ex
pl

or
in

g
Ba

si
c

H
TM

L

 » Paragraphs: Each story is organized into paragraphs with white space
dividing each paragraph.

 » Hyperlinks: The site’s homepage and article pages have links to other stories,
and links to share the story on social networks like Facebook, Twitter, and
Google+.

 » Images: Writers place images throughout the story, but also look for site
images like icons and logos.

In the following sections, I explain how to write code to create these common
HTML features.

Writing headlines
Use headlines to describe a section of your page. HTML has six levels of headings
(see Figure 1-6):

 » h1, which is used for the most important headings

 » h2, which is used for subheadings

 » h3 to h6, which are used for less important headings

The browser renders h1 headings with a font size larger than h2’s, which in turn
is larger than h3’s. Headings start with an opening heading tag, the heading text,
and then the closing heading tag, as follows:

<h1>Heading text here</h1>

FIGURE 1-6:
Headings created

using elements
h1 through h6.

0003053978.INDD 104 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

104 BOOK 3 Basic Web Coding

Here are some additional code examples showing various headings:

<h1>Heading 1: "I'm going to make him an offer he can't refuse"</h1>

<h2>Heading 2: "Houston, we have a problem"</h2>

<h3>Heading 3: "May the Force be with you"</h3>

<h4>Heading 4: "You talking to me?"</h4>

<h5>Heading 5: "I'll be back"</h5>

<h6>Heading 6: "My precious"</h6>

Always close what you open. With headings, remember to include a closing head-
ing tag, such as </h1>.

Organizing text in paragraphs
To display text in paragraphs, you can use the p element: Place an opening <p>
tag before the paragraph, and a closing tag after it. The p element takes text and
inserts a line break after the closing tag.

To insert a single line break after any element, use the
 tag. The
 tag is
self-closing so no closing tag is needed, and </br> isn’t used.

Paragraphs start with an opening paragraph tag, the paragraph text, and then the
closing paragraph tag:

<p>Paragraph text here</p>

Here are some additional examples of coding a paragraph (see Figure 1-7):

<p>Armstrong: Okay. I'm going to step off the LM now.</p>

<p>Armstrong: That's one small step for man; one giant leap for mankind.</p>

<p>Armstrong: Yes, the surface is fine and powdery. I can kick it up loosely

with my toe. It does adhere in fine layers, like powdered charcoal, to the

sole and sides of my boots.</p>

Linking to your (heart’s) content
Hyperlinks are one of HTML’s most valuable features. Web pages that include
hyperlinked references to other sources allow the reader to access those sources
with just a click, a big advantage over printed pages.

0003053978.INDD 105 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 105

Ex
pl

or
in

g
Ba

si
c

H
TM

L

Hyperlinks have two parts:

 » Link destination: The web page the browser visits once the link is clicked.

To define the link destination in HTML, start with an opening anchor tag (<a>)
that has an href attribute. Then add the value of the href attribute, which is the
website the browser will go to once the link is clicked.

 » Link description: The words used to describe the link.

To create a hyperlink, add text to describe the link after the opening anchor tag,
and then add the closing anchor tag.

The resulting HTML should look something like this:

Link description

Here are three more examples of coding a hyperlink (see Figure 1-8):

Purchase anything

Rent a place to stay from a local host

Tech industry blog

FIGURE 1-7:
Text displayed in

paragraphs using
the p element.

FIGURE 1-8:
Three hyperlinks

created using the
a element.

0003053978.INDD 106 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

106 BOOK 3 Basic Web Coding

When rendering hyperlinks, the browser, by default, will underline the link and
color the link blue. To change these default properties, see Book 3, Chapter 3.

The <a> tag does not include a line break after the link.

Google’s search engine ranks web pages based on the words used to describe a
web page between the opening and closing <a> tags. This improved on search
results from previous methods, which relied primarily on analyzing page content.

Adding images
Images spruce up otherwise plain HTML text pages. To include an image on
your web page — your own or someone else’s — you must obtain the image’s
web address. Websites like Google Images (images.google.com) and Flickr
(www.flickr.com) allow you to search for online images based on keywords.
When you find an image you like, right-click on the image, and select Copy
Image URL.

Make sure you have permission to use an online image. Flickr has tools that allow
you to search for images with few to no license restrictions. Additionally, websites
pay to host images, and incur charges when a website directly links to an image.
For this reason, some websites do not allow hotlinking, or linking directly from
third-party websites (like you) to an image.

If you want to use an image that has not already been uploaded to the Internet,
you can use a site like www.imgur.com to upload the image. After uploading, you
will be able to copy the image URL and use it in your HTML.

To include an image, start with an opening image tag , define the source of
the image using the src attribute, and include a forward slash at the end of the
opening tag to close the tag (see Figure 1-9):

<img src="http://upload.wikimedia.org/wikipedia/commons/5/55/

Grace_Hopper.jpg"/>

<img src="http://upload.wikimedia.org/wikipedia/commons/b/bd/

Dts_news_bill_gates.jpg"/>

The image tag is self-closing, which means a separate closing image tag is
not used. The image tag is one of the exceptions to the always-close-what-you-
open rule!

0003053978.INDD 107 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 107

Ex
pl

or
in

g
Ba

si
c

H
TM

L

Styling Me Pretty
Now that you know how to display basic text and images in a browser, you should
understand how to further customize and style them. HTML has basic capabilities
to style content, and later chapters show you how to use CSS to style and position
your content down to the last pixel. Here, however, I explain how to do some basic
text formatting in HTML, and then you’ll build your first web page.

Highlighting with bold, italics, underline,
and strikethrough
HTML allows for basic text styling using the following elements:

 » strong marks important text, which the browser displays as bold

 » em marks emphasized text, which the browser displays as italicized

 » u marks text as underlined

 » del marks deleted text, which the browser displays as strikethrough

The underline element is not typically used for text because it can lead to confu-
sion. Hyperlinks, after all, are underlined by default.

FIGURE 1-9:
Images of

Grace Hopper,
a US Navy rear

 admiral, and
Bill Gates, the

cofounder
of Microsoft,

rendered using
.

Bill Gates photo credit https://commons.wikimedia.org/wiki/
File:Dts_news_bill_gates_wikipedia.JPG

0003053978.INDD 108 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

108 BOOK 3 Basic Web Coding

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag, as follows:

<element name>Affected text</element name>

Here are some examples (see Figure 1-10):

Grace Hopper, a US Navy rear admiral , popularized the term

"debugging."

Bill Gates co-founded a company called Microsoft.

Stuart Russell and Peter Norvig wrote a book called <u>Artificial Intelligence:

A Modern Approach</u>.

Mark Zuckerberg created a website called Nosebook Facebook.

Steve Jobs co-founded a company called Peach Apple

You can apply multiple effects to text by using multiple HTML tags. Always close
the most recently opened tag first and then the next most recently used tag. For
an example, look at the last line of code in Figure 1-10, and the tags applied to the
word Peach.

Raising and lowering text with
superscript and subscript
Reference works like Wikipedia and technical papers often use superscript for foot-
notes and subscript for chemical names. To apply these styles, use the elements

 » sup for text marked as superscript

 » sub for text marked as subscript

FIGURE 1-10:
Sentences

formatted using
bold, italics,

underline, and
strikethrough.

0003053978.INDD 109 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 109

Ex
pl

or
in

g
Ba

si
c

H
TM

L

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag as follows:

<element name>Affected text</element name>

Here are two examples (see Figure 1-11):

<p>The University of Pennsylvania announced to the public the first electronic

general-purpose computer, named ENIAC, on February 14, 1946.¹</p>

<p>The Centers for Disease Control and Prevention recommends drinking several

glasses of H₂0 per day.</p>

When using the superscript element to mark footnotes, use an <a> anchor tag to
link directly to the footnote so the reader can view the footnote easily.

Building Your First Website Using HTML
Now that you understand the basics, you can put that knowledge to use. You can
practice directly on your computer by following these steps:

1. Open any text editor, such as Notepad (on a PC) or TextEdit (on a Mac).

On a PC running Microsoft Windows, you can access Notepad by clicking the
Start button and selecting Run; in the search box, type Notepad.

On a Macintosh, select the Spotlight Search (hourglass icon on the top-right
corner of the toolbar), and type TextEdit.

FIGURE 1-11:
Text formatted to
show superscript

and subscript
effects.

0003053978.INDD 110 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

110 BOOK 3 Basic Web Coding

2. Enter into the text editor any of the code samples you have seen in this
chapter, or create your own combination of the code.

3. Once you have finished, save the file and make sure to include “.html” at
the end of the filename.

4. Double-click the file to open in your default browser.

You can download at no cost specialized text editors created specifically for writ-
ing code:

 » For PCs, you can download Notepad++ at www.notepad-plus-plus.org.

 » For Mac computers, you can download TextMate at http://macromates.
com/download.

If you want to practice your HTML online, you can use the Codecademy website.
Codecademy is a free website created in 2011 to allow anyone to learn how to
code right in the browser, without installing or downloading any software. (See
 Figure 1-12.) Practice all the tags (and a few more) that you find in this chapter by
following these steps:

1. Open your browser, go to www.dummies.com/go/codingaiolinks, and
click the Codecademy link.

2. If you have a Codecademy account, sign in.

Signing up is discussed in Book 1, Chapter 3.

Creating an account allows you to save your progress as you work, but it’s
optional.

3. Navigate to and click HTML Basics.

Background information is presented in the upper-left portion of the site, and
instructions are presented in the lower-left portion of the site.

4. Complete the instructions in the main coding window.

As you type, a live preview of your code is generated.

5. After you have finished completing the instructions, click the Save and
Submit Code button.

If you followed the instructions correctly, a green checkmark appears, and you
proceed to the next exercise. If an error exists in your code, a warning appears

0003053978.INDD 111 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 1 Exploring Basic HTML 111

Ex
pl

or
in

g
Ba

si
c

H
TM

L

FIGURE 1-12:
Codecademy

in-browser
 exercises.

with a suggested fix. If you run into a problem, or have a bug you cannot fix,
click the hint, use the Q&A Forums, or tweet me at @nikhilgabraham and
include the hashtag #codingFD. Additionally, you can sign up for book updates
and explanations for changes to programming language commands by visiting
http://tinyletter.com/codingfordummies.

0003053978.INDD 112 Trim size: 7.375 in × 9.25 in March 31, 2017 4:20 AM

CHAPTER 2 Getting More Out of HTML 113

0003053979.INDD 113 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

 Getting More
Out of HTML

 “I’m controlling, and I want everything orderly, and I need lists.”
 — SANDRA BULLOCK

 E ven your best content needs structure to increase readability for your users.
This book is no exception. Consider the “In This Chapter” bulleted list of
items at the top of this chapter, or the table of contents at the beginning of

the book. Lists and tables make things easier for you to understand at a glance.
By mirroring the structure you fi nd in a book or magazine, web elements let you
precisely defi ne how content, such as text and images, appear on the web.

 In this chapter, you fi nd out how to use HTML elements such as lists, tables, and
forms, and how to know when these elements are appropriate for your content.

 Organizing Content on the Page
 Readability is the most important principle for organizing and displaying content
on your web page. Your web page should allow visitors to easily read, understand,
and act on your content. The desired action you have in mind for your visitors
may be to click on and read additional content, share the content with others, or

Chapter 2

 IN THIS CHAPTER

 » Organizing content in a web page

 » Writing HTML lists

 » Creating HTML tables

 » Filling out HTML forms

0003053979.INDD 114 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

114 BOOK 3 Basic Web Coding

perhaps make a purchase. Poorly organized content will lead users to leave your
website before engaging with your content long enough to complete the desired
action.

Figures 2-1 and 2-2 show two examples of website readability. In Figure 2-1,
I searched Craigslist.org for an apartment in New York. The search results are
structured like a list, and you can limit the content displayed using the filters and
search forms. Each listing has multiple attributes, such as a description, the num-
ber of bedrooms, the neighborhood, and, most importantly, the price. Comparing
similar attributes from different listings takes some effort — notice the jagged
line your eye must follow.

FIGURE 2-1:
A Craigslist.

org listing of
apartments in

New York (2014).

FIGURE 2-2:
A Hipmunk.com
listing of flights

from New York to
London (2014).

G
et

ti
ng

 M
or

e
O

ut
 o

f
H

TM
L

0003053979.INDD 115 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

CHAPTER 2 Getting More Out of HTML 115

Figure 2-2 shows the results of a search I conducted at Hipmunk.com for flights
from New York to London. As with the Craigslist search results, you can limit the
content displayed using the filters and search forms. Additionally, each flight list-
ing has multiple attributes, including price, carrier, departure time, landing time,
and duration, which are similar to the attributes of the apartment listings. Com-
paring similar attributes from different flights is much easier with the Hipmunk
layout, however. Notice how the content, in contrast to Craigslist’s, has a layout
that allows your eye to follow a straight line down the page, so you can easily rank
and compare different options.

Don’t underestimate the power of simplicity when displaying content. Although
Craigslist’s content layout may look almost too simple, the site is one of the top
50 most visited websites in the world. Reddit.com is another example of a top
50 website with a simple layout.

Before displaying your content, ask yourself a few questions first:

 » Does your content have one attribute with related data, or does it follow
sequential steps? If so, consider using lists.

 » Does your content have multiple attributes suitable for comparison? If
so, consider using tables.

 » Do you need to collect input from the visitor? If so, consider using forms.

Don’t let these choices overwhelm you. Pick one, see how your visitors react, and
if necessary change how you display the content. The process of evaluating one
version against another version of the same web page is called A/B testing.

Listing Data
Websites have used lists for decades to convey related or hierarchical information.
In Figure 2-3, you can see an older version of Yahoo.com that uses bulleted lists to
display various categories and today’s Allrecipes.com recipe page, which uses lists
to display various ingredients.

Lists begin with a symbol, an indentation, and then the list item. The symbol used
can be a number, letter, bullet, or no symbol at all.

0003053979.INDD 116 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

116 BOOK 3 Basic Web Coding

Creating ordered and unordered lists
Here are the two most popular types of lists:

 » Ordered: Ordered lists are numerical or alphabetical lists in which the
sequence of list items is important.

 » Unordered: These lists are usually bulleted lists in which the sequence of list
items has no importance.

You create lists by specifying the type of list as ordered or unordered and then
adding each list item using the li tag, as shown in the following steps:

1. Specify the type of list.

Add opening and closing list tags that specify either an ordered (ol) or
unordered (ul) list, as follows:

• ol to specify the beginning and end of an ordered list

• ul to specify the beginning and end of an unordered list

2. Add an opening and closing tag (that is, and) for each item in
the list.

For example, here’s an ordered list:

 List item #1

 List item #2

 List item #3

FIGURE 2-3:
Yahoo!’s 1997

homepage using
an unordered

list (left) and
Allrecipes.com’s

2014 recipe using
an ordered list

(right).

G
et

ti
ng

 M
or

e
O

ut
 o

f
H

TM
L

0003053979.INDD 117 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

CHAPTER 2 Getting More Out of HTML 117

Nesting lists
Additionally, you can nest lists within lists. A list of any type can be nested inside
another list; to nest a list, replace the list item tag with a list type tag, either
 or .

The example code in Figure 2-4 shows various list types including a nested list.
(See Figures 2-4 and 2-5.)

The <h1> tag shown in this code sample is not necessary to create a list. I use it
here only to name each list.

Every opening list or list item tag must be followed with a closing list or list
item tag.

FIGURE 2-4:
Coding an

ordered list and
a nested list.

FIGURE 2-5:
The page

 produced by
the code in
Figure 2-4.

0003053979.INDD 118 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

118 BOOK 3 Basic Web Coding

Putting Data in Tables
Tables help further organize text and tabular data on the page. (See Figure 2-6.)
The table format is especially appropriate when displaying pricing information,
comparing features across products, or in any situation where the columns or
rows share a common attribute. Tables act as containers, and can hold and display
any type of content, including text, such as heading and lists and images. For
example, the table in Figure 2-6 includes additional content and styling like icons
at the top of each column, gray background shading, and rounded buttons. This
content and styling can make tables you see online differ from tables you ordinar-
ily see in books.

Avoid using tables to create page layouts. In the past, developers created multi-
column layouts using tables, but today developers use CSS (see Book 3, Chapter 4)
for layout-related tasks.

Basic table structuring
Tables comprise several parts, like the one shown in Figure 2-7.

You create a table by following these steps:

1. Define a table with the table element.

To do this, add the opening and closing <table> tags.

FIGURE 2-6:
Box.net uses

tables to
display pricing

 information.

G
et

ti
ng

 M
or

e
O

ut
 o

f
H

TM
L

0003053979.INDD 119 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

CHAPTER 2 Getting More Out of HTML 119

2. Divide the table into rows with the tr element.

Between the opening and closing table tags, create opening <tr> tags and
closing </tr> tags for each row of your table.

3. Divide rows into cells using the td element.

Between the opening and closing tr tags, create opening and closing td tags
for each cell in the row.

4. Highlight cells that are headers using the th element.

Finally, specify any cells that are headers by replacing the td element with a th
element.

Your table will have only one opening and closing <table> tag; however, you can
have one or more table rows (tr) and cells (td).

The following example code shows the syntax for creating the table shown in
Figure 2-7.

<table>

 <tr>

 <th>Table header 1</th>

 <th>Table header 2</th>

 </tr>

 <tr>

 <td>Row #1, Cell #1</td>

 <td>Row #1, Cell #2</td>

 </tr>

 <tr>

 <td>Row #2, Cell #1</td>

 <td>Row #2, Cell #2</td>

 </tr>

</table>

FIGURE 2-7:
The different

parts of a table.

0003053979.INDD 120 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

120 BOOK 3 Basic Web Coding

After you’ve decided how many rows and columns your table will have, make sure
to use an opening and closing <tr> tag for each row and an opening and closing
<td> tag for each cell in the row.

Stretching table columns and rows
Take a look at the table describing Facebook’s income statement in Figure 2-8.
Data for 2011, 2012, and 2013 appears in individual columns of equal-sized width.
Now look at Total Revenue, which appears in a cell that stretches or spans across
several columns.

Stretching a cell across columns or rows is called spanning.

The colspan attribute spans a column over subsequent vertical columns. The
value of the colspan attribute is set equal to the number of columns you want to
span. You always span a column from left to right. Similarly, the rowspan attribute
spans a row over subsequent horizontal rows. Set rowspan equal to the number of
rows you want to span.

The following code generates a part of the table shown in Figure 2-8. You can
see the colspan attribute spans the Total Revenue cell across two columns. As

FIGURE 2-8:
An income

 statement in
a table with
 columns of

 different sizes.

G
et

ti
ng

 M
or

e
O

ut
 o

f
H

TM
L

0003053979.INDD 121 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

CHAPTER 2 Getting More Out of HTML 121

described in Book 3, Chapter 1, the tag is used to mark important text,
and is shown as bold by the browser.

 <tr>

 <td colspan="2">

 Total Revenue

 </td>

 <td>

 7,872,000

 </td>

 <td>

 5,089,000

 </td>

 <td>

 3,711,000

 </td>

 </tr>

If you set a column or row to span by more columns or rows than are actually
present in the table, the browser will insert additional columns or rows, changing
your table layout.

CSS helps size individual columns and rows, as well as entire tables. See Book 3,
Chapter 4.

Aligning tables and cells
The latest version of HTML does not support the tags and attributes in this section.
Although your browser may correctly render this code, there is no guarantee your
browser will correctly render it in the future. I include these attributes because,
as of this writing, HTML code on the Internet, including the Yahoo! Finance site
in the previous examples, still uses these deprecated (older) attributes in tables.
This code is similar to expletives — recognize them but try not to use them. Refer
to Book 3, Chapter 3 to see modern techniques using Cascading Style Sheets (CSS)
for achieving the identical effects.

The table element has three deprecated attributes you need to know — align,
width, and border. These attributes are described in Table 2-1.

0003053979.INDD 122 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

122 BOOK 3 Basic Web Coding

The following example code shows the syntax for creating the table in Figure 2-9
with align, width, and border attributes.

<table align="right" width=50% border=1>

 <tr>

 <td>The Social Network</td>

 <td>Generation Like</td>

 </tr>

 <tr>

 <td>Tron</td>

 <td>War Games</td>

 </tr>

</table>

Always insert attributes inside the opening <html> tag, and enclose words in
quotes.

FIGURE 2-9:
A table with
deprecated

align, width,
and border

 attributes.

TABLE 2-1	 Table Attributes Replaced by CSS
Attribute Name Possible Values Description

align left

center

right

Position of table relative to the containing document according to
the value of the attribute. For example, align="right" positions
the table on the right side of the web page.

width pixels (#)

%

Width of table measured either in pixels on-screen or as a
percentage of the browser window or container tag.

border pixels (#) Width of table border in pixels.

G
et

ti
ng

 M
or

e
O

ut
 o

f
H

TM
L

0003053979.INDD 123 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

CHAPTER 2 Getting More Out of HTML 123

The tr element has two deprecated attributes you need to know — align and
valign. These are described in Table 2-2.

The td element has four deprecated attributes you need to know — align, valign,
width, and height. These are described in Table 2-3.

TABLE 2-2	 Table Row Attributes Replaced by CSS
Attribute Name Possible Values Description

align left

right

center

justify

Horizontal alignment of a row’s cell contents according to the value
of the attribute. For example, align="right" positions a row’s
cell contents on the right side of each cell.

valign top

middle

bottom

Vertical alignment of a row’s cell contents according to the value of
the attribute. For example, align="bottom" positions a row’s cell
contents on the bottom of each cell.

TABLE 2-3	 Table Cell Attributes Replaced by CSS
Attribute Name Possible Values Description

align left

right

center

justify

Horizontal alignment of a cell’s contents according to the value of
the attribute. For example, align="center" positions the cell’s
contents in the center of the cell.

valign top

middle

bottom

Vertical alignment of a cell’s contents according to the value of the
attribute. For example, align="middle" positions a cell’s contents
in the middle of the cell.

width pixels (#)

%

Width of a cell measured either in pixels on-screen or as a
percentage of the table width.

height pixels (#)

%

Height of a cell measured either in pixels on-screen or as a
percentage of the table width.

0003053979.INDD 124 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

124 BOOK 3 Basic Web Coding

The following example code shows the syntax for creating the table in Figure 2-10
with align, valign, width, and height attributes.

<table align="right" width=50% border=1>

 <tr align="right" valign="bottom">

 <td height=100>The Social Network</td>

 <td>Generation Like</td>

 </tr>

 <tr>

 <td height=200 align="center" valign="middle">Tron</td>

 <td align="center" valign="top" width=20%>War Games</td>

 </tr>

</table>

Remember, these attributes are no longer supported and should not be used in
your code.

Filling Out Forms
Forms allow you to capture input from your website visitors. Until now we have
displayed content as-is, but capturing input from visitors allows you to do the
following:

 » Modify existing content on the page. For example, price and date filters on
airline websites allow for finding a desired flight more quickly.

 » Store the input for later use. For example, a website may use a registration
form to collect your email, username, and password information to allow you
to access it at a later date.

FIGURE 2-10:
A table with
 deprecated

align, valign,
width, and

height
 attributes.

G
et

ti
ng

 M
or

e
O

ut
 o

f
H

TM
L

0003053979.INDD 125 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

CHAPTER 2 Getting More Out of HTML 125

Understanding how forms work
Forms pass information entered by a user to a server by using the following
process:

1. The browser displays a form on the client machine.

2. The user completes the form and presses the Submit button.

3. The browser submits the data collected from the form to a server.

4. The server processes and stores the data and sends a response to the client
machine.

5. The browser displays the response, usually indicating whether the submission
was successful.

See Book 1, Chapter 2 for an additional discussion about the relationship between
the client and server.

A full description of how the server receives and stores data (Steps 3 to 5) is
beyond the scope of this book. For now, all you need to know is that server-side
programming languages such as Python, PHP, and Ruby are used to write scripts
that receive and store form submissions.

Forms are very flexible, and can record a variety of user inputs. Input fields used in
forms can include free text fields, radio buttons, check boxes, drop-down menus,
range sliders, dates, phone numbers, and more. (See Table 2-4.) Additionally,
input fields can be set to initial default values without any user input.

TABLE 2-4	 Selected Form Attributes
Attribute Name Possible Values Description

type checkbox

email

submit

text

password

radio

(a complete list of values has been
omitted here for brevity)

Defines the type of input field to display
in the form. For example, text is used
for free text fields, and submit is used to
create a Submit button.

value text The initial value of the input control.

0003053979.INDD 126 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

126 BOOK 3 Basic Web Coding

View the entire list of form input types and example code at www.w3schools.com/
tags/att_input_type.asp.

Creating basic forms
You create a basic form by

1. Defining a form with the form element.

Start by adding an opening <form> tag and closing </form> tag.

2. Using the action attribute, specify in the form element where to send
form data.

Add an action attribute to your opening <form> tag and set it equal to the
URL of a script that will process and store the user input.

3. Using the method attribute, specify in the form element how to send form
data.

Add a method attribute to your opening <form> tag and set it equal to POST.

The method attribute is set equal to GET or POST. The technicalities of each are
beyond the scope of this book, but, in general, POST is used for storing
sensitive information (such as credit card numbers), whereas GET is used to
allow users to bookmark or share with others the results of a submitted form
(for example, airline flight listings).

4. Providing a way for users to input and submit responses with the input
element.

Between the opening <form> and closing </form> tags, create one <input> tag.

Your form will have only one opening and closing <form> tag; however, you
will have at least two <input> tags to collect and submit user data.

5. Specify input types using the type attribute in the input element.

For this example, set the type attribute equal to "text".

The <input> tag doesn’t have a closing tag, which is an exception to the “close
every tag you open” rule. These tags are called self-closing tags, and you can
see more examples in Book 3, Chapter 1.

6. Finally, create another <input> tag and set the type attribute equal to
submit.

G
et

ti
ng

 M
or

e
O

ut
 o

f
H

TM
L

0003053979.INDD 127 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

CHAPTER 2 Getting More Out of HTML 127

The following example code shows the syntax for creating the form shown in
Figure 2-11.

<form action="mailto:nikhil.abraham@gmail.com" method="POST">

 <input type="text" value="Type a short message here">

 <input type="submit">

</form>

The action attribute in this form is set equal to mailto, which signals to the
browser to send an email using your default mail client (such as Outlook or Gmail).
If your browser isn’t configured to handle email links, then this form won’t work.
Ordinarily, forms are submitted to a server to process and store the form’s con-
tents, but in this example form, the contents are submitted to the user’s email
application.

Practicing More with HTML
Practice your HTML online using the Codecademy website. Codecademy is a free
website created in 2011 to allow anyone to learn how to code right in the browser,
without installing or downloading any software. Practice all the tags (and a few
more) that you find in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingaiolinks, and
click the link to Codecademy.

2. If you have a Codecademy account, sign in.

Signing up is discussed in Book 1, Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

FIGURE 2-11:
A form with one
user input and a

Submit button.

0003053979.INDD 128 Trim size: 7.375 in × 9.25 in March 31, 2017 4:24 AM

128 BOOK 3 Basic Web Coding

3. Navigate to and click HTML Basics II to practice creating lists, and HTML
Basics III to practice creating tables.

Background information is presented in the upper-left portion of the site, and
instructions are presented in the lower-left portion of the site.

4. Complete the instructions in the main coding window.

As you type, a live preview of your code is generated.

5. After you have finished completing the instructions, click the Save and
Submit Code button.

If you followed the instructions correctly, a green checkmark appears, and you
proceed to the next exercise. If an error exists in your code, a warning appears
with a suggested fix. If you run into a problem or a bug you cannot fix, click the
hint, use the Q&A Forum, or tweet me at @nikhilgabraham and include the
hashtag #codingFD. Additionally, you can sign up for book updates and
explanations for changes to programming language commands by visiting
http://tinyletter.com/codingfordummies.

CHAPTER 3 Getting Stylish with CSS 129

0003053980.INDD 129 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

 Getting Stylish with CSS
 “Create your own style . . . let it be unique for yourself and yet identifi able for
others.”

 — ANNA WINTOUR

 T he website code examples I show in the preceding chapters resemble
 websites you may have seen from a previous era. Websites you browse today
are diff erent, and they have a more polished look and feel. Numerous fac-

tors enabled this change. Twenty years ago you might have browsed the Internet
with a dial-up modem, but today you likely use a very fast Internet connection
and a more powerful computer. Programmers have used this extra bandwidth and
speed to write code to further customize and style websites.

 In this chapter you discover modern techniques to style websites using Cascading
Style Sheets (CSS). First, I discuss basic CSS structure and then the CSS rules to
style your content. Finally, I show you how to apply these rules to your websites.

 What Does CSS Do?
 CSS styles HTML elements with greater control than HTML does. Take a look at
Figure 3-1 . On the left, Facebook appears as it currently exists; on the right, how-
ever, the same Facebook page is shown without all the CSS styling. Without the
CSS, all the images and text appear left-justifi ed, borders and shading disappear,
and text has minimal formatting.

Chapter 3

 IN THIS CHAPTER

 » Understanding CSS and its structure

 » Formatting text size, color, and style

 » Styling images

 » Using CSS in three diff erent contexts

0003053980.INDD 130 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

130 BOOK 3 Basic Web Coding

CSS can style almost any HTML tag that creates a visible element on the page,
including all the HTML tags used to create headings, paragraphs, links, images,
lists, and tables that I showed you in previous chapters. Specifically, CSS allows
you to style

 » Text size, color, style, typeface, and alignment

 » Link color and style

 » Image size and alignment

 » List bullet styles and indentation

 » Table size, shading, borders, and alignment

CSS styles and positions the HTML elements that appear on a web page. However,
some HTML elements (for example, <head>) aren’t visible on the page and aren’t
styled using CSS.

You may wonder why creating a separate language like CSS to handle styling was
considered a better approach than expanding the capabilities of HTML. There are
three reasons:

 » History: CSS was created four years after HTML as an experiment to see
whether developers and consumers wanted extra styling effects. At the time,
it was unclear whether CSS would be useful, and only some major browsers
supported it. As a result, CSS was created separately from HTML to allow
developers to build sites using just HTML.

 » Code management: Initially, some CSS functionality overlapped with existing
HTML functionality. However, specifying styling effects in HTML results in
cluttered and messy code. For example, specifying a particular font typeface
in HTML requires that you include the font typeface attribute in every
paragraph (<p>) tag. Styling a single paragraph this way is easy, but applying
the font to a series of paragraphs (or an entire page or website) quickly
becomes tedious. By contrast, CSS requires the typeface to be specified only

FIGURE 3-1:
Left Facebook

with CSS. Right:
Facebook

 without CSS.

0003053980.INDD 131 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 131

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

once, and it automatically applies to all paragraphs. This feature makes it
easier for developers to write and maintain code. In addition, separating the
styling of the content from the actual content itself has allowed search
engines and other automated website agents to more easily process the
content on web pages.

 » Inertia: Currently millions of web pages use HTML and CSS separately, and
every day that number grows. CSS started as a separate language for
preceding reasons, and it remains a separate language because its popularity
continues to grow.

CSS Structure
CSS follows a set of rules to ensure that websites will be displayed in the same way
no matter the browser or computer used. Sometimes, because of varying support
of the CSS standard, browsers can and do display web pages differently. Never-
theless, generally speaking, CSS ensures that users have a consistent experience
across all browsers.

Every web browser will interpret CSS rules to style your HTML, though I strongly
recommend you download, install, and use Chrome or Firefox.

Choosing the element to style
CSS continues to evolve and support increased functionality, but the basic syntax
for defining CSS rules remains the same. CSS modifies HTML elements with rules
that apply to each element. These rules are written as follows:

selector {

property: value;

}

A CSS rule is comprised of three parts:

 » Selector: The HTML element you want to style.

 » Property: The feature of the HTML element you want to style, for example,
font typeface, image height, or color.

 » Value: The options for the property that the CSS rule sets. For example, if
color were the property, the value would be red.

0003053980.INDD 132 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

132 BOOK 3 Basic Web Coding

The selector identifies which HTML element you want to style. In HTML, an element
is surrounded by angle brackets, but in CSS, the selector stands alone. The selec-
tor is followed by a space, an opening left curly bracket ({), property with a value,
and then a closing right curly bracket (}). The line break after the opening curly
bracket, and before the closing curly bracket is not required by CSS — in fact, you
could put all your code on one line with no line breaks or spaces. Using line breaks
is the convention followed by developers to make CSS easier to modify and read.

You can find curly brackets on most keyboards to the right of the P key.

The following code shows you an example of CSS modifying a specific HTML
 element. The CSS code appears first, followed by the HTML code that it modifies:

The CSS:

h1 {

 font-family: cursive;

}

And now the HTML:

<h1>

 Largest IPOs in US History

</h1>

 2014: Alibaba - $20B

 2008: Visa - $18B

The CSS selector targets and styles the HTML element with the same name (in
this case, <h1> tags). For example, in Figure 3-2, the heading “Largest IPOs in US
History,” created using the opening and closing <h1> tag is styled using the h1
selector, and the font-family property with cursive value.

FIGURE 3-2:
CSS targeting

the heading h1
 element.

0003053980.INDD 133 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 133

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

CSS uses a colon instead of the equal sign (=) to set values against properties.

The font in Figure 3-2 likely doesn’t appear to be cursive, as defined in the pre-
ceding code, because cursive is the name of a generic font family, not a specific
font. Generic font families are described later in this chapter.

My property has value
CSS syntax requires that a CSS property and its value appear within opening and
closing curly brackets. After each property is a colon, and after each value is a
semicolon. This combination of property and value together is called a declaration,
and a group of properties and values is called a declaration block.

Let us look at a specific example with multiple properties and values:

h1 {

 font-size: 15px;

 color: blue;

}

In this example, CSS styles the h1 element, changing the font-size property to
15px, and the color property to blue.

You can improve the readability of your code by putting each declaration (each
property/value combination) on its own line. Additionally, adding spaces or tabs
to indent the declarations also improves the readability. Adding these line breaks
and indentions doesn’t affect browser performance in any way, but it will make it
easier for you and others to read your code.

Hacking the CSS on your favorite website
In Book 1, Chapter 2, you modified a news website’s HTML code. In this chapter,
you modify its CSS. Let’s take a look at some CSS rules in the wild. In this example,
you change the CSS on huffingtonpost.com (or your news website of choice) using
the Chrome browser. Just follow these steps:

1. Using a Chrome browser, navigate to your favorite news website, ideally
one with many headlines. (See Figure 3-3.)

2. Place your mouse pointer over a headline, right-click, and from the menu
that appears select Inspect.

A window opens at the bottom of your browser.

3. Click the Styles tab on the right side of this window to see the CSS rules
being applied to HTML elements. (See Figure 3-4.)

0003053980.INDD 134 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

134 BOOK 3 Basic Web Coding

4. Change the color of the headline using CSS.

To do this, first find the color property in the element.style section; note
the square color box within that property that displays a sample of the current
color. Click this box and change the value by selecting a new color from the
pop-up menu, and then press Enter.

Your headline now appears in the color you picked. (See Figure 3-5.)

If the element.style section is blank and no color property appears, you can
still add it manually. To do so, click once in the element.style section, and
when the blinking cursor appears, type color: purple. The headline changes to
purple.

FIGURE 3-3:
The Huffington

Post website
before

 modification.

FIGURE 3-4:
The CSS rules
that style the

Huffington Post
website.

0003053980.INDD 135 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 135

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

As with HTML, you can modify any website’s CSS using Chrome’s Inspect Element
feature, also known as Developer Tools. Most modern browsers, including Firefox,
Safari, and Opera, have a similar feature.

Common CSS Tasks and Selectors
Although CSS includes over 150 properties and many values for each property, on
modern websites, a handful of CSS properties and values do the majority of the
work. In the previous section, when you “hacked” the CSS on a live website, you
changed the heading color — a common task in CSS. Other common tasks per-
formed with CSS include

 » Changing font size, style, font family, and decoration

 » Customizing links including color, background color, and link state

 » Adding background images and formatting foreground images

Font gymnastics: Size, color, style,
family, and decoration
CSS lets you control text in many HTML elements. The most common text-related
CSS properties and values are shown in Table 3-1. I describe these properties and
values more fully in the sections that follow.

FIGURE 3-5:
Changing the CSS
changes the color

of the headline.

0003053980.INDD 136 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

136 BOOK 3 Basic Web Coding

Setting the font-size
As in a word processor, you can set the size of the font you’re using with CSS’s
font-size property. You have a few options for setting the font size, and the most
common one is to use pixels, as in the following:

p {

 font-size: 16px;

}

In this example, I used the p selector to size the paragraph text to 16 pixels. One
disadvantage of using pixels to size your font occurs when users who prefer a
large font size for readability have changed their browser settings to a default font
size value that’s larger than the one you specify on your site. In these situations,
the font size specified in the browser takes precedence, and the fonts on your site
will not scale to adjust to these preferences.

Percentage-sizing and em values, the other options to size your fonts, are consid-
ered more accessibility-friendly. The default browser font size of normal text is

TABLE 3-1	 Common CSS Properties and Values for Styling Text
Property Name Possible Values Description

font-size pixels (#px)

%

em (#em)

Specifies the size of text measured either in pixels, as
a percentage of the containing element’s font size, or
with an em value which is calculated by desired pixel
value divided by containing element font size in pixels.
Example: font-size: 16px;

color name

hex code

rgb value

Changes the color of the text specified using names
(color: blue;), hexadecimal code (color:
#0000FF;), or RGB (red, green, and blue) value
(color: rgb(0,0,255);).

font-style normal

italic

Sets font to appear in italics (or not).

font-weight normal

bold

Sets font to appear as bold (or not).

font-family font name Sets the font typeface. Example: font-family:
serif;

text-decoration none

underline

line-through

Sets font to have an underline or
strikethrough (or not).

0003053980.INDD 137 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 137

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

16 pixels. With percentage-sizing and em values, fonts can be sized relative to the
user-specified default. For example, the CSS for percentage-sizing looks like this:

p {

 font-size: 150%;

}

In this example, I used the p selector to size the paragraph text to 150 percent of
the default size. If the browser’s default font size was set at 16 pixels, this para-
graph’s font would appear sized at 24 pixels (150 percent of 16).

A font-size equal to 1px is equivalent to one pixel on your monitor, so the actual
size of the text displayed varies according to the size of the monitor. Accordingly,
for a fixed font size in pixels, the text appears smaller as you increase the screen
resolution.

Setting the color
The color property sets the color in one of three ways:

 » Name: One hundred forty-seven colors can be referenced by name. You can
reference common colors, such as black, blue, and red, along with uncommon
colors, such as burlywood, lemon chiffon, thistle, and rebeccapurple.

Rebecca Meyer, the daughter of prominent CSS standards author Eric Meyer,
passed away in 2014 from brain cancer at the age of six. In response, the CSS
standardization committee approved adding a shade of purple called rebecca-
purple to the CSS specification in Rebecca’s honor. All major Internet browsers
have implemented support for the color.

 » Hex code: Colors can be defined by component parts of red, green, and blue,
and when hexadecimal code is used, over 16 million colors can be referenced.
In the code example, I set the h1 color equal to #FF0000. After the hashtag,
the first two digits (FF) refer to the red in the color, the next two digits (00)
refer to the green in the color, and the final two digits (00) refer to the blue in
the color.

 » RGB value: Just like hex codes, RGB values specify the red, green, and blue
component parts for over 16 million colors. RGB values are the decimal
equivalent to hexadecimal values.

Don’t worry about trying to remember hex codes or RGB values. You can
easily identify colors using an online color picker such as the one at www.
w3schools.com/colors/colors_picker.asp.

0003053980.INDD 138 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

138 BOOK 3 Basic Web Coding

The following example shows all three types of color changes:

p {

 color: red

}

h1 {

 color: #FF0000

}

li {

 color: rgb(255,0,0)

}

li is the element name for a list item in ordered and unordered lists.

All three colors in the preceding code example reference the same shade of red.
For the full list of colors that can be referenced by name go to www.w3.org/TR/
css3-color/#svg-color.

Setting the font-style and font-weight
The font-style property can set text to italics, and the font-weight property can
set text to bold. For each of these properties, the default is normal, which doesn’t
need to be specified. In the following example, the paragraph is styled so that the
font appears italicized and bold. Here’s an example of each:

p {

 font-style: italics;

 font-weight: bold;

}

Setting the font-family
The font-family property sets the typeface used for text. The property is set
equal to one font, or to a list of fonts separated by commas. Your website visitors
will have a variety of different fonts installed on their computers, but the font-
family property displays your specified font only if that font is already installed
on their system.

The font-family property can be set equal to two types of values:

 » Font name: Specific font names such as Times New Roman, Arial,
and Courier.

 » Generic font family: Modern browsers usually define one installed font for
each generic font family. These five generic font families include

0003053980.INDD 139 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 139

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

• Serif (Times New Roman, Palantino)

• Sans-serif (Helvetica, Verdana)

• Monospace (Courier, Andale Mono)

• Cursive (Comic Sans, Florence)

• Fantasy (Impact, Oldtown)

When using font-family, it’s best to define two or three specific fonts followed
by a generic font family as a fallback in case the fonts you specify aren’t installed,
as in the following example:

p {

 font-family: "Times New Roman", Helvetica, serif;

}

In this example, the paragraph’s font family is defined as Times New Roman. If
Times New Roman isn’t installed on the user’s computer, the browser then uses
Helvetica. If Helvetica isn’t installed, the browser will use any available font in the
generic serif font family.

When using a font name with multiple words (such as Times New Roman), enclose
the font name in quotes.

Setting the text-decoration
The text-decoration property sets any font underlining or strikethrough. By
default, the property is equal to none, which doesn’t have to be specified. In the
following example, any text with an h1 heading is underlined, whereas any text
inside a paragraph tag is made strikethrough:

h1 {

 text-decoration: underline;

}

p {

 text-decoration: line-through;

}

Customizing links
In general, browsers display links as blue underlined text. Originally, this default
behavior minimized the confusion between content on the page and an interactive
link. Today, almost every website styles links in its own way. Some websites don’t

0003053980.INDD 140 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

140 BOOK 3 Basic Web Coding

underline links; others retain the underlining but style links in colors other than
blue; and so on.

The HTML anchor element (a) is used to create links. The text between the open-
ing and closing anchor tag is the link description, and the URL set in the href
attribute is the address the browser visits when the link is clicked.

The anchor tag has evolved over time and today has four states:

 » link: A link that a user hasn’t clicked or visited

 » visited: A link that a user has clicked or visited

 » hover: A link that the user hovers the mouse cursor over without clicking

 » active: A link the user has begun to click but hasn’t yet released the mouse
button

CSS can style each of these four states, most often by using the properties and
values shown in Table 3-2.

The following example styles links in a way that’s similar to the way they’re
styled in articles at Wikipedia, where links appear blue by default, underlined on
mouse hover, and orange when active. As shown in Figure 3-6, the first link to
Chief Technology Officer of the United States appears underlined as it would if my
mouse was hovering over it. Also, the link to Google appears orange as it would if
active and my mouse were clicking it.

a:link{

 color: rgb(6,69,173);

 text-decoration: none;

}

TABLE 3-2	 Common CSS Properties and Values for Styling Links
Property Name Possible Values Description

color name

hex code

rgb value

Link color specified using names (color: blue;),
hexadecimal code (color: #0000FF;), or RGB value
(color: rgb(0,0,255);).

text-decoration none

underline

Sets link to have an underline (or not).

0003053980.INDD 141 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 141

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

a:visited {

 color: rgb(11,0,128)

}

a:hover {

 text-decoration: underline

}

a:active {

 color: rgb(250,167,0)

}

Remember to include the colon between the a selector and the link state.

Although explaining why is beyond the scope of this book, CSS specifications
insist that you define the various link states in the order shown here — link, vis-
ited, hover, and then active. However, it is acceptable to not define a link state, as
long as this order is preserved.

The various link states are known as pseudo-class selectors. Pseudo-class selectors
add a keyword to CSS selectors and allow you to style a special state of the selected
element.

FIGURE 3-6:
Wikipedia.org
page showing

link, visited,
hover, and active

states.

0003053980.INDD 142 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

142 BOOK 3 Basic Web Coding

Adding background images and styling
foreground images
You can use CSS to add background images behind HTML elements. Most com-
monly, the background-image property is used to add background images to indi-
vidual HTML elements such as div, table, and p, or (when applied to the body
element) to entire web pages.

Background images with smaller file sizes load more quickly than larger images.
This is especially important if your visitors commonly browse your website using
a mobile phone, which typically has a slower data connection.

The properties and values in Table 3-3 show the options for adding background
images.

TABLE 3-3	 CSS Properties and Values for Background Images
Property Name Possible Values Description

background-
image

url("URL") Adds a background image from the image link specified at URL.

background-
size

auto

contain

cover

width height
(#px, %)

Sets background size according to the value:

auto (default value) displays the image as originally sized.

contain scales the image’s width and height so that it fits
inside element.

cover scales the image so element background isn’t visible.

Background size can also be set by specifying width and height in
pixels or as a percentage.

background-
position

keywords

position
(#px, %)

Positions the background in element using keywords or exact
position. Keywords comprise horizontal keywords (left, right,
center) and vertical keywords (top, center, and bottom). The
placement of the background can also be exactly defined using
pixels or a percentage to describe the horizontal and vertical
position relative to the element.

background-
repeat

repeat

repeat-x

repeat-y

no-repeat

Sets the background image to tile, or repeat, as follows:

horizontally (repeat-x)

vertically (repeat-y)

horizontally and vertically (repeat)

don’t repeat at all (no-repeat).

background-
attachment

scroll

fixed

Sets the background to scroll with other content (scroll), or to
remain fixed (fixed).

0003053980.INDD 143 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 143

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

Setting the background-image
As shown in the following example, the background-image property can set the
background image for the entire web page or a specific element.

body {

 background-image:

 url("http://upload.wikimedia.org/wikipedia/commons/e/e5/

 Chrysler_Building_Midtown_Manhattan_New_York_City_1932.jpg

 ");

}

You can find background images at sites such as images.google.com, www.
flickr.com, or publicdomainarchive.com.

Check image copyright information to see if you have permission to use the image,
and comply with image’s licensing terms, which can include attributing or identi-
fying the author. Additionally, directly linking to images on other servers is called
hotlinking. It is preferable to download the image and host and link to the image
on your own server.

If you prefer a single-color background instead of an image, use the background-
color property. This property is defined in much the same way as the background-
image property. Just set it equal to a color name, RGB value, or hex code, as I
describe earlier in this chapter in the section “Setting the color.”

Setting the background-size
By specifying exact dimensions using pixels or percentages, the background-size
property can scale background images to be smaller or larger, as needed. In addi-
tion, this property has three dimensions commonly used on web pages, as follows
(see Figure 3-7):

 » auto: This value maintains the original dimensions of an image.

 » cover: This value scales an image so all dimensions are greater than or equal
to the size of the container or HTML element.

 » contain: This value scales an image so all dimensions are less than or equal
to the size of the container or HTML element.

0003053980.INDD 144 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

144 BOOK 3 Basic Web Coding

Setting the background-position
The background-position property sets the initial position of the background
image. The default initial position is in the top-left corner of the web page or
specific element. You change the default position by specifying a pair of keywords
or position values, as follows:

 » Keywords: The first keyword (left, center, or right) represents the
horizontal position, and the second keyword (top, center, or bottom)
represents the vertical position.

 » Position: The first position value represents the horizontal position, and the
second value represents the vertical. Each value is defined using pixels or
percentages, representing the distance from the top-left of the browser or the
specified element. For example, background-position: center center is
equal to background-position: 50% 50%. (See Figure 3-8.)

Setting the background-repeat
The background-repeat property sets the direction the background will tile as
follows:

 » repeat: This value (the default) repeats the background image both horizon-
tally and vertically.

 » repeat-x: This value repeats the background image only horizontally.

 » repeat-y: This repeats the background image only vertically.

 » no-repeat: This value prevents the background from repeating at all.

Setting the background-attachment
The background-attachment property sets the background image to move
(or not) when the user scrolls through content on the page. The property can be
set to

FIGURE 3-7:
Setting the

background size
to three different

values.

0003053980.INDD 145 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 145

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

 » scroll: The background image moves when the user scrolls.

 » fixed: The background image doesn’t move when the user scrolls.

The following code segment uses several of the properties discussed earlier to add
a background image that stretches across the entire web page, is aligned in the
center, does not repeat, and does not move when the user scrolls. (See Figure 3-9.)

body {

 background-image:

 "http://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/

 USMC-090807-M-8097K-022.jpg/640px-USMC-090807-M-8097K-022.jpg");

 background-size: cover;

 background-position: center center;

 background-repeat: no-repeat;

 background-attachment: fixed;

}

FIGURE 3-8:
The initial

background
image positions
specified using

keywords or
 position.

0003053980.INDD 146 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

146 BOOK 3 Basic Web Coding

Styling Me Pretty
The CSS rules discussed in this chapter give you a taste of a few common styling
properties and values. Although you aren’t likely to remember every property and
value, with practice, the property and value names will come to you naturally.
After you understand the basic syntax, the next step is to actually incorporate CSS
into your web page and try your hand at styling HTML elements.

Adding CSS to your HTML
There are three ways to apply CSS to a website to style HTML elements:

 » In-line CSS: CSS can be specified within an HTML file on the same line as the
HTML element it styles. This method requires placing the style attribute
inside the opening HTML tag. Generally, in-line CSS is the least preferred way
of styling a website because the styling rules are frequently repeated. Here’s
an example of in-line CSS:

<!DOCTYPE html>

<html>

<head>

 <title>Record IPOs</title>

</head>

<body>

 <h1 style="color: red;">Alibaba IPO expected to be biggest IPO of all time</h1>

</body>

</html>

FIGURE 3-9:
An image set as
the background
for entire page.

0003053980.INDD 147 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 147

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

 » Embedded CSS: With this approach, CSS appears within the HTML file, but
separated from the HTML tags it modifies. The CSS code appears within the
HTML file between an opening and closing <style> tag, which itself is located
between an opening and closing <head> tag. Embedded CSS is usually used
when styling a single HTML page differently than the rest of your website.

In this example, the embedded CSS styles the header red, just like the
preceding in-line CSS does.

<!DOCTYPE html>

<html>

<head>

 <title>Record IPOs</title>

 <style type="text/css">

 h1 {

 color: red;

 }

 </style>

</head>

<body>

 <h1>Alibaba IPO expected to be biggest IPO of all time</h1>

</body>

</html>

 » Separate style sheets: CSS can be specified in a separate style sheet — that is,
in a separate file. Using a separate style sheet is the preferred approach to
storing your CSS because it makes maintaining the HTML file easier and
allows you to quickly make changes. In the HTML file, the <link> tag is used
to refer to the separate style sheet, and has three attributes:

• href: Specifies the CSS filename.

• rel: Should be set equal to "stylesheet".

• type: Should be set equal to "text/css".

With three different ways of styling HTML elements with CSS, all three ways could
be used with contradictory styles. For example, say your in-line CSS styles h1
elements as red, whereas embedded CSS styles them as blue, and a separate style
sheet styles them as green. To resolve these conflicts, in-line CSS has the high-
est priority and overrides all other CSS rules. If no in-line CSS is specified, then
embedded CSS has the next highest priority, and finally in the absence of in-line
or embedded CSS, the styles in a separate style sheet are used. In the example,
with the presence of all three styles, the h1 element text would appear red because
in-line CSS has the highest priority and overrides the embedded CSS blue styling
and the separate CSS green styling.

0003053980.INDD 148 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

148 BOOK 3 Basic Web Coding

The following example uses a separate CSS style sheet to style the header red, as
in the previous two examples:

CSS: style.css

h1 {

 color: red;

}

HTML: index.html

<DOCTYPE html>

<html>

<head>

 <title>Record IPOs</title>

 <link href="style.css" text="text/css" rel="stylesheet">

</head>

<body>

 <h1>Alibaba IPO expected to be biggest IPO of all time</h1>

</body>

</html>

Building your first web page
Practice your HTML online using the Codecademy website. Codecademy is a free
website created in 2011 to allow anyone to learn how to code right in the browser,
without installing or downloading any software. You can practice all of the tags
(and a few more) discussed in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingaiolinks, and
click the Codecademy link.

2. If you have a Codecademy account, sign in.

Signing up is discussed in Book 1, Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click About You.

Background information is presented in the upper-left portion of the site, and
instructions are presented in the lower-left portion of the site.

0003053980.INDD 149 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 3 Getting Stylish with CSS 149

G
et

ti
ng

 S
ty

lis
h

w
it

h
CS

S

4. Complete the instructions in the main coding window.

As you type, a live preview of your code is generated.

5. After you have finished completing the instructions, click the Save and
Submit Code button.

If you followed the instructions correctly, a green checkmark appears, and you
proceed to the next exercise. If an error exists in your code, a warning appears
with a suggested fix. If you run into a problem, or have a bug you cannot fix, click
the hint, use the Q&A Forums, or tweet me at @nikhilgabraham and include the
hashtag #codingFD. Additionally, you can sign up for book updates and expla-
nations for changes to programming language commands by visiting http://
tinyletter.com/codingfordummies.

0003053980.INDD 150 Trim size: 7.375 in × 9.25 in March 30, 2017 9:45 PM

CHAPTER 4 Next Steps with CSS 151

0003053981.INDD 151 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

 Next Steps with CSS
 “Design is not just what it looks like and feels like. Design is how it works.”

 —STEVE JOBS

 I n this chapter, you continue building on the CSS you worked with in Book 3,
Chapter 3. So far, the CSS rules you’ve seen in the previous chapter applied to
the entire web page, but now they get more specifi c. You fi nd out how to style

several more HTML elements, including lists, tables, and forms, and how to select
and style specifi c parts of a web page, such as the fi rst paragraph in a story or
the last row of a table. Finally, you read about how professional web develop-
ers use CSS and the box model to control, down to the pixel, the positioning of
 elements on the page. Understanding the box model is not necessary to build your
app in Book 5.

 Before diving in, remember the big picture: HTML puts content on the web page,
and CSS further styles and positions that content. Instead of trying to memorize
every rule, use this chapter to understand CSS basics. CSS selectors have proper-
ties and values that modify HTML elements.

There is no better way to learn than by doing, so feel free to skip ahead to the
Codecademy practice lessons at the end of the chapter. Then use this chapter
as a reference when you have questions about specifi c elements you’re trying
to style.

Chapter 4

 IN THIS CHAPTER

 » Formatting lists and tables

 » Styling web pages using parent and
child selectors

 » Naming pieces of code using id and
 class

 » Using the box model to position
HTML elements on the page

0003053981.INDD 152 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

152 BOOK 3 Basic Web Coding

Styling (More) Elements on Your Page
In this section, you discover common ways to style lists and tables. In the previous
chapter, the CSS properties and rules you saw, like color and font-family, can
apply to any HTML element containing text. By contrast, some of the CSS shown
here is used only to style lists, tables, and forms.

Styling lists
In Book 3, Chapter 2 you created ordered lists, which start with markers like
letters or numbers, and unordered lists, which start with markers like bullet
points. By default, list items in an ordered list use numbers (for example, 1, 2, 3),
whereas list items in unordered lists use a solid black circle (●).

These defaults may not be appropriate for all circumstances. In fact, the two most
common tasks when styling a list include the following:

 » Changing the marker used to create a list: For unordered lists, like this one,
you can use a solid disc, empty circle, or square bullet point. For ordered lists,
you can use numbers, Roman numerals (upper or lower case), or case letters
(upper or lower).

 » Specifying an image to use as the bullet point: You can create your own
marker for ordered and unordered lists instead of using the default option.
For example, if you create an unordered bulleted list for a burger restaurant,
instead of using a solid circle as a bullet point, you could use a color ham-
burger icon image.

You can accomplish either of these tasks by using the properties in Table 4-1 with
an ol or ul selector to modify the list type.

TABLE 4-1	 Common CSS Properties and Values for Styling Lists
Property Name Possible Values Description

list-style-type

(unordered list)

disc

circle

square

none

Sets the markers used to create list items in
an unordered list to disc (●), circle (ο), square
(▪), or none.

0003053981.INDD 153 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 153

N
ex

t
St

ep
s

w
it

h
CS

S

CSS selectors using properties and rules modify HTML elements by the same
name. For example, Figure 4-1 has HTML tags that are referred to in CSS
with the ul selector, and styled using the properties and rules in Table 4-1.

Many text website navigation bars are created using unordered bulleted lists with
the marker set to none. You can see an example in the Codecademy CSS Position-
ing course starting with Exercise 21.

CSS properties and values apply to a CSS selector and modify an HTML ele-
ment. In the following example, embedded CSS (between the opening and closing
<style> tags) and in-line CSS (defined with the style attribute in the HTML) is
used to

Property Name Possible Values Description

list-style-type

(ordered list)

decimal

upper-roman

lower-roman

upper-alpha

lower-alpha

Sets the markers used to create list items in
an ordered list to decimal (1, 2, 3), uppercase
Roman numerals (I, II, III), lowercase Roman
numerals (i, ii, iii), uppercase letters (A, B, C), or
lowercase letters (a, b, c).

list-style-image url(“URL”) When URL is replaced with the image link, the
property sets an image as the marker used to
create a list item.

FIGURE 4-1:
Embedded and

in-line CSS.

0003053981.INDD 154 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

154 BOOK 3 Basic Web Coding

 » Change the marker in an unordered list to a square using list-style-type.

 » Change the marker in an ordered list to uppercase Roman numerals again
using list-style-type.

 » Set a custom marker to an icon using list-style-image.

The code for embedded and in-line CSS is shown next and in Figure 4-1.
Figure 4-2 shows this code rendered in the browser.

<html>

<head>

<title>Figure 4-1: Lists</title>

<style>

ul {

 list-style-type: square;

}

ol {

 list-style-type: upper-roman;

}

li {

 font-size: 27px;

}

</style>

</head>

<body>

<h1>Ridesharing startups</h1>

 Hailo: book a taxi on your phone

 Lyft: request a peer-to-peer ride

 <li style="list-style-image: url('car.png');">Uber: hire a driver

<h1>Food startups</h1>

 Grubhub: order takeout food online

 <li style="list-style-image: url('burger.png');">Blue Apron: subscribe to

 weekly meal delivery

 Instacart: request groceries delivered the same day

</body>

</html>

0003053981.INDD 155 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 155

N
ex

t
St

ep
s

w
it

h
CS

S

If the custom image for your marker is larger than the text, your text may not
align vertically with the marker. To fix this problem, you can either increase the
font size of each list item using font-size (as shown in the example) and increase
the margin between each list item using margin, or you can set list-style-type
to none and set a background image on the ul element using background-image.

There are three ways to apply CSS — with inline CSS using the style attribute,
with embedded CSS using an opening and closing <style> tag, and in a separate
CSS style sheet.

Designing tables
In Book 3, Chapter 2, you found out how to create basic tables. By default, the
width of these tables expands to fit content inside the table, content in individual
cells is left-aligned, and no borders are displayed.

These defaults may not be appropriate for all circumstances. Deprecated (unsup-
ported) HTML attributes can modify these defaults, but if at any time, browsers
stop recognizing these attributes, tables created with these attributes will display
incorrectly. As a safer alternative, CSS can style tables with greater control. Three
common tasks CSS can perform for tables include the following:

 » Setting the width of a table, table row, or individual table cell with the
width property

 » Aligning text within the table with the text-align property

 » Displaying borders within the table with the border property (See Table 4-2.)

FIGURE 4-2:
Ordered and

unordered
lists modified
to change the
marker type.

0003053981.INDD 156 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

156 BOOK 3 Basic Web Coding

In the following example, the table is wider than the text in any cell, the text in
each cell is centered, and the table border is applied to header cells:

<html>

<head>

<title>Figure 4-2: Tables</title>

<style>

 table {

 width: 700px;

 }

 table, td {

 text-align: center;

 border: 1px solid black;

 border-collapse: collapse;

 }

</style>

</head>

<body>

 <table>

 <caption>Desktop browser market share (August 2014)</caption>

 <tr>

 <th>Source</th>

 <th>Chrome</th>

 <th>IE</th>

 <th>Firefox</th>

 <th>Safari</th>

 <th>Other</th>

TABLE 4-2	 Common CSS Properties and Values for Styling Tables
Property Name Possible Values Description

Width pixels (#px)

%

Width of table measured either in pixels on-screen or as a
percentage of the browser window or container tag.

text-align left

right

center

justify

Position of text relative to the table according to the value of the
attribute. For example, text-align="center" positions the text
in the center of the table cell.

Border width

style

color

Defines three properties in one — border-width, border-style,
and border-color. The values must be specified in this order:
Width (pixel), style (none, dotted, dashed, solid), and color (name,
hexadecimal code, RBG value). For example, border: 1px
solid red.

0003053981.INDD 157 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 157

N
ex

t
St

ep
s

w
it

h
CS

S

 </tr>

 <tr>

 <td>StatCounter</td>

 <td>50%</td>

 <td>22%</td>

 <td>19%</td>

 <td>5%</td>

 <td>4%</td>

 </tr>

 <tr>

 <td>W3Counter</td>

 <td>38%</td>

 <td>21%</td>

 <td>16%</td>

 <td>16%</td>

 <td>9%</td>

 </tr>

 </table>

</body>

</html>

The HTML tag <caption> and the CSS property border-collapse further style
the preceding table. The <caption> tag adds a title to the table. Although you
can create a similar effect using the <h1> tag, <caption> associates the title with
the table. The CSS border-collapse property can have a value of separate or
collapse. The separate value renders each border separately (refer to Book 3,
Chapter 2, Figure 2-9), whereas collapse draws a single border when possible
(see Figure 4-3).

Selecting Elements to Style
Currently, the CSS you have seen styles every HTML element that matches the CSS
selector. For example, in Figure 4-3 the table and td selectors have a text-align
property that centers text in every table cell. Depending on the content, you may

FIGURE 4-3:
Table with
width, text

alignment, and
border modified

using CSS.

0003053981.INDD 158 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

158 BOOK 3 Basic Web Coding

want to center only the text in the header row, but left-align text in subsequent
rows. Here are two ways to do so:

 » Styling specific HTML elements based on position to other elements

 » Naming HTML elements, and styling elements only by name

Styling specific elements
When styling specific elements, it is helpful to visualize the HTML code as a fam-
ily tree with parents, children, and siblings. In the following code example (also
shown in Figure 4-4), the tree starts with the html element, which has two chil-
dren head and body. The head has a child element called title. The body has
h1, ul, and p elements as children. Finally, the ul element has li elements as
children, and the p element has a elements as children. Figure 4-4 shows how the
following code appears in the browser, and Figure 4-5 shows a depiction of the
following code using the tree metaphor. Note that Figure 4-6 shows each rela-
tionship once. For example, in the following code, an a element is inside each of
three li elements, and Figure 4-6 shows this ul li a relationship once.

<html>

<head>

 <title>Figure 4-3: DOM</title>

</head>

<body>

<h1>Parody Tech Twitter Accounts</h1>

 Bored Elon Musk

 Vinod Coleslaw

 horse ebooks

<h1>Parody Non-Tech Twitter Accounts</h1>

<p>Modern Seinfeld</p>

<p>Lord_Voldemort7</p>

</body>

</html>

0003053981.INDD 159 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 159

N
ex

t
St

ep
s

w
it

h
CS

S

Bored Elon Musk is a parody of Elon Musk, the founder of PayPal, Tesla, and
SpaceX. Vinod Coleslaw is a parody of Vinod Khosla, the Sun Microsystems
cofounder and venture capitalist. Horse ebooks is a spambot that became an
Internet phenomenon.

FIGURE 4-4:
Styling a family

tree of elements.

FIGURE 4-5:
Parody Tech

and Non-Tech
Twitter accounts

(browser view).

FIGURE 4-6:
Parody Tech and
Non-Tech Twitter

account (HTML
tree or Document

Object Model
view).

0003053981.INDD 160 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

160 BOOK 3 Basic Web Coding

The HTML tree is called the DOM or document object model.

Child selector
The Parody Non-Tech Twitter account anchor tags are immediate children of the
paragraph tags. If you want to style just the Parody Non-Tech Twitter accounts,
you can use the child selector, which selects the immediate children of a speci-
fied element. A child selector is created by first listing the parent selector, then a
greater-than sign (>), and finally the child selector.

In the following example, the anchor tags that are immediate children of the para-
graph tags are selected, and those hyperlinks are styled with a red font color and
without any underline. The Parody Tech Twitter accounts are not styled because
they are direct children of the list item tag. (See Figure 4-7.)

p > a {

 color: red;

 text-decoration: none;

}

If you use just the a selector here, all the links on the page would be styled instead
of just a selection.

Descendant selector
The Parody Tech Twitter account anchor tags are descendants, or located within,
the unordered list. If you want to style just the Parody Tech Twitter accounts,
you can use the descendant selector, which selects not just immediate children of a

FIGURE 4-7:
Child selector

used to style the
Parody Non-Tech
Twitter accounts.

0003053981.INDD 161 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 161

N
ex

t
St

ep
s

w
it

h
CS

S

specified element but all elements nested within the specified element. A descen-
dant selector is created by first listing the parent selector, a space, and finally the
descendant selector you want to target.

In the following example, as shown in Figure 4-8, the anchor tags that are
descendants of the unordered list are selected, and those hyperlinks are styled
with a blue font color and are crossed out. The Parody Non-Tech Twitter accounts
aren’t styled because they aren’t descendants of an unordered list.

ul a {

 color: blue;

 text-decoration: line-through;

}

Interested in styling just the first anchor tag within a list, like the Modern Seinfeld
Twitter account, or the second list item, like the Vinod Coleslaw Twitter account?
Go to w3schools.com and read more about the first-child (www.w3schools.
com/cssref/sel_firstchild.asp), and nth-child selectors (www.w3schools.
com/cssref/sel_nth-child.asp).

Naming HTML elements
The other way of styling specific elements in CSS is to name your HTML elements.
You name your code by using either the id or class attribute, and then style your
code by referring to the id or class selector.

FIGURE 4-8:
Child selector
used to style

the Parody Tech
 Twitter accounts.

0003053981.INDD 162 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

162 BOOK 3 Basic Web Coding

Naming your code using the id attribute
Use the id attribute to style one specific element on your web page. The id attri-
bute can name any HTML element, and is always placed in the opening HTML tag.
Additionally, each element can have only one id attribute value, and the attribute
value must appear only once within the HTML file. After you define the attribute
in the HTML file, you refer to the HTML element in your CSS by writing a hashtag
(#) followed by the attribute value.

Using the id attribute, the following code styles the Modern Seinfeld Twitter link
the color red with a yellow background:

HTML:

<p>Modern Seinfeld</p>

CSS:

#jerry {

 color: red;

 background-color: yellow;

}

Naming your code using the class attribute
Use the class attribute to style multiple elements on your web page. The class
attribute can name any HTML element and is always placed in the opening HTML
tag. The attribute value need not be unique within the HTML file. After you
define the attribute in the HTML file, you refer to the HTML element by writing a
period (.) followed by the attribute value.

With the class attribute, the following code styles all the Parody Tech Twitter
account links the color red with no underline:

HTML:

Bored Elon Musk

Vinod Coleslaw

0003053981.INDD 163 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 163

N
ex

t
St

ep
s

w
it

h
CS

S

Horse ebooks

CSS:

.tech {

 color: red;

 text-decoration: none;

}

Proactively use a search engine, such as Google, to search for additional CSS
effects. For example, if you want to increase the spacing between each list item,
open your browser and search for list item line spacing css. Links appearing in the
top ten results should include:

 » www.w3schools.com: A beginner tutorial site

 » www.stackoverflow.com: A discussion board for experienced developers

 » www.mozilla.org: A reference guide initially created by the foundation that
maintains the Firefox browser and now maintained by a community of
developers

Each of these sites is a good place to start; be sure to look for answers that include
example code.

Aligning and Laying Out Your Elements
CSS not only allows control over the formatting of HTML elements, it also allows
control over the placement of these elements on the page, known as page layout.
Historically, developers used HTML tables to create page layouts. HTML table page
layouts were tedious to create, and required that developers write a great deal of
code to ensure consistency across browsers. CSS eliminated the need to use tables
to create layouts, helped reduce code bloat, and increased control of page layouts.

Organizing data on the page
Before diving into code, let’s look at Figure 4-9 and review some of the basic ways
we can structure the page and the content on it. Layouts have evolved over time,
with some layouts working well on desktop computers but not displaying opti-
mally on tablet or mobile devices.

0003053981.INDD 164 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

164 BOOK 3 Basic Web Coding

Always ask yourself how your intended layout will appear on desktop, tablet, and
mobile devices.

Hundreds of different layouts exist, and a few selected page layouts appear here
along with example websites.

Left and right navigation toolbars aren’t usually seen on mobile devices. Top
navigation toolbars are used on both desktop and mobile devices, and bottom
 navigation toolbars are most common on mobile devices.

The following examples show real websites with these layouts:

 » Vertical navigation, as shown in Figure 4-10, aids reader understanding when
a hierarchy or relationship exists between navigational topics.

In the w3schools.com example, HTML, JavaScript, Server Side, and XML relate
to one another, and underneath each topic heading are related subtopics.

 » Horizontal or menu navigation, as shown in Figure 4-11, helps reader
navigation with weak or disparate relationships between navigational topics.

In the eBay example, the Motors, Fashion, and Electronics menu items have
different products and appeal to different audiences.

FIGURE 4-9:
Vertical and

 horizontal
 navigation

 layouts.

0003053981.INDD 165 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 165

N
ex

t
St

ep
s

w
it

h
CS

S

Don’t spend too much time worrying about what layout to pick. You can always
pick one, observe whether your visitors can navigate your website quickly and
easily, and change the layout if necessary.

Shaping the div
The preceding page layouts are collections of elements grouped together. These
elements are grouped together using rectangular containers created with an open-
ing and closing <div> tag, and all of the layouts can be created with these <div>
tags. By itself, the <div> tag doesn’t render anything on the screen, but instead
serves as a container for content of any type, such as HTML headings, lists, tables,
or images. To see the <div> tag in action, take a look at the Codecademy.com
home page in Figure 4-12.

Notice how the page can be divided into three parts — the navigation header, the
middle video testimonial, and then additional text user testimonials. <div> tags
are used to outline these major content areas, and additional nested <div> tags
within each part are used to group content such as images and text.

FIGURE 4-10:
Use of left and

right navigation
toolbar on
w3schools.

com (left) and
 hunterwalk.
com (right).

FIGURE 4-11:
Use of top

and bottom
 navigation

 toolbar on ebay.
com (left) and

moma.org (right).

0003053981.INDD 166 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

166 BOOK 3 Basic Web Coding

In the following example, as shown in Figure 4-13, HTML code is used to create
two containers using <div> tags, the id attribute names each div, and CSS sizes
and colors the div.

FIGURE 4-12:
Codecademy.

com homepage
with visible
borders for

the <div> tags.

FIGURE 4-13:
Two boxes

 created with
HTML <div>

tag and styled
using CSS.

0003053981.INDD 167 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 167

N
ex

t
St

ep
s

w
it

h
CS

S

HTML:

<div id="first"/></div>

<div id="second"/></div>

CSS:

div {

 height: 100px;

 width: 100px;

 border: 2px solid purple;

}

#first {

 background-color: red;

}

#second {

 background-color: blue;

}

Understanding the box model
Just as we created boxes with the preceding tags, CSS creates a box around each
and every single element on the page, even text. Figure 4-14 shows the box model
for an image that says “This is an element.” These boxes may not always be vis-
ible, but comprise four parts:

 » content: HTML tag that is rendered in the browser

 » padding: Optional spacing between content and the border

 » border: Marks the edge of the padding, and varies in width and visibility

 » margin: Transparent optional spacing surrounding the border

Using the Chrome browser, navigate to your favorite news website, then right-
click an image and in the context menu choose Inspect Element. On the right
side of the screen, you see three tabs; click the Computed tab. The box model is
displayed for the image you right-clicked, showing the content dimensions, and
then dimensions for the padding, border, and margin.

0003053981.INDD 168 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

168 BOOK 3 Basic Web Coding

The padding, border, and margin are CSS properties, and the value is usually
expressed in pixels. In the following code, shown in Figure 4-15, padding and
margins are added to separate each div.

div {

 height: 100px;

 width: 100px;

 border: 1px solid black;

 padding: 10px;

 margin: 10px;

}

FIGURE 4-14:
Box model for
img element.

FIGURE 4-15:
Padding and

margin added
to separate

each div.

0003053981.INDD 169 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 169

N
ex

t
St

ep
s

w
it

h
CS

S

Positioning the boxes
Now that you understand how to group elements using HTML and how CSS
views elements, the final piece is to position these elements on the page. Vari-
ous techniques can be used for page layouts, and a comprehensive overview of
each technique is beyond the scope of this book. However, one technique to cre-
ate the layouts shown in Figure 4-16 is to use the float and clear properties (as
described in Table 4-3).

If the width of an element is specified, the float property allows elements that
would normally appear on separate lines to appear next to each other, such as nav-
igation toolbars and a main content window. The clear property is used to prevent
any other elements from floating on one or both sides of current element, and the
property is commonly set to both to place web page footers below other elements.

FIGURE 4-16:
Left navigation

web page layout
created using
<div> tags.

TABLE 4-3	 Select CSS Properties and Values for Page Layouts
Property Name Possible Values Description

float left

right

none

Sends an element to the left or right of the container it is in. The
none value specifies that the element should not float.

clear Left

right

both

none

Specifies on which side of an element not to have other floating
elements.

0003053981.INDD 170 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

170 BOOK 3 Basic Web Coding

The following example code uses <div> tags, float, and clear to create a simple
left navigation layout. (See Figure 4-16.) Typically, after grouping your content
using <div> tags, you name each <div> tag using class or id attributes, and then
style the div in CSS. A lot of code follows, so let’s break it down into segments:

 » The CSS is embedded between the opening and closing <style> tags, and the
HTML is between the opening and closing <body> tags.

 » Between the opening and closing <body> tags, using <div> tags, the page is
divided into four parts with header, navigation bar, content, and footer.

 » The navigation menu is created with an unordered list, which is left-aligned,
with no marker.

 » CSS styles size and color and aligns each <div> tag.

 » CSS properties, float and clear, are used to place the left navigation layout
to the left, and the footer below the other elements.

<!DOCTYPE html>

<html>

<head>

 <title>Figure 4-14: Layout</title>

 <style>

 #header{

 background-color: #FF8C8C;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 text-align: center;

 }

 #navbar {

 background-color: #00E0FF;

 height: 200px;

 width: 100px;

 float: left;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 text-align: left;

 }

 #content {

 background-color: #EEEEEE;

 height: 200px;

0003053981.INDD 171 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

CHAPTER 4 Next Steps with CSS 171

N
ex

t
St

ep
s

w
it

h
CS

S

 
 width: 412px;

 float: left;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 text-align: center;

 }

 #footer{

 background-color: #FFBD47;

 clear: both;

 text-align: center;

 border: 1px solid black;

 padding: 5px;

 margin: 5px;

 }

 ul {

 list-style-type: none;

 line-height: 25px;

 padding: 0px;

 }

 </style>

</head>

<body>

<div id="header"><h1>Nik's Tapas Restaurant</h1></div>

<div id="navbar">

 About us

 Reservations

 Menus

 Gallery

 Events

 Catering

 Press

</div>

<div id="content"></div>

<div id="footer">Copyright © Nik's Tapas</div>

</body>

</html>

0003053981.INDD 172 Trim size: 7.375 in × 9.25 in March 30, 2017 9:55 PM

172 BOOK 3 Basic Web Coding

Writing More Advanced CSS
Practice your CSS online using the Codecademy website. Codecademy is a free
website created in 2011 to allow anyone to learn how to code right in the browser,
without installing or downloading any software. Practice all of the tags (and a few
more) that you find in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingaiolinks, and
click the Codecademy link.

2. If you have a Codecademy account, sign in.

Signing up is discussed in Book 1, Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click CSS: An Overview, CSS Selectors, and CSS Positioning
to practice CSS styling and positioning.

Background information is presented in the upper-left portion of the site, and
instructions are presented in the lower-left portion of the site.

4. Complete the instructions in the main coding window.

As you type, a live preview of your code is generated.

5. After you have finished completing the instructions, click the Save and
Submit Code button.

If you followed the instructions correctly, a green checkmark appears, and you
proceed to the next exercise. If an error exists in your code, a warning appears
with a suggested fix. If you run into a problem, or have a bug you cannot fix,
click the hint, use the Q&A Forums, or tweet me at @nikhilgabraham and include
hashtag #codingFD. Additionally, you can sign up for book updates and expla-
nations for changes to programming language commands by visiting http://
tinyletter.com/codingfordummies.

CHAPTER 5 Building Floating Page Layouts 173

0003053982.INDD 173	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

 Building Floating Page
Layouts

 “Perfection of planned layout is achieved only by institutions on the point of
collapse.”

 — C. NORTHCOTE PARKINSON

 T he fl oating layout technique provides a good alternative to tables, frames,
and other layout tricks formerly used. You can build many elegant multi-
column page layouts with ordinary HTML and CSS styles.

 Creating a Basic Two-Column Design
 Many pages today use a two-column design with a header and footer. Such a page
is quite easy to build with the techniques you read about in this chapter.

 Designing the page
 It ’ s best to do your basic design work on paper, not on the computer. Here ’ s my
original sketch in Figure 5-1 .

Chapter 5

 IN THIS CHAPTER

 » Creating a classic two-column page

 » Creating a page-design diagram

 » Using temporary background colors

 » Creating fl uid layouts and three-
column layouts

 » Working with and centering fi xed-
width layouts

0003053982.INDD 174	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

174 BOOK 3 Basic Web Coding

Draw the sketch first so you have some idea what you’re aiming for. Your sketch
should include the following information:

 » Overall page flow:	How	many	columns	do	you	want?	Will	it	have	a	header	
and	footer?

 » Section names:	Each	section	needs	an	ID,	which	will	be	used	in	both	the	
HTML	and	the	CSS.

 » Width indicators:	How	wide	will	each	column	be?	(Of	course,	these	widths	
should	add	up	to	100	percent	or	less.)

 » Fixed or percentage widths:	Are	the	widths	measured	in	percentages	(of	the	
browser	size)	or	in	a	fixed	measurement	(pixels)?	This	has	important	implications.	
For	this	example,	I’m	using	a	dynamic	width	with	percentage	measurements.

 » Font considerations:	Do	any	of	the	sections	require	any	specific	font	styles,	
faces,	or	colors?

 » Color scheme:	What	are	the	main	colors	of	your	site?	What	will	be	the	color	
and	background	color	of	each	section?

This particular sketch (in Figure 5-1) is very simple because the page will use
default colors and fonts. For a more complex job, you need a much more detailed
sketch. The point of the sketch is to separate design decisions from coding prob-
lems. Solve as much of the design stuff as possible first so you can concentrate on
building the design with HTML and CSS.

FIGURE 5-1:
This	is	a	very	

standard	
two-column	

style.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 175	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 175

Building the HTML
After you have a basic design in place, you’re ready to start building the HTML
code that will be the framework. Start with basic CSS, but create a div for each
section that will be in your final work. You can put a placeholder for the CSS, but
don’t add any CSS yet. Here’s my basic code. I removed some of the redundant
text to save space:

<!DOCTYPE html>

<html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>twoColumn.html</title>

 <link rel = "stylesheet"

 type = "text/css"

 href = "twoCol.css"/>

 </head>

 <body>

 <div id = "head">

 <h1>Two Columns with Float</h1>

 </div>

 <div id = "left">

 <h2>Left Column</h2>

 <p>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.

 </p>

A NOTE TO PERFECTIONISTS
If	you’re	really	into	detail	and	control,	you’ll	find	this	chapter	frustrating.	People	accus-
tomed	to	having	complete	control	of	a	design	(as	you	often	do	in	the	print	world)	tend	
to	get	really	stressed	when	they	realize	how	little	actual	control	they	have	over	the	
appearance	of	a	web	page.

Really,	it’s	okay.	This	is	a	good	thing.	When	you	design	for	the	web,	you	give	up	absolute	
control,	but	you	gain	unbelievable	flexibility.	Use	the	ideas	outlined	in	this	chapter	to	
get	your	page	looking	right	on	a	standards-compliant	browser.	Take	a	deep	breath	and	
look	at	it	on	something	else	(like	Internet	Explorer	6	if	you	want	to	suffer	a	heart	attack!).	
Everything	you	positioned	so	carefully	is	all	messed	up.	Take	another	deep	breath	and	
use	conditional	comments	to	fix	the	offending	code	without	changing	how	it	works	in	
those	browsers	that	do	things	correctly.	It	is	now	becoming	reasonable	to	expect	most	
users	to	have	a	browser	that	is	at	least	partially	HTML5-compliant.

0003053982.INDD 176	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

176 BOOK 3 Basic Web Coding

 </div>

 <div id = "right">

 <h2>Right Column</h2>

 <p>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.

 </p>

 </div>

 <div id = "footer">

 <h3>Footer</h3>

 </div>

 </body>

</html>

Nothing at all is remarkable about this HTML code, but it has a few important
features, such as the following:

 » It’s standards-compliant.	It’s	good	to	check	and	make	sure	the	basic	HTML	
code	is	well	formed	before	you	do	a	lot	of	CSS	work	with	it.	Sloppy	HTML	can	
cause	you	major	headaches	later.

WHAT’S UP WITH THE LATIN?
The	flexible	layouts	built	throughout	this	chapter	require	some	kind	of	text	so	the	
browser	knows	how	big	to	make	things.	The	actual	text	isn’t	important,	but	something	
needs	to	be	there.

Typesetters	have	a	long	tradition	of	using	phony	Latin	phrases	as	filler	text.	
Traditionally,	this	text	has	begun	with	the	words	“Lorem	Ipsum,”	so	it’s	called	Lorem
Ipsum	text.

This	particular	version	is	semi-randomly	generated	from	a	database	of	Latin	words.

If	you	want,	you	can	also	use	Lorem	Ipsum	in	your	page	layout	exercises.	Conduct	a	
search	for	Lorem	Ipsum	generators	on	the	web	to	get	as	much	fake	text	as	you	want	for	
your	mockup	pages.

Although	Lorem	Ipsum	text	is	useful	in	the	screen	shots,	it	adds	nothing	to	the	code	
listings.	Throughout	this	chapter,	I	remove	the	Lorem	Ipsum	text	from	the	code	list-
ings	to	save	space.	See	the	original	files	on	the	website	for	the	full	pages.	This	book’s	
Introduction	explains	how	to	access	the	companion	website	at	www.dummies.com/go/
codingaiodownloads.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 177	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 177

 » It contains four divs.	The	parts	of	the	page	that	will	be	moved	later	are	all	
encased	in	div	elements.

 » Each div has an ID.	All	the	divs	have	an	ID	determined	from	the	sketch.

 » No formatting is in the HTML.	The	HTML	code	contains	no	formatting	at	all.	
That’s	left	to	the	CSS.

 » It has no style yet.	Although	a	<link>	tag	is	pointing	to	a	style	sheet,	the	
style	is	currently	empty.

Figure 5-2 shows what the page looks like before you add any CSS to it.

Using temporary background colors
Before doing anything else, create a selector for each of the named divs and add a
temporary background color to each div. Make each div a different color. The CSS
might look like this:

#head {

 background-color: lightblue;

}

#left {

 background-color: yellow;

}

FIGURE 5-2:
The	plain	HTML	
is	plain	indeed;	
some	CSS	will	

come	in	handy.

0003053982.INDD 178	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

178 BOOK 3 Basic Web Coding

#right {

 background-color: green;

}

#footer {

 background-color: orange;

}

You won’t keep these background colors, but they provide some very useful cues
while you’re working with the layout:

 » Testing the selectors:	While	you	change	the	background	of	each	selector,	
you	can	see	whether	you’ve	remembered	the	selector’s	name	correctly.	It’s	
amazing	how	many	times	I’ve	written	code	that	I	thought	was	broken	just	
because	I	didn’t	write	the	selector	properly.

 » Identifying the divs:	If	you	make	each	div	a	different	color,	it’ll	be	easier	to	
see	which	div	is	which	when	they	aren’t	acting	the	way	you	want.

 » Specifying the size of each div:	The	text	inside	a	div	isn’t	always	a	good	
indicator	of	the	actual	size.	The	background	color	tells	you	what’s	really	
going on.

Of course, you won’t leave these colors in place. They’re just helpful tools
for seeing what’s going on during the design process. Look at bg.html and
bg.css files for complete code available on the website at www.dummies.com/go/
codingaiodownloads.

Figure 5-3 displays how the page looks with the background colors turned on.

FIGURE 5-3:
Colored	

	backgrounds	
make	it	easier	
to manipulate	

the divs.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 179	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 179

It’s fine that you can’t see the actual colors in the black-and-white image in
 Figure 5-3. Just appreciate that when you see the page in its full-color splendor,
the various colors will help you see what’s going on.

Setting up the floating columns
This particular layout doesn’t require major transformation. A few CSS rules will
do the trick:

#head {

 border: 3px black solid;

}

#left {

 border: 3px red solid;

 float: left;

 width: 20%;

}

#right {

 border: 3px blue solid;

 float: left;

 width: 75%

}

#footer {

 border: 3px green solid;

 clear: both;

}

I made the following changes to the CSS:

 » Floated the #left div.	Set	the	#left	div’s	float	property	to	left	so	other	
divs	(specifically	the	#right	div)	are	moved	to	the	right	of	it.

 » Set the #left width.	When	you	float	a	div,	you	must	also	set	its	width.	I’ve	set	
the	left	div	width	to	20	percent	of	the	page	width	as	a	starting	point.

 » Floated the #right div, too.	The	right	div	can	also	be	floated	left,	and	it’ll	end	
up	snug	to	the	left	div.	Don’t	forget	to	add	a	width.	I	set	the	width	of	#right	to	
75	percent,	leaving	another	5	percent	available	for	padding,	margins,	and	
borders.

 » Cleared the footer.	The	footer	should	take	up	the	entire	width	of	the	page,	
so	set	its	clear	property	to	both.

0003053982.INDD 180	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

180 BOOK 3 Basic Web Coding

Figure 5-4 shows how the page looks with this style sheet in place (see floated.
html and floated.css for complete code available on the website at www.dummies.
com/go/codingaiodownloads).

Tuning up the borders
The different backgrounds in Figure 5-4 point out some important features of this
layout scheme. For instance, the two columns aren’t the same height. This can
have important implications.

You can change the borders to make the page look more like a column layout. I’m
going for a newspaper-style look, so I use simple double borders. I put a black
border under the header, a gray border to the left of the right column, and a gray
border on top of the bottom segment. Tweaking the padding and centering the
footer complete the look. Here’s the complete CSS:

#head {

 border-bottom: 3px double black;

}

#left {

 float: left;

 width: 20%;

}

#right {

 float: left;

 width: 75%;

 border-left: 3px double gray;

}

FIGURE 5-4:
Now	the	left	

	column	is	floated.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 181	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 181

#footer {

 clear: both;

 text-align: center;

 border-top: 3px double gray;

}

The final effect is shown in Figure 5-5.

Advantages of a fluid layout
This type of layout scheme (with floats and variable widths) is often called a fluid
layout because it has columns, but the sizes of the columns are dependent on
the browser width. This is an important issue because, unlike layout in the print
world, you really have no idea what size the browser window that displays your
page will be. Even if the user has a widescreen monitor, the browser may be in a
much smaller window. Fluid layouts can adapt to this situation quite well.

Fluid layouts (and indeed all other float-based layouts) have another great advan-
tage. If the user turns off CSS or can’t use it, the page still displays. The elements
will simply be printed in order vertically, rather than in the intended layout. This
can be especially handy for screen readers or devices with exceptionally small
screens, like phones.

FIGURE 5-5:
This	is	a	decent	
design,	which	

adjusts	with	the	
page	width.

0003053982.INDD 182	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

182 BOOK 3 Basic Web Coding

Using semantic tags
As web developers began using floating layout techniques, they almost always
created divs called nav, header, and footer. The developers of HTML5 decided to
create new elements with these names. Take a look at the following code to see
the semantic tags in action.

<!DOCTYPE HTML>

<html lang="en">

<head>

 <title>semantic</title>

 <meta charset="UTF-8">

 <style type = "text/css">

 header {

 border-bottom: 5px double black;

 }

 nav {

 float: left;

 width: 20%;

 clear: left;

 min-height: 400px;

 border-right: 1px solid black;

 }

 section {

 float: left;

 width: 75%;

 padding-left: 1em;

 }

 article {

 float: left;

 width: 75%;

 padding-left: 1em;

 }

 footer {

 clear: both;

 border-top: 5px double black;

 text-align: center;

 }

 </style>

</head>

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 183	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 183

<body>

 <header>

 <h1>This is my header</h1>

 </header>

 <nav>

 <h2>Navigation</h2>

 link a

 link b

 link c

 link d

 link e

 </nav>

 <section id = "1">

 <h2>Section 1</h2>

 <p>Section body...</p>

 </section>

 <section id = "2">

 <h2>Section 2</h2>

 <p>Section body...</p>

 </section>

 <article>

 <h2>Article</h2>

 <p>Article body...</p>

 </article>

 <footer>

 <h2>Footer</h2>

 <address>

 Nik Abraham

 Tweet me @nikhilgabraham

 </address>

 </footer>

</body>

</html>

0003053982.INDD 184	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

184 BOOK 3 Basic Web Coding

As you can see, there are a number of new semantic markup tags in HTML5:

 » header:	This	is	not	the	same	as	the	h1-h6	tags.	It	denotes	a	chunk	of	the	page	
that	will	contain	a	header	for	the	page.	Often	the	header	will	fill	up	the	page	
width	and	will	have	some	sort	of	banner	image.	It	frequently	contains	
h1	content.

 » nav:	This	tag	indicates	some	kind	of	navigation	section.	It	has	no	particular	
style	of	its	own,	but	it	is	frequently	used	as	either	a	horizontal	or	vertical	menu	
for	site	navigation.

 » section:	A	section	is	used	to	specify	a	generic	part	of	the	page.	You	can	have	
multiple	sections	on	the	same	page.

MORE FUN WITH SEMANTIC TAGS
HTML5	introduced	a	number	of	other	semantic	tags.	Most	of	them	have	no	specific	
formatting.	Still,	you	will	run	across	them,	so	here	are	a	few	that	seem	likely	to	make	
the cut:

• address:	Holds	contact	information.

• aside:	Indicates	a	page	fragment	that	is	related	to	but	separate	from	the	main	
content.

• menu/command:	Eventually,	will	allow	a	pop-up	menu	or	toolbar	to	be	defined	in	the	
page,	and	commands	will	be	embedded	inside	that	menu.	Not	supported	yet.

• figure:	Incorporates	an	image	and	a	caption.

• figcaption:	Describes	an	image,	normally	enclosed	within	a	figure	tag.

• time:	Display	dates	or	times.

• summary/detail:	A	summary	is	visible	at	all	times,	and	when	it	is	clicked,	the	detail	
appears.	Not	supported	yet.

• svg:	Allows	you	to	use	the	SVG	language	to	describe	a	vector	image	through	code.

• meter:	Indicates	a	numeric	value	falling	within	a	specific	range.

• output:	Intended	for	output	in	interactive	applications.
• progress:	Should	indicate	progress	of	a	task	(but	it	doesn’t	look	like	a	progress	

bar yet).

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 185	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 185

 » article:	An	article	is	like	a	section,	but	it’s	intended	for	use	with	external	
resources.	Many	pages	are	built	automatically	by	software,	and	when	these	
pages	integrate	content	from	other	sources,	the	article	tag	is	used	to	
integrate	this	content.

 » footer:	A	footer	displays	footer	contents	at	the	bottom	of	a	page.	Typically	a	
footer	covers	the	bottom	of	a	page,	although	this	isn’t	the	default	behavior.

Note that none of these elements have any specific formatting. It’s up to you
to provide formatting through CSS code. Each of the elements can be formatted
directly as an HTML element (because that’s what it is). All of the latest versions
of browsers support the semantic markup tags, but if you want to support older
browsers (especially IE before version 8), you still need to use divs.

Building a Three-Column Design
Sometimes, you’ll prefer a three-column design. It’s a simple variation of the
two-column approach. Figure 5-6 shows a simple three-column layout.

FIGURE 5-6:
This	is	a	

three-column	
floating	layout.

0003053982.INDD 186	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

186 BOOK 3 Basic Web Coding

This design uses very basic CSS with five named divs. Here’s the code (with the
dummy paragraph text removed for space):

<!DOCTYPE html>

<html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>threeColumn.html</title>

 <link rel = "stylesheet"

 type = "text/css"

 href = "threeColumn.css"/>

 </head>

 <body>

 <div id = "head">

 <h1>Three-Column Layout</h1>

 </div>

 <div id = "left">

 <h2>Left Column</h2>

 <p>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.

 </p>

 </div>

 <div id = "center">

 <h2>Center Column</h2>

 <p>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.

 </p>

 </div>

 <div id = "right">

 <h2>Right Column</h2>

 <p>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus dui.

 </p>

 </div>

 <div id = "footer">

 <h3>Footer</h3>

 </div>

 </body>

</html>

Styling the three-column page
As you can see from the HTML, there isn’t really much to this page. It has five
named divs, and that’s about it. All the really exciting stuff happens in the CSS:

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 187	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 187

#head {

 text-align: center;

}

#left {

 float: left;

 width: 20%;

 padding-left: 1%;

}

#center {

 float: left;

 width: 60%;

 padding-left: 1%;

}

#right {

 float: left;

 width: 17%;

 padding-left: 1%;

}

#footer {

 border: 1px black solid;

 float: left;

 width: 100%;

 clear: both;

 text-align: center;

}

Each element (except the head) is floated with an appropriate width. The process
for generating this page is similar to the two-column layout:

1. Diagram the layout.

Begin	with	a	general	sense	of	how	the	page	will	look	and	the	relative	width	of	
the	columns.	Include	the	names	of	all	segments	in	this	diagram.

2. Create the HTML framework.

Create	all	the	necessary	divs,	including	id	attributes.

Add	representative	text	so	you	can	see	the	overall	texture	of	the	page.

0003053982.INDD 188	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

188 BOOK 3 Basic Web Coding

3. Add temporary background colors.

Add	a	temporary	background	color	to	each	element	so	you	can	see	what’s	
going	on	when	you	start	messing	with	float	attributes.

This	also	ensures	you	have	all	the	selectors	spelled	properly.

4. Float the leftmost element.

Add	the	float	attribute	to	the	leftmost	column.

Don’t	forget	to	specify	a	width	(in	percentage).

5. Check your work.

Frequently	save	your	work	and	view	it	in	a	browser.

Use	the	browser’s	F5	key	for	a	quick	reload	after	you’ve	saved	the	page.

6. Float the center element.

Add	float	and	width	attributes	to	the	center	element.

7. Float the rightmost element.

Incorporate	float	and	width	in	the	right	element.

8. Ensure that the widths total around 95 percent.

You	want	the	sum	of	the	widths	to	be	nearly	100	percent	but	not	quite.

Generally,	you	need	a	little	space	for	margins	and	padding.	Final	adjustments	
come	later,	but	you	certainly	don’t	want	to	take	up	more	than	100	percent	of	
the	available	real	estate.

9. Float and clear the footer.

To	get	the	footer	acting	right,	you	need	to	float	it	and	clear	it	on	both	margins.	
Set	its	width	to	100	percent,	if	you	want.

10. Tune up.

Remove	the	temporary	borders,	adjust	the	margins	and	padding,	and	set	the	
alignment	as	desired.	Use	percentages	for	margins	and	padding,	and	then	
adjust	so	all	percentages	equal	100	percent.

Problems with the floating layout
The floating layout solution is very elegant, but it does have one drawback.
Figure 5-7 shows the three-column page with the background colors for each
element.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 189	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 189

Figure 5-7 shows an important aspect of this type of layout. The columns are
actually blocks, and each is a different height. Typically, I think of a column as
stretching the entire height of a page, but this isn’t how CSS does it. If you want
to give each column a different background color, for example, you’ll want each
column to be the same height. This can be done with a CSS trick (at least, for the
compliant browsers).

Specifying a min-height
The standards-compliant browsers (all versions of Firefox and Opera, and IE 7+)
support a min-height property, which specifies a minimum height for an element.

You can use this property to force all columns to the same height. Figure 5-8
illustrates this effect.

The CSS code simply adds the min-height attribute to all the column elements:

#head {

 text-align: center;

 border-bottom: 3px double gray;

}

#left {

 float: left;

 width: 20%;

 min-height: 30em;

 background-color: #EEEEEE;

}

FIGURE 5-7:
The	columns	
aren’t	really	

	columns;	each	is	
a	different	height.

0003053982.INDD 190	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

190 BOOK 3 Basic Web Coding

#center {

 float: left;

 width: 60%;

 padding-left: 1%;

 padding-right: 1%;

 min-height: 30em;

}

#right {

 float: left;

 width: 17%;

 padding-left: 1%;

 min-height: 30em;

 background-color: #EEEEEE;

}

#footer {

 border: 1px black solid;

 float: left;

 width: 100%;

 clear: both;

 text-align: center;

}

Some guesswork is still involved. You have to experiment a bit to determine what
the min-height should be. If you guess too short, one column will be longer than
the min-height, and the columns won’t appear correctly. If you guess too tall,
you’ll have a lot of empty space at the bottom of the screen.

FIGURE 5-8:
The	min-height
attribute	forces	

all	columns	to	be	
the	same	height.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 191	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 191

All modern browsers support min-height, but a few of the older browsers may not
support this attribute.

Using height and overflow
The min-height trick is ideal if you know the size of your content, but modern
web development is all about multiple screen sizes. It’s hard to predict how your
page will look on a smart phone or other smaller browsers. If you use min-height
and the text is too large to fit the screen, you can use another strategy. You can
set the height of each element if you wish using the height rule. Like all CSS, the
height is a suggestion. The question is what to do when content that fits fine in
a large browser is forced to fit in a smaller space. The answer is a range of tech-
niques popularly called responsive design. The basic idea of responsive design is to
design a page so it naturally adjusts to a good view regardless of the device it’s on.

One very basic approach to responsive design is to specify both width and height
for a page element, but then allow the browser to manage overflow conditions.
Figure 5-9 illustrates a page that is shrunk below the minimum size needed to
display the text.

If you set the height and width to a specific percentage of the page width, there
is a danger the text will not fit. You can resolve this by adding an overflow rule
in your CSS.

FIGURE 5-9:
The	page	is	too	

small	to	hold	the	
text.	Note	the	

scroll	bar.

0003053982.INDD 192	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

192 BOOK 3 Basic Web Coding

Take a look at the CSS code used in overflow.html:

#head {

 text-align: center;

 border-bottom: 3px double gray;

}

#left {

 float: left;

 width: 20%;

 height: 30em;

 overflow: auto;

 background-color: #EEEEEE;

}

#center {

 float: left;

 width: 60%;

 padding-left: 1%;

 padding-right: 1%;

 height: 30em;

 overflow: auto;

}

#right {

 float: left;

 width: 17%;

 padding-left: 1%;

 height: 30em;

 overflow: auto;

 background-color: #EEEEEE;

}

#footer {

 border: 1px black solid;

 float: left;

 width: 100%;

 clear: both;

 text-align: center;

}

Setting the overflow property tells the browser what to do if it cannot place the
text in the indicated space.

Use overflow: auto to place scrollbars only when necessary. Other options
for the overflow rule are visible (text flows outside the box — the default
value), hidden (overflow is not shown), and scroll (always place a scrollbar).
I prefer auto.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 193	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 193

Building a Fixed-Width Layout
Fluid layouts are terrific. They’re very flexible, and they’re not hard to build.
Sometimes, though, it’s nice to use a fixed-width layout, particularly if you want
your layout to conform to a particular background image.

The primary attribute of a fixed-width layout is the use of a fixed measurement
(almost always pixels), rather than the percentage measurements used in a fluid
layout.

Figure 5-10 shows a two-column page.

The next examples will look off-center. Follow along to see what’s going on,
and see how to center a floated layout in the “Building a Centered Fixed-Width
Layout” section later in this chapter.

Setting up the HTML
As usual, the HTML code is minimal. It contains a few named divs, and I’ve
removed filler text for space reasons.

FIGURE 5-10:
A	fixed-width	

layout	can	work	
well	but	looks	

off-center.

0003053982.INDD 194	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

194 BOOK 3 Basic Web Coding

<!DOCTYPE html>

<html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>fixedWidth.html</title>

 <link rel = "stylesheet"

 type = "text/css"

 href = "fixedWidth.css"/>

 </head>

<body>

 <div id = "header">

 <h1>Fixed Width Layout</h1>

 </div>

 <div id = "left">

 <h2>Left Column</h2>

 </div>

 <div id = "right">

 <h2>Right Column</h2>

 </div>

 <div id = "footer">

 <h3>Footer</h3>

 </div>

 </body>

</html>

Fixing the width with CSS
After the HTML is set up, you can use CSS to enforce the two-column scheme.

Here’s the CSS code:

#header {

 background-color: #e2e393;

 border-bottom: 3px solid black;

 text-align: center;

 width: 800px;

 padding-top: 1em;

}

#left {

 float: left;

 width: 200px;

 clear: left;

 border-right: 1px solid black;

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 195	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 195

 height: 30em;

 overflow: auto;

 padding-right: .5em;

}

#right {

 float: left;

 width: 570px;

 height: 30em;

 overflow: auto;

 padding-left: .5em;

}

#footer {

 width: 800px;

 text-align: center;

 background-color: #e2e393;

 border-top: 3px double black;

 clear: both;

}

It’s all part of a process:

1. Color each element to see what’s happening.

Begin	by	giving	each	div	a	different	background	color	so	you	can	see	what	is	
happening.

2. Determine the overall width of the layout.

Pick	a	target	width	for	the	entire	layout.	I	chose	800	pixels	because	it’s	a	
reasonably	standard	width.

3. Adjust the widths of the page-wide elements.

It’s	often	easiest	to	start	with	elements	like	the	header	and	footer	that	often	
take	up	the	entire	width	of	the	design.

4. Float the columns.

The	columns	are	floated	as	described	throughout	this	chapter.	Float	each	
column	to	the	left.

5. Set the column widths.

Begin	by	making	the	column	widths	add	up	to	the	width	of	the	entire	design	(in	
my	case,	800	pixels).	Later	you’ll	adjust	a	bit	for	margins	and	borders.

6. Clear the left column.

Ensure	the	left	column	has	the	clear: left	rule	applied.

0003053982.INDD 196	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

196 BOOK 3 Basic Web Coding

7. Set column heights.

Give	each	column	the	same	height.	This	makes	things	look	right	if	you	add	
borders	or	background	colors	to	the	columns.

8. Adjust borders and padding.

Use	borders,	padding,	and	margins	to	adjust	your	page	to	get	the	look	you	
want.	In	my	case,	I	added	a	border	to	the	left	column	to	separate	the	columns,	
and	I	added	padding	to	keep	the	text	from	sitting	right	on	the	border.

9. Adjust widths again.

Adding	borders,	padding,	and	margins	can	change	the	widths	of	the	existing	
elements.	After	you’ve	modified	these	attributes,	take	a	careful	look	at	your	layout	
to	be	sure	it	didn’t	get	messed	up,	and	modify	the	various	widths	if	necessary.

Building a Centered Fixed-Width Layout
Fixed-width layouts are common, but they look a little strange if the browser isn’t
the width specified in the CSS. If the browser is too narrow, the layout won’t work,
and the second column will (usually) drop down to the next line.

If the browser is too wide, the page appears to be scrunched onto the left margin
with a great deal of white space on the right.

The natural solution is to make a relatively narrow fixed-width design that’s cen-
tered inside the entire page. Figure 5-11 illustrates a page with this technique.

FIGURE 5-11:
Now	the	fixed-
width	layout	is	
centered	in	the	

browser.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 197	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 197

Some have called this type of design (fixed-width floating centered in the browser)
a jello layout because it’s not quite fluid and not quite fixed.

Making a surrogate body with an all div
In any case, the HTML requires only one new element, an all div that encases
everything else inside the body (as usual, I removed the placeholder text):

<!DOCTYPE html>

<html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>fixedWidthCentered.html</title>

 <link rel = "stylesheet"

 type = "text/css"

 href = "fixedWidthCentered.css"/>

 </head>

 <body>

 <div id = "all">
 <div id = "header">

 <h1>Fixed Width Centered Layout</h1>

 </div>

 <div id = "left">

 <h2>Left Column</h2>

 </div>

 <div id = "right">

 <h2>Right Column</h2>

 </div>

 <div id = "footer">

 <h3>Footer</h3>

 </div>

 </div>
 </body>

</html>

The entire page contents are now encapsulated in a special all div. This div will
be resized to a standard width (typically 640 or 800 pixels). The all element will
be centered in the body, and the other elements will be placed inside all as if it
were the body:

#all {

 width: 800px;

 height: 600px;

 margin-left: auto;

0003053982.INDD 198	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

198 BOOK 3 Basic Web Coding

 margin-right: auto;

 border: 1px solid gray;

}

#header {

 background-color: #e2e393;

 border-bottom: 3px solid black;

 text-align: center;

 width: 800px;

 height: 100px;

 padding-top: 1em;

}

#left {

 float: left;

 width: 200px;

 clear: left;

 border-right: 1px solid black;

 height: 400px;

 padding-right: .5em;

}

#right {

 float: left;

 width: 580px;

 height: 400px;

 padding-left: .5em;

}

#footer {

 width: 800px;

 height: 60px;

 text-align: center;

 background-color: #e2e393;

 border-top: 3px double black;

 padding-bottom: 1em;

 clear: both;

}

How the jello layout works
This code is very similar to the fixedWidth.css style, but it has some important
new features:

 » The all element has a fixed width.	This	element’s	width	will	determine	the	
width	of	the	fixed	part	of	the	page.

Bu
ild

in
g

Fl
oa

ti
ng

 P
ag

e
La

yo
ut

s

0003053982.INDD 199	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

CHAPTER 5 Building Floating Page Layouts 199

 » all also needs a fixed height.	If	you	don’t	specify	a	height,	all	will	be	
0 pixels	tall	because	all	the	elements	inside	it	are	floated.

 » Center all.	Remember,	to	center	divs	(or	any	other	block-level	elements),	
you	set	margin-left	and	margin-right	both	to	auto.

 » Do not float all.	The	margin: auto	trick	doesn’t	work	on	floated	elements.	
all	shouldn’t	have	a	float	attribute	set.

 » Ensure that the interior widths add up to all's width.	If	all	has	a	width	of	
800	pixels,	be	sure	that	the	widths,	borders,	and	margins	of	all	the	elements	
inside	all	add	up	to	exactly	800	pixels.

If	you	go	even	one	pixel	over,	something	will	spill	over	and	mess	up	the	effect.	
You	may	have	to	fiddle	with	the	widths	to	make	everything	work.

 » Adjust the heights:	If	your	design	has	a	fixed	height,	you’ll	also	need	to	fiddle	
with	the	heights	to	get	everything	to	look	exactly	right.	Calculations	will	get	
you	close,	but	you’ll	usually	need	to	spend	some	quality	time	fiddling	with	
exact	measurements	to	get	everything	just	right.

Limitations of the jello layout
Jello layouts represent a compromise between fixed and fluid layouts, but they
aren’t perfect:

 » Implicit minimum width:	Very	narrow	browsers	(like	cell	phones)	can’t	
render	the	layout	the	way	you	want.	Fortunately,	the	content	will	still	be	
visible,	but	not	in	exactly	the	format	you	wanted.

 » Wasted screen space:	If	you	make	the	rendered	part	of	the	page	narrow,	a	
lot	of	space	isn’t	being	used	in	higher-resolution	browsers.	This	can	be	
frustrating.

 » Complexity:	Although	this	layout	technique	is	far	simpler	than	table-based	
layouts,	it’s	still	a	bit	involved.	You	do	have	to	plan	your	divs	to	make	this	type	
of	layout	work.

You can investigate a number of other layout techniques in Chapter 6 of this
minibook.

0003053982.INDD 200	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:21	AM

200 BOOK 3 Basic Web Coding

DOESN’T CSS3 SUPPORT COLUMNS?
If	you’ve	been	looking	through	the	CSS3	specifications	(and	what	better	bedtime	read-
ing	is	there?),	you	may	have	discovered	the	new	column	rule.	I	was	pretty	excited	when	
I	found	support	for	columns	because	it	seemed	like	the	answer	to	the	complexities	
of	floating	layouts.	Unfortunately,	the	column	mechanism	isn’t	really	useful	for	page	
layout.	The	columns	are	all	exactly	the	same	width,	and	there’s	no	way	to	determine	
exactly	which	content	is	displayed	in	which	column.	It’s	useful	if	you	want	to	have	a	
magazine-style	layout	with	text	that	flows	in	columns,	but	for	page	layout,	CSS3	has	a	
better	new	tool,	the	flexible	box	layout	model	(described	in	Book	3,	Chapter 6).

CHAPTER 6 Using Alternative Positioning 201

0003053983.INDD 201 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

 Using Alternative
Positioning

“The absence of alternatives clears the mind marvelously.”

 — HENRY A. KISSINGER

 F loating layouts (described in Book 3, Chapter 5) are the preferred way to set
up page layouts today, but sometimes other alternatives are useful. You can
use absolute, relative, or fi xed positioning techniques to put all your page ele-

ments exactly where you want them. Well, almost exactly. It ’ s still web develop-
ment, where nothing ’ s exact. Because none of these alternatives are completely
satisfying, the W3C (web standards body) has introduced a very promising new
layout model called the fl exbox model .

 The techniques described in this chapter will give you even more capabilities when
it comes to setting up great-looking websites.

 Working with Absolute Positioning
 Begin by considering the default layout mechanism. Figure 6-1 shows a page with
two paragraphs on it.

Chapter 6

 IN THIS CHAPTER

 » Setting position to absolute

 » Managing z-index

 » Creating fi xed and fl exible layouts

 » Working with fi xed and relative
positioning

 » Using the new fl exbox model

0003053983.INDD 202 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

202 BOOK 3 Basic Web Coding

I used CSS to give each paragraph a different color (to aid in discussion later) and
to set a specific height and width. The positioning is left to the default layout
manager, which positions the second paragraph directly below the first one.

Setting up the HTML
The code behaves as we expect:

<!DOCTYPE html>

<html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>boxes.html</title>

 <style type = "text/css">

 #blueBox {

 background-color: blue;

 width: 100px;

 height: 100px;

 }

 #blackBox {

 background-color: black;

 width: 100px;

 height: 100px;

 }

 </style>

 </head>

FIGURE 6-1:
These two

paragraphs have
a set height and

width, but default
positioning.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 203 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 203

<body>

 <p id = "blueBox"></p>

 <p id = "blackBox"></p>

 </body>

</html>

If you provide no further guidance, paragraphs (like other block-level elements)
tend to provide carriage returns before and after themselves, stacking on top of
each other. The default layout techniques ensure that nothing ever overlaps.

Adding position guidelines
Figure 6-2 shows something new: The paragraphs are overlapping!

This feat is accomplished through some new CSS attributes:

 <!DOCTYPE html>

 <html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>absPosition.html</title>

 <style type = "text/css">

 #blueBox {

 background-color: blue;

 width: 100px;

FIGURE 6-2:
Now the

 paragraphs
 overlap

each other.

0003053983.INDD 204 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

204 BOOK 3 Basic Web Coding

 height: 100px;

 position: absolute;

 left: 0px;

 top: 0px;

 margin: 0px;

 }

 #blackBox {

 background-color: black;

 width: 100px;

 height: 100px;

 position: absolute;

 left: 50px;

 top: 50px;

 margin: 0px;

 }

 </style>

 </head>

<body>

 <p id = "blueBox"></p>

 <p id = "blackBox"></p>

 </body>

 </html>

So, why do I care if the boxes overlap? Well, you might not care, but the interest-
ing part is this: You can have much more precise control over where elements live
and what size they are. You can even override the browser’s normal tendency to
keep elements from overlapping, which gives you some interesting options.

Making absolute positioning work
A few new parts of CSS allow this more direct control of the size and position of
these elements. Here’s the CSS for one of the boxes:

 #blueBox {

 background-color: blue;

 width: 100px;

 height: 100px;

 position: absolute;

 left: 0px;

 top: 0px;

 margin: 0px;

 }

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 205 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 205

The following steps show how to style the blue box with absolute positioning:

1. Set the position attribute to absolute.

Absolute positioning can be used to determine exactly (more or less) where
the element will be placed on the screen:

 position: absolute;

2. Specify a left position in the CSS.

After you determine that an element will have absolute position, it’s removed
from the normal flow, so you’re obligated to fix its position. The left attribute
determines where the left edge of the element will go. This can be specified
with any of the measurement units, but it’s typically measured in pixels:

 left: 0px;

3. Specify a top position with CSS.

The top attribute indicates where the top of the element will go. Again, this is
usually specified in pixels:

 top: 0px;

4. Use the height and width attributes to determine the size.

Normally, when you specify a position, you also want to determine the size:

 width: 100px;

 height: 100px;

5. Set the margins to 0.

When you’re using absolute positioning, you’re exercising quite a bit of control.
Because browsers don’t treat margins identically, you’re better off setting
margins to 0 and controlling the spacing between elements manually:

 margin: 0px;

Generally, you use absolute positioning only on named elements, rather than
classes or general element types. For example, you will not want all the para-
graphs on a page to have the same size and position, or you couldn’t see them all.
Absolute positioning works on only one element at a time.

0003053983.INDD 206 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

206 BOOK 3 Basic Web Coding

Managing z-index
When you use absolute positioning, you can determine exactly where things are
placed, so it’s possible for them to overlap. By default, elements described later in
HTML are positioned on top of elements described earlier.

Handling depth
You can use a special CSS attribute called z-index to change this default behavior.
The z-axis refers to how close an element appears to be to the viewer. Figure 6-3
demonstrates how this works.

The z-index attribute requires a numeric value. Higher numbers mean the ele-
ment is closer to the user (or on top). Any value for z-index places the element
higher than elements with the default z-index. This can be very useful when you
have elements that you want to appear on top of other elements (for example,
menus that temporarily appear on top of other text).

Here’s the code illustrating the z-index effect:

<!DOCTYPE html>

<html lang = "en-US">

 <head>

FIGURE 6-3:
The z-index
allows you to
change which

elements appear
closer to the user.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 207 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 207

 <meta charset = "UTF-8">

 <title>zindex.html</title>

 <style type = "text/css">

 #blueBox {

 background-color: blue;

 width: 100px;

 height: 100px;

 position: absolute;

 left: 0px;

 top: 0px;

 margin: 0px;

 z-index: 1;

 }

 #blackBox {

 background-color: black;

 width: 100px;

 height: 100px;

 position: absolute;

 left: 50px;

 top: 50px;

 margin: 0px;

 }

 </style>

 </head>

<body>

 <p id = "blueBox"></p>

 <p id = "blackBox"></p>

 </body>

</html>

Working with z-index
The only change in this code is the addition of the z-index property. The higher a
z-index value is, the closer that object appears to be to the user.

Here are a couple things to keep in mind when using z-index:

 » One element can totally conceal another. When you start positioning
things absolutely, one element can seem to disappear because it’s completely
covered by another. The z-index attribute is a good way to check for this
situation.

 » Negative z-index can be problematic. The value for z-index should be
positive. Although negative values are supported, some browsers (notably
older versions of Firefox) don’t handle them well and may cause your element
to disappear.

0003053983.INDD 208 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

208 BOOK 3 Basic Web Coding

 » It may be best to give all values a z-index. If you define the z-index for
some elements and leave the z-index undefined for others, you have no
guarantee exactly what will happen. If in doubt, just give every value its own
z-index, and you’ll know exactly what should overlap what.

 » Don’t give two elements the same z-index. The point of the z-index is
to clearly define which element should appear closer. Don’t defeat this
purpose by assigning the same z-index value to two different elements
on the same page.

Building a Page Layout with
Absolute Positioning

You can use absolute positioning to create a page layout. This process involves
some trade-offs. You tend to get better control of your page with absolute posi-
tioning (compared to floating techniques), but absolute layout requires more
planning and more attention to detail. Figure 6-4 shows a page layout created
with absolute positioning techniques.

The technique for creating an absolutely positioned layout is similar to the floating
technique (in the general sense).

FIGURE 6-4:
This layout

was created
with absolute

 positioning.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 209 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 209

Overview of absolute layout
Before you begin putting your page together with absolute positioning, it’s good
to plan the entire process. Here’s an example of how the process should go:

1. Plan the site.

Having a drawing that specifies how your site layout will look is really impor-
tant. In absolute positioning, your planning is even more important than the
floating designs because you’ll need to specify the size and position of every
element.

2. Specify an overall size.

This particular type of layout has a fixed size. Create an all div for all the other
elements and specify the size of this div (in a fixed unit for now, usually px or em).

3. Create the HTML.

The HTML page should have a named div for each part of the page (so if you
have headers, columns, and footers, you need a div for each).

4. Build a CSS style sheet.

The CSS styles can be internal or linked, but because absolute positioning
tends to require a little more markup than floating, external styles are
preferred.

5. Identify each element.

It’s easier to see what’s going on if you assign a different colored border to
each element.

6. Make each element absolutely positioned.

Set position: absolute in the CSS for each element in the layout.

7. Specify the size of each element.

Set the height and width of each element according to your diagram. (You did
make a diagram, right?)

8. Determine the position of each element.

Use the left and top attributes to determine where each element goes in the
layout.

9. Tune-up your layout.

You’ll probably want to adjust margins and borders. You may need to do some
adjustments to make it all work. For example, the menu is 150px wide, but I
added padding-left and padding-right of 5px each. This means the width
of the menu needs to be adjusted to 140px to make everything still fit.

0003053983.INDD 210 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

210 BOOK 3 Basic Web Coding

Writing the HTML
The HTML code is pretty straightforward:

<!DOCTYPE html>

<html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>absLayout.html</title>

 <link rel = "stylesheet"

 type = "text/css"

 href = "absLayout.css"/>

 </head>

 <body>

 <div id = "all">

 <div id = "head">

 <h1>Layout with Absolute Positioning</h1>

 </div>

 <div id = "menu">

 </div>

 <div id = "content">

 </div>

 </div>

 </body>

</html>

As is typical for layout examples, I removed the lorem text from this code listing
for clarity.

The HTML file calls an external style sheet called absLayout.css.

Adding the CSS
The CSS code is a bit lengthy but not too difficult:

/* absLayout.css */

#all {

 border: 1px solid black;

 width: 800px;

 height: 600px;

 position: absolute;

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 211 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 211

 left: 0px;

 top: 0px;

}

#head {

 border: 1px solid green;

 position: absolute;

 width: 800px;

 height: 100px;

 top: 0px;

 left: 0px;

 text-align: center;

}

#menu {

 border: 1px solid red;

 position: absolute;

 width: 140px;

 height: 500px;

 top: 100px;

 left: 0px;

 padding-left: 5px;

 padding-right: 5px;

}

#content{

 border: 1px solid blue;

 position: absolute;

 width: 645px;

 height: 500px;

 top: 100px;

 left: 150px;

 padding-left: 5px;

}

A static layout created with absolute positioning has a few important features to
keep in mind:

 » You’re committed to position everything. After you start using absolute
positioning, you need to use it throughout your site. All the main page
elements require absolute positioning because the normal flow mechanism is
no longer in place.

You can still use floating layout inside an element with absolute position, but
all your main elements (heading, columns, and footing) need to have absolute
position if one of them does.

0003053983.INDD 212 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

212 BOOK 3 Basic Web Coding

 » You should specify size and position. With a floating layout, you’re still
encouraging a certain amount of fluidity. Absolute positioning means you’re
taking the responsibility for both the shape and size of each element in the
layout.

 » Absolute positioning is less adaptable. With this technique, you’re pretty
much bound to a specific screen width and height. You’ll have trouble
adapting to tablets and cellphones.

A more flexible alternative is shown in the next section.

 » All the widths and heights have to add up. When you determine the size of
your display, all the heights, widths, margins, padding, and borders have to
add up, or you’ll get some strange results.

When you use absolute positioning, you’re also likely to spend some quality
time with your calculator, figuring out all the widths and the heights.

Creating a More Flexible Layout
You can build a layout with absolute positioning and some flexibility. Figure 6-5
illustrates such a design.

The size of this layout is attached to the size of the browser screen. It attempts
to adjust to the browser while it’s resized. You can see this effect in Figure 6-6.

FIGURE 6-5:
This page uses

absolute layout,
but it doesn’t

have a fixed size.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 213 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 213

The page simply takes up a fixed percentage of the browser screen. The propor-
tions are all maintained, no matter what the screen size is.

Having the page resize with the browser works, but it’s not a complete solution.
When the browser window is small enough, the text will no longer fit without
some ugly bleed-over effects. You can fix this with the overflow attribute, but
then you will have scrollbars in your smaller elements.

Designing with percentages
This absolute but flexible trick is achieved by using percentage measurements. The
position is still set to absolute, but rather than defining size and position with
pixels, you use percentages instead. Here’s the CSS:

 /* absPercent.css */

 #all {

 border: 1px black solid;

 position: absolute;

 left: 5%;

 top: 5%;

 width: 90%;

FIGURE 6-6:
The layout resizes

in proportion
to the browser

window.

0003053983.INDD 214 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

214 BOOK 3 Basic Web Coding

 height: 90%;

 }

 #head {

 border: 1px black solid;

 position: absolute;

 left: 0%;

 top: 0%;

 width: 100%;

 height: 10%;

 text-align: center;

 }

 #head h1 {

 margin-top: 1%;

 }

 #menu {

 border: 1px green solid;

 position: absolute;

 left: 0%;

 top: 10%;

 width: 18%;

 height: 90%;

 padding-left: 1%;

 padding-right: 1%;

 overflow: auto;

 }

 #content {

 border: 1px black solid;

 position: absolute;

 left: 20%;

 top: 10%;

 width: 78%;

 height: 90%;

 padding-left: 1%;

 padding-right: 1%;

 overflow: auto;

 }

The key to any absolute positioning (even this flexible kind) is math. When you
just look at the code, it isn’t clear where all those numbers come from. Look at the
diagram for the page in Figure 6-7 to see how all the values are derived.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 215 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 215

Building the layout
Here’s how the layout works:

1. Create an all container by building a div with the all ID.

The all container will hold all the contents of the page. It isn’t absolutely
necessary in this type of layout, but it does allow for a centering effect.

2. Specify the size and position of all.

I want the content of the page to be centered in the browser window, so I set
its height and width to 90 percent, and its margin-left and margin-top to 5
percent. This sets the margin-right and margin-bottom to 5 percent also.
These percentages refer to the all div’s container element, which is the body,
with the same size as the browser window.

3. Other percentages are in relationship to the all container.

Because all the other elements are placed inside all, the percentage values
are no longer referring to the entire browser window. The widths and heights
for the menu and content areas are calculated as percentages of their
container, which is all.

4. Determine the heights.

Height is usually pretty straightforward because you don’t usually have
to change the margins. Remember, though, that the head accounts for
10 percent of the page space, so the height of both the menu and content
needs to be 90 percent.

5. Figure the general widths.

In principle, the width of the menu column is 20 percent, and the content
column is 80 percent. This isn’t perfectly accurate, though.

FIGURE 6-7:
The diagram

is the key to a
 successful layout.

0003053983.INDD 216 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

216 BOOK 3 Basic Web Coding

6. Compensate for margins.

You probably want some margins, or the text looks cramped. If you want 1 per-
cent margin-left and 1 percent margin-right on the menu column, you
have to set the menu’s width to 18 percent to compensate for the margins.
Likewise, set the content width to 78 percent to compensate for margins.

As if this weren’t complex enough, remember that Internet Explorer 6 (IE6) and
earlier browsers calculate margins differently! In these browsers, the margin
happens inside the content, so you don’t have to compensate for them (but you
have to remember that they make the useable content area smaller). You’ll prob-
ably have to make a conditional comment style sheet to handle IE6 if you use
absolute positioning.

Exploring Other Types of Positioning
If you use the position attribute, you’re most likely to use absolute. However,
here are other positioning techniques that can be handy in certain circumstances:

 » Relative: Set position: relative when you want to move an element from
its default position. For example, if you set position to relative and top:
-10px, the element would be placed 10 pixels higher on the screen
than normal.

 » Fixed: Use fixed position when you want an element to stay in the same
place, even when the page is scrolled. This is sometimes used to keep a menu
on the screen when the contents are longer than the screen width.

If you use fixed positioning, be sure you’re not overwriting something already
on the screen.

The real trick is to use appropriate combinations of positioning schemes to solve
interesting problems.

Creating a fixed menu system
Figure 6-8 illustrates a very common type of web page — one with a menu on the
left and a number of stories or topics in the main area.

Something is interesting about this particular design. The button list on the left
refers to specific segments of the page. When you click one of these buttons (say,
the Gamma button), the appropriate part of the page is called up, as shown in
Figure 6-9.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 217 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 217

Normally, when you scroll down the page, things on the top of the page (like the
menu) disappear. In this case, the menu stays on the screen, even though the part
of the page where it was originally placed is now off the screen.

Gamma isn’t necessarily moved to the top of the page. Linking to an element
ensures that it’s visible but doesn’t guarantee where it will appear.

You can achieve this effect using a combination of positioning techniques.

FIGURE 6-8:
At first glance,

this is yet another
two-column

layout.

FIGURE 6-9:
The page scrolls

to the Gamma
content, but the
menu stays put.

0003053983.INDD 218 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

218 BOOK 3 Basic Web Coding

Setting up the HTML
The HTML for the fixed menu page is simple (as you’d expect by now):

<!DOCTYPE html>

<html lang = "en-US">

 <head>

 <meta charset = "UTF-8">

 <title>fixedRelative.html</title>

 <link rel = "stylesheet"

 type = "text/css"

 href = "fixedRelative.css"/>

 </head>

 <body>

 <h1>Fixed Position</h1>

 <div id = "menu">

 <h2>Menu</h2>

 Alpha

 Beta

 Gamma

 Delta

 </div>

 <div class = "content"

 id = "alpha">

 <h2>Alpha</h2>

 </div>

 <div class = "content"

 id = "beta">

 <h2>Beta</h2>

 </div>

 <div class = "content"

 id = "gamma">

 <h2>Gamma</h2>

 </div>

 <div class = "content"

 id = "delta">

 <h2>Delta</h2>

 </div>

 </body>

</html>

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 219 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 219

The HTML has only a few noteworthy characteristics:

 » It has a menu. The div named menu contains a list of links (like most menus).

 » The menu has internal links. A menu can contain links to external docu-
ments or (like this one) links inside the current document. The <a href =
“#alpha”>Alpha code means create a link to the element in this page
with the ID alpha.

 » The page has a series of content divs. Most of the page’s content appears
in one of the several divs with the content class. This class indicates all these
divs will share some formatting.

 » The content divs have separate IDs. Although all the content divs are part
of the same class, each has its own ID. This allows the menu to select indi-
vidual items (and would also allow individual styling, if desired).

As normal for this type of code, I left out the filler paragraphs from the code
listing.

Setting the CSS values
The interesting work happens in CSS. Here’s an overview of the code:

/* fixedRelative.css */

body {

 background-color: #fff9bf;

}

h1 {

 text-align: center;

}

#menu {

 position: fixed;

 width: 18%;

}

#menu li {

 list-style-type: none;

 margin-left: -2em;

 text-align: center;

}

0003053983.INDD 220 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

220 BOOK 3 Basic Web Coding

#menu a{

 display: block;

 border: 2px gray outset;

 text-decoration: none;

 color: black;

}

#menu a:hover{

 color: white;

 background-color: black;

 border: 2px gray inset;

}

#menu h2 {

 text-align: center;

}

.content {

 position: relative;

 left: 20%;

 width: 80%;

}

.content h2 {

 border-top: 3px black double;

}

I changed the menu list to make it look like a set of buttons, and I added some
basic formatting to the headings and borders. The interesting thing here is how I
positioned various elements.

Here’s how you build a fixed menu:

1. Set the menu position to fixed by setting the position attribute to
fixed.

The menu div should stay on the same spot, even while the rest of the page
scrolls. Fixed positioning causes the menu to stay put, no matter what else
happens on the page.

2. Give the menu a width with the width attribute.

It’s important that the width of the menu be predictable, both for aesthetic
reasons and to make sure the content isn’t overwritten by the menu. In this
example, I set the menu width to 18 percent of the page width (20 percent
minus some margin space).

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 221 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 221

3. Consider the menu position by explicitly setting the top and left
attributes.

When you specify a fixed position, you can determine where the element is
placed on the screen with the left and top attributes. I felt that the default
position was fine, so I didn’t change it.

4. Set content position to relative.

By default, all members of the content class will fill out the entire page width.
Because the menu needs the leftmost 20 percent of the page, set the content
class position to relative.

5. Change content's left attribute to 20 percent.

Because content has relative positioning, setting the left to 20 percent will
add 20 percent of the parent element to each content's left value. This will
ensure that there’s room for the menu to the left of all the content panes.

6. Give content a width property.

If you don’t define the width, content panels may bleed off the right side of
the page. Use the width property to ensure this doesn’t happen.

In reality, I rarely use absolute positioning for page layout. It’s just too difficult
to get working and too inflexible for the range of modern browsers. However, it
is still used in certain specialty situations like web game development where the
programmer is deliberately subverting normal layout schemes for more control of
the visual interface.

Flexible Box Layout Model
Page layout has been a constant concern in web development. There have been
many different approaches to page layout, and all have weaknesses. The current
standard is the floating mechanism. While this works quite well, it has two major
weaknesses.

 » It can be hard to understand. The various parts of the float specification can
be difficult to follow, and the behavior is not intuitive. The relationship
between width, clear, and float attributes can be difficult to follow.

 » The page order matters. One goal of semantic layout is to completely
divorce the way the page is created from how it is displayed. With the floating
layout, the order in which various elements are written in the HTML document
influences how they are placed. An ideal layout solution would allow any kind
of placement through CSS, even after the HTML is finished.

0003053983.INDD 222 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

222 BOOK 3 Basic Web Coding

Absolute positioning seems great at first, but it has its own problems:

 » It’s a lot more detail-oriented. Absolute positioning is a commitment. You
often end up having to directly control the size and position of every element
on the screen, which is tedious and difficult.

 » It’s not as flexible. With responsive design (creating a page that can adapt to
the many different devices available) all the rage today, the absolute position
scheme simply doesn’t deliver the flexibility needed in modern web
development.

There are some other layout mechanisms (tables and frames) that have already
been rejected as viable layout options, which seems to leave web programmers
without an ideal solution.

Creating a flexible box layout
CSS3 proposes a new layout mechanism that aims to solve a lot of the layout
problems that have plagued web development. The flexible box layout scheme
(sometimes called flexbox) shows a lot of promise. Here’s essentially how it works:

1. Designate a page segment as a box.

The display attribute of most elements can be set to various types. CSS3
introduces a new display type: box. Setting the display of an element to box
makes it capable of holding other elements with the flexible box mechanism.

2. Determine the orientation of child elements.

Use a new attribute called box-orient to determine if the child elements of
the current element will be placed vertically or horizontally inside the main
element.

3. Specify the weight of child elements.

Each child element can be given a numeric weight. The weight determines how
much space that element takes up. If the weight is zero, the element takes as
little space as possible. If the weight of all the elements is one, they all take up
the same amount of space. If one element has a weight of two and the others
all have a weight of one, the larger element has twice the size of the others,
and so on. Weight is determined through the box-flex attribute.

4. Nest another box inside the first.

You can nest flexboxes inside each other. Simply apply the box display type to
inner elements that will show the display.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 223 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 223

5. Modify the order in which elements appear.

Normally elements appear in the order in which they were placed on the page,
but you can use the box-ordinal-group attribute to adjust the placement
order.

Viewing a flexible box layout
As an example, take a look at the following HTML code:

 <div id = "a">

 <div id = "b">b</div>

 <div id = "c">c</div>

 <div id = "d">

 <div id = "e">e</div>

 <div id = "f">f</div>

 </div>

 </div>

Although this is a clearly made-up example, it shows a complex structure that
could be difficult to style using standard layout techniques. Figure 6-10 illustrates
a complex nested style that would be difficult to achieve through traditional layout
techniques:

FIGURE 6-10:
This structure
would not be
easy to build

with CSS2.

0003053983.INDD 224 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

224 BOOK 3 Basic Web Coding

The following style sheet is used to apply a flex grid style to this page:

 div {

 border: 1px solid black;

 }

 #a {

 width: 300px;

 height: 200px;

 display: box;

 box-orient: horizontal;

 }

 #b {

 box-flex: 1;

 }

 #c {

 box-flex: 1;

 }

 #d {

 display: box;

 box-orient: vertical;

 box-flex: 2;

 }

 #e {

 box-flex: 1;

 box-ordinal-group: 2;

 }

 #f {

 box-flex: 1;

 }

The CSS looks complex, but there are only four new CSS elements. Here’s how this
specific example works:

1. Set up a to be the primary container.

The a div is the primary container, so give it a height and width. It will contain
flex boxes, so set the display attribute to box. Determine how you want the
children of this box to be lined up by setting the box-orient attribute to
vertical or horizontal.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 225 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 225

2. Specify the weights of b, c, and d.

In my example, I want elements b and c to take up half the space, and d to fill
up the remainder of the space. To get this behavior, set the box-flex value of
b and c to 1, and the box-flex value of d to 2.

3. Set up d as another container.

The d element will contain e and f. Use display: box to make d a flex
container, and box-orient to vertical to make the elements line up
vertically. (Normally nested elements will switch between horizontal and
vertical.)

4. Elements e and f should each take half of d.

Use the box-flex attribute to give these elements equal weight.

5. Change the ordinal group of e so it appears after f.

The box-ordinal-group attribute indicates the order in which an element will
be displayed inside its group. Normally, all items have a default value of 1, so
they appear in the order they are written. You can demote an element by
setting its box-ordinal-group value to a higher number, causing that
element to be displayed later than normal. I set e to ordinal group 2, so it is
displayed after element f.

. . . And now for a little reality
The flexbox system seems perfect. It’s much more sensible than the Byzantine
layout techniques that are currently in use. However, the flexible box system isn’t
ready for common use yet.

Right now, not a single browser implements the flexbox attributes directly.
 However, special vendor-specific versions are available:

 » WebKit-based browsers (primarily Safari and Chrome) use variations that
begin with -webkit-.

 » Gecko-based browsers (Firefox and Mozilla) use the -moz- prefix.

 » Microsoft requires -ms-.

To make the example in this chapter work in modern browsers, you need to
include -ms-, -webkit-, and -moz- versions of all the attributes, like this:

 #a {

 width: 300px;

 height: 200px;

0003053983.INDD 226 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

226 BOOK 3 Basic Web Coding

 box-orient: horizontal;

 display: box;

 -moz-box-orient: horizontal;

 display: -moz-box;

 -webkit-box-orient: horizontal;

 display: -webkit-box;

 -ms-box-orient: horizontal;

 display: -ms-box;

 }

 #b {

 box-flex: 1;

 -moz-box-flex: 1;

 -webkit-box-flex: 1;

 -ms-box-flex: 1;

 }

None of the browsers currently support the vanilla version, but I put it in any-
way because hopefully in the near future only that version will be necessary. This
technique is worth learning about because it may well become the preferred layout
technique in the future.

For a complete example, take a look at Figure 6-11, which shows a standard two-
column page.

FIGURE 6-11:
This standard

 layout uses
flexbox.

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 227 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 227

Though you can’t tell from the screen shot, this page uses HTML5 throughout,
including the new semantic tags (see the sidebar at the end of this chapter for a
discussion of semantic tags) and a flexbox layout model.

Although the CSS code may look complex, it’s just repeated four times to handle
all the various browser prefixes:

<!DOCTYPE HTML>

 <html lang = "en">

 <head>

 <title>flexTwoCol.html</title>

 <meta charset = "UTF-8"/>

 <style type = "text/css">

 #all {

 display: box;

 display: -moz-box;

 display: -wekbit-box;

 display: -ms-box;

 box-orient: vertical;

 -moz-box-orient: vertical;

 -webkit-box-orient: vertical;

 -ms-box-orient: vertical;

 height: 600px;

 width: 600px;

 margin-right: auto;

 margin-left: auto;

 }

 #main {

 display: box;

 display: -moz-box;

 display: -webkit-box;

 display: -ms-box;

 box-orient: horizontal;

 -moz-box-orient: horizontal;

 -webkit-box-orient: horizontal;

 -ms-box-orient: horizontal;

 }

 #nav {

 box-flex: 1;

 -moz-box-flex: 1;

 -webkit-box-flex: 1;

0003053983.INDD 228 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

228 BOOK 3 Basic Web Coding

 -ms-box-flex: 1;

 }

 #article {

 box-flex: 6;

 -moz-box-flex: 6;

 -webkit-box-flex: 6;

 -ms-box-flex: 6;

 }

 header, footer {

 display:block;

 text-align: center;

 }

 </style>

 </head>

 <body>

 <div id = "all">

 <header>

 <hgroup>

 <h1>Two Column Demo</h1>

 <h2>Using flexbox layout</h2>

 </hgroup>

 </header>

 <div id = "main">

 <div id = "nav">

 <h2>Navigation List</h2>

 one

 two

 three

 four

 five

 </div>

 <div id = "article">

 <h2>Main content</h2>

 </div>

 </div>

U
si

ng
 A

lt
er

na
ti

ve

Po
si

ti
on

in
g

0003053983.INDD 229 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

CHAPTER 6 Using Alternative Positioning 229

 <footer>

 <h2>Nik Abraham</h2>

 Tweet @nikhilgabraham

 </footer>

 </div>

 </body>

 </html>

The flexbox approach is really promising. When you get used to it, flexbox is less
mysterious than the float approach, and far more flexible than absolute posi-
tioning. Essentially, my page uses a fixed width div and places a flexbox inside
it. There’s no need to worry about float, clear, or any specific measurements
except the one for the all div. The only downside is the need to code the CSS for
all the browser prefixes. For now, I fix that with macros in my text editor.

INTRODUCING SEMANTIC LAYOUT TAGS
Web developers embraced the idea of semantic markup, which is all about labeling
things based on their meaning. “Within a short time, nearly every page had a number
of divs with the same name: div id = “header”, div id = “navigation”, div id = “footer”,
and so on.

HTML5 finally released a set of semantic markup elements to describe the standard
page elements. Here’s a list of the most important ones:

<header>: Describes the header area of your page.

<nav>: Navigation element, often contains some sort of menu system.

<section>: Contains a section of content.

<article>: Contains an article — typically generated from an external source.

<footer>: Contains the footer elements.

The semantic elements are useful because they simplify markup. Unfortunately, not all
browsers recognize these elements yet. They will render just fine, but it may be a while
before CSS can be used with these elements with confidence.

0003053983.INDD 230 Trim size: 7.375 in × 9.25 in March 30, 2017 10:22 PM

4
0003053965.INDD 231 Trim size: 7.375 in × 9.25 in March 30, 2017 11:15 PM

 Advanced Web
Coding

0003053965.INDD 232 Trim size: 7.375 in × 9.25 in March 30, 2017 11:15 PM

Contents at a Glance
CHAPTER 1: Working Faster with Twitter Bootstrap 233

Figuring Out What Bootstrap Does . 234
Installing Bootstrap . 235
Understanding the Layout Options . 236
Coding Basic Web Page Elements . 243
Build the Airbnb Home Page . 247

CHAPTER 2: Adding in JavaScript . 249
What Does JavaScript Do? . 249
Understanding JavaScript Structure . 251
Coding Common JavaScript Tasks . 253
Writing Your First JavaScript Program . 263
Working with APIs . 263
Using JavaScript Libraries . 267

CHAPTER 3: Understanding Callbacks and Closures 269
What Are Callbacks? . 269
Understanding Closures . 274
Using Closures . 277

CHAPTER 4: Embracing AJAX and JSON . 279
Working behind the Scenes with AJAX . 279
Putting Objects in Motion with JSON . 289

CHAPTER 5: jQuery . 295
Writing More and Doing Less . 295
Getting Started with jQuery . 296
The jQuery Object . 297
Is Your Document Ready? . 298
Using jQuery Selectors . 298
Changing Things with jQuery . 300
Events . 302
Effects . 305
AJAX . 309

CHAPTER 1 Working Faster with Twitter Bootstrap 233

0003053984.INDD 233 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

 Working Faster with
Twitter Bootstrap

“Speed, it seems to me, provides the one genuinely modern pleasure.”
 — ALDOUS HUXLEY

 T witter Bootstrap is a free toolkit that allows users to create web pages quickly
and with great consistency. In 2011 two Twitter developers, Mark Otto and
Jacob Thornton, created the toolkit for internal use at Twitter and soon

afterward released it to the general public. Before Bootstrap, developers would
create common web page features over and over again and each time slightly dif-
ferently, leading to increased time spent on maintenance. Bootstrap has become
one of the most popular tools used in creating websites and is used by NASA and
Newsweek for their websites. With a basic understanding of HTML and CSS, you
can use and customize Bootstrap layouts and elements for your own projects.

 In this chapter, you discover what Bootstrap does and how to use it. You also
discover the various layouts and elements that you can quickly and easily create
when using Bootstrap.

Chapter 1

 IN THIS CHAPTER

 » Understanding what Twitter
Bootstrap does

 » Viewing layouts created with Twitter
Bootstrap

 » Creating web page elements using
Twitter Bootstrap

0003053984.INDD 234 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

234 BOOK 4 Advanced Web Coding

Figuring Out What Bootstrap Does
Imagine you’re the online layout developer for The Washington Post, responsible
for coding the front page of the print newspaper (see Figure 1-1) into a digital
website version. The newspaper consistently uses the same font size and typeface
for the main headline, captions, and bylines. Similarly, there are a set number
of layouts to choose from, usually with the main headline at the top of the page
accompanied by a photo.

Every day you could write your CSS code from scratch, defining font typeface,
sizes, paragraph layouts, and the like. However, given that the newspaper follows
a largely defined format, it would be easier to define this styling ahead of time in
your CSS file with class names, and when necessary refer to the styling you want
by name. At its core, this is how Bootstrap functions.

Bootstrap is a collection of standardized prewritten HTML, CSS, and JavaScript code
that you can reference using class names (for a refresher, see Book 3, Chapter 4) and
then further customize. Bootstrap allows you to create and gives you the following:

 » Layouts: Define your web page content and elements in a grid pattern.

FIGURE 1-1:
The front page of

The Washington
Post (June 7,

2013).

W
or

ki
ng

 F
as

te
r

w
it

h
Tw

it
te

r
Bo

ot
st

ra
p

0003053984.INDD 235 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 1 Working Faster with Twitter Bootstrap 235

 » Components: Use existing buttons, menus, and icons that have been tested
on hundreds of millions of users.

 » Responsiveness: A fancy word for whether your site will work on mobile
phones and tablets in addition to desktop computers. Ordinarily, you would
write additional code so your website appears properly on these different
screen sizes, but Bootstrap code is already optimized to do this for you, as
shown in Figure 1-2.

 » Cross-browser compatibility: Chrome, Firefox, Safari, Internet Explorer, and
other browsers all vary in the way they render certain HTML elements and
CSS properties. Bootstrap code is optimized so your web page appears
consistently no matter the browser used.

Installing Bootstrap
Install and add Bootstrap to your HTML file by following these two steps:

1. Include this code between your opening and closing <head> tag:

<link rel="stylesheet"

href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">

The <link> tag refers to version 3.2.0 of the Bootstrap CSS file hosted on the
Internet, so you must be connected to the Internet for this method to work.

2. Include these lines of code immediately before your closing HTML
</body> tag.

<!--jQuery (needed for Bootstrap's JavaScript plugins) -->

<script

src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.

FIGURE 1-2:
The Angry Birds
Star Wars page

optimized for
desktop, tablet,

and mobile using
Bootstrap.

0003053984.INDD 236 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

236 BOOK 4 Advanced Web Coding

js"></script>

<!--Bootstrap Javascript plugin file -->

<script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.

min.js"></script>

The first <script> tag references a JavaScript library called jQuery. JavaScript
is covered in Book 4, Chapter 2, and jQuery is covered in Book 4, Chapter 5.
At a high level, jQuery simplifies tasks performed using JavaScript. The second
<script> tag references Bootstrap JavaScript plugins, including animated
effects such as drop-down menus. If your website doesn’t use animated
effects or Bootstrap JavaScript plugins, you don’t need to include this file.

Bootstrap is free to use for personal and commercial purposes, but does require
including the Bootstrap license and copyright notice.

If you don’t have reliable access to an Internet connection, you can also download
and locally host the Bootstrap CSS and JavaScript files. To do this, after unzipping
the Bootstrap file, use the <link> and <script> tags to link to the local version
of your file. Visit www.getbootstrap.com/getting-started to download the files
and to access additional instructions and examples.

Understanding the Layout Options
Bootstrap allows you to quickly and easily lay out content on the page using a grid
system. You have three options when using this grid system:

 » Code yourself. After you learn how the grid is organized, you can write code
to create any layout you wish.

 » Code with a Bootstrap editor. Instead of writing code in a text editor, drag
and drop components and elements to generate Bootstrap code. You can
then download and use this code.

 » Code with a prebuilt theme. Download free Bootstrap themes or buy a
theme where the website has already been created, and you fill in your own
content.

Lining up on the grid system
Bootstrap divides the screen into a grid system of 12 equally sized columns. These
columns follow a few rules:

W
or

ki
ng

 F
as

te
r

w
it

h
Tw

it
te

r
Bo

ot
st

ra
p

0003053984.INDD 237 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 1 Working Faster with Twitter Bootstrap 237

 » Columns must sum to a width of 12 columns. You can use one column that
is 12 columns wide, 12 columns that are each one column wide, or anything
in between.

 » Columns can contain content or spaces. For example, you could have a
4-column-wide column, a space of 4 columns, and another 4-column-wide
column.

Unless you specify otherwise, these columns will automatically stack into a
single column on smaller browser sizes or screens like mobile devices, and
expand horizontally on larger browser sizes or screens like laptop and
desktop screens. (See Figure 1-3.)

Now that you have a sense for how these layouts appear on the screen, take a look
at example code used to generate these layouts. To create any layout, follow these
steps:

1. Create a <div> tag with the attribute class="container".

2. Inside the first <div> tag, create another nested <div> tag with the
attribute class="row".

3. For each row you want to create, create another <div> tag with the
attribute class="col-md-X". Set X equal to the number of columns you
want the row to span.

For example, to have a row span 4 columns, write <div class= “col-md-4”>.
The md targets the column width for desktops, and I show you how to target
other devices later in this section.

You must include <div class="container"> at the beginning of your page and
have a closing </div> tag, or your page will not render properly.

FIGURE 1-3:
Sample Bootstrap

layouts.

0003053984.INDD 238 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

238 BOOK 4 Advanced Web Coding

The following code, as shown in Figure 1-4, creates a simple three-column
 centered layout:

<div class="container">

 <!-- Example row of columns -->

 <div class="row">

 <div class="col-md-4">

 <h2>Heading</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

 eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim

 ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

 aliquip ex ea commodo consequat.

 </p>

 </div>

 <div class="col-md-4">

 <h2>Heading</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

eiusmod

 Tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam,

 quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

 consequat.

 </p>

 </div>

 <div class="col-md-4">

 <h2>Heading</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

eiusmod

 tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam,

 quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

 consequat.

 </p>

 </div>

 </div>

</div>

To see another example, go to the Codecademy site, and resize the browser
 window. You will notice that as you make the browser window smaller, the col-
umns automatically stack on top of one another in order to be readable. Also,
the columns are automatically centered. Without Bootstrap, you would need more
code to achieve these same effects.

The Lorem Ipsum text you see in the preceding code is commonly used to cre-
ate filler text. Although the words don’t mean anything, the quotation originates
from a first-century BC Latin text by Cicero. You can generate filler text when
creating your own websites by using the dummy text you find at www.lipsum.org.

W
or

ki
ng

 F
as

te
r

w
it

h
Tw

it
te

r
Bo

ot
st

ra
p

0003053984.INDD 239 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 1 Working Faster with Twitter Bootstrap 239

Dragging and dropping to a website
After looking at the preceding code, you may want an even easier way to gener-
ate the code without having to type it yourself. Bootstrap editors allow you to
drag and drop components to create a layout, after which the editor will generate
Bootstrap code for your use.

Bootstrap editors that you can use include the following:

 » Layoutit.com: Free online Bootstrap editor (as shown in Figure 1-5)
that allows you to drag and drop components and then download the
source code

 » Jetstrap.com: Paid online drag-and-drop Bootstrap editor

 » Pingendo.com: Free downloadable drag-and-drop Bootstrap editor

 » Bootply.com: Free online Bootstrap editor with built-in templates to modify

FIGURE 1-4:
Bootstrap three-

column layout
with desktop (left)
and mobile (right)

versions.

FIGURE 1-5:
Layoutit.com

interface with
drag-and-drop

Bootstrap
 components.

0003053984.INDD 240 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

240 BOOK 4 Advanced Web Coding

These sites are free, and may stop working without notice. You can find additional
options by using any search engine to search for Bootstrap editors.

Using predefined templates
Sites exist with ready-to-use Bootstrap themes; all you need to do is add your own
content. Of course, you can also modify the theme if you wish. Here are some of
these Bootstrap theme websites:

 » www.blacktie.co: Free Bootstrap themes (shown in Figure 1-6), all created
by one designer

 » www.bootstrapzero.com: Collection of free, open-source Bootstrap
templates

 » www.bootswatch.com and www.bootsnipp.com: Includes pre built Bootstrap
components that you can assemble for your own site

 » www.wrapbootstrap.com: Bootstrap templates available for purchase

Bootstrap themes may be available for free, but follow the licensing terms. The
author may require attribution, email registration, or a tweet.

FIGURE 1-6:
One-page
 Bootstrap

template from
blacktie.co.

W
or

ki
ng

 F
as

te
r

w
it

h
Tw

it
te

r
Bo

ot
st

ra
p

0003053984.INDD 241 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 1 Working Faster with Twitter Bootstrap 241

Adapting layout for mobile,
tablet, and desktop
On smaller screens, Bootstrap will automatically stack the columns you create
for your website. However, you can exercise more control than just relying on
the default behavior over how these columns appear. There are four device screen
sizes you can target — phones, tablets, desktops, and large desktops. As shown in
Table 1-1, Bootstrap uses a different class prefix to target each device.

Based on Table 1-1, if you want your website to have two equally sized columns on
tablets, desktops, and large desktops, you use the col-sm- class name as follows:

<div class="container">

 <div class="row">

 <div class="col-sm-6">Column 1</div>

 <div class="col-sm-6">Column 2</div>

</div>

</div>

After viewing your code on all three devices, you decide that on desktops you
 prefer unequal instead of equal columns such that the left column is half the size
of the right column. You target desktop devices using the col-md- class name
and add it to the class name immediately after col-sm-:

<div class="container">

 <div class="row">

 <div class="col-sm-6 col-md-4">Column 1</div>

 <div class="col-sm-6 col-md-8">Column 2</div>

</div>

</div>

TABLE 1-1	 Bootstrap Code for Various Screen Sizes
Phones (<768px) Tablets (≥768px) Desktops (≥992px) Large desktops

(≥1200 px)

Class prefix col-sx- col-sm- col-md- col-lg-

Max container width None (auto) 750px 970px 1170px

Max column width Auto ~62px ~81px ~97px

0003053984.INDD 242 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

242 BOOK 4 Advanced Web Coding

Some elements, such as the preceding <div> tag, can have multiple classes. This
allows you to add multiple effects, such as changing the way a column is dis-
played, to the element. To define multiple classes, use the class attribute and set
it equal to each class; separate each class with a space. For an example, refer to the
preceding code: The third <div> element has two classes, col-sm-6 and col-md-4.

Finally, you decide that on large desktop screens, you want the left column to
be two columns wide. You target large desktop screens using the col-lg- class
name, as shown in Figure 1-7, and add to your existing class attribute values:

<div class="container">

 <div class="row">

 <div class="col-sm-6 col-md-4 col-lg-2">Column 1</div>

 <div class="col-sm-6 col-md-8 col-lg-10">Column 2</div>

</div>

</div>

FIGURE 1-7:
A two-column

site displayed on
 tablet, desktop,

and large
 desktop.

W
or

ki
ng

 F
as

te
r

w
it

h
Tw

it
te

r
Bo

ot
st

ra
p

0003053984.INDD 243 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 1 Working Faster with Twitter Bootstrap 243

Coding Basic Web Page Elements
In addition to pure layouts, Bootstrap can also create web page components
found on almost every website. The idea here is the same as when working with
 layouts — instead of re-creating the wheel every time by designing your own
button or toolbar, it would be better to use prebuilt code, which has already been
tested across multiple browsers and devices.

The following examples show how to quickly create common web components.

Designing buttons
Buttons are a basic element on many web pages, but usually can be difficult to
set up and style. As shown in Table 1-2, buttons can have various types and sizes.

To create a button, write the following HTML:

1. Begin with the button HTML element.

2. In the opening <button> tag include type="button".

3. Include the class attribute with the btn class attribute value, and add
additional class prefixes based on the effect you want.

4. To add additional styles, continue adding the class prefix name into the
HTML class attribute.

TABLE 1-2	 Bootstrap Code for Creating Buttons
Attribute Class Prefix Description

Button type btn-defaultbtn-primarybtn-
successbtn-danger

Standard button type with hover effect

Blue button with hover effect

Green button with hover effect

Red button with hover effect

Button size btn-lgbtn-defaultbtn-sm Large button size

Default button size

Small button size

0003053984.INDD 244 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

244 BOOK 4 Advanced Web Coding

As shown in Figure 1-8, the following code combines both button type and
button size:

<p>

 <button type="button" class="btn btn-primary btn-lg">Large primary button

 </button>

 <button type="button" class="btn btn-default btn-lg">Large default button

 </button>

</p>

<p>

 <button type="button" class="btn btn-success">Default Success button</

button>

 <button type="button" class="btn btn-default">Default default button</

button>

</p>

<p>

 <button type="button" class="btn btn-danger btn-sm">Small danger button

 </button>

 <button type="button" class="btn btn-default btn-sm">Small default button

 </button>

</p>

For additional button type, button size, and other button options, see www.getboot
strap.com/css/#buttons.

Navigating with toolbars
Web pages with multiple pages or views usually have one or more toolbars to help
users with navigation. Some toolbar options are shown in Table 1-3.

FIGURE 1-8:
Bootstrap button

types and sizes.

W
or

ki
ng

 F
as

te
r

w
it

h
Tw

it
te

r
Bo

ot
st

ra
p

0003053984.INDD 245 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 1 Working Faster with Twitter Bootstrap 245

To create a pill or solid button navigation toolbar, write the following HTML:

1. Begin an unordered list using the ul element.

2. In the opening tag, include class="nav nav-pills".

3. Create buttons using the tag. Include class="active" in one
opening tag to designate which tab on the main toolbar should
appear as visually highlighted when the mouse hovers over the button.

4. To create a drop-down menu, nest an unordered list. See the code next to
“More” with class prefixes "dropdown", "caret", and "dropdown-menu".

You can link to other web pages in your drop-down menu by using the <a> tag.

The following code, as shown in Figure 1-9, creates a toolbar using Bootstrap:

<ul class="nav nav-pills">

 <li class="active">Timeline

 About

 Photos

 Friends

 <li class="dropdown">

 More

 <ul class="dropdown-menu">

 Places

 Sports

 Music

The dropdown-toggle class and the data-toggle="dropdown" attribute and value
work together to add drop-down menus to elements such as links. For additional
toolbar options, see www.getbootstrap.com/components/#nav.

TABLE 1-3	 Bootstrap Code for Creating Navigation Toolbars
Attribute Class Prefix Description

Toolbar type nav-tabs

nav-pills

Tabbed navigation toolbar

Pill, or solid button navigation toolbar

Toolbar button type dropdown

caret dropdown-menu

Button or tab as drop-down menu

Down-arrow drop-down menu icon

Drop-down menu items

0003053984.INDD 246 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

246 BOOK 4 Advanced Web Coding

Adding icons
Icons are frequently used with buttons to help convey some type of action. For
example, your email program likely uses a button with a trash can icon to delete
emails. Icons quickly communicate a suggested action to users without much
explanation.

These icons are called glyphs, and www.glyphicons.com provides the glyphs used
in Bootstrap.

Bootstrap supports more than 200 glyphs, which you can add to buttons or tool-
bars using the tag. As shown in Figure 1-10, the following example code
creates three buttons with a star, paperclip, and trash can glyph.

<button type="button" class="btn btn-default">Star

 </star>

</button>

<button type="button" class="btn btn-default">Attach

 </star>

</button>

<button type="button" class="btn btn-default">Trash

 </star>

</button>

FIGURE 1-9:
Bootstrap toolbar

with drop-down
menus.

FIGURE 1-10:
Bootstrap

 buttons
with icons.

W
or

ki
ng

 F
as

te
r

w
it

h
Tw

it
te

r
Bo

ot
st

ra
p

0003053984.INDD 247 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 1 Working Faster with Twitter Bootstrap 247

For the names of all the Bootstrap glyphs, see www.getbootstrap.com/
components/#glyphicons.

Build the Airbnb Home Page
Practice Bootstrap online using the Codecademy website. Codecademy is a free
website created in 2011 to allow anyone to learn how to code right in the browser,
without installing or downloading any software. Practice all the tags (and a few
more) that you find in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingaiolinks, and
click the link to Codecademy.

2. If you have a Codecademy account, sign in.

Signing up is discussed in Book 1, Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click Make a Website to practice Bootstrap.

Background information is presented, and instructions are presented on
the site.

4. Complete the instructions in the main coding window.

5. After you have finished completing the instructions, click the Got It or
Save and Submit Code button.

If you followed the instructions correctly, a green checkmark appears, and you
proceed to the next exercise. If an error exists in your code, a warning appears
with a suggested fix. If you run into a problem, or have a bug you cannot fix, click
the hint, use the Q&A Forum, or tweet me at @nikhilgabraham and include the
hashtag #codingFD. Additionally, you can sign up for book updates and expla-
nations for changes to programming language commands by visiting http://
tinyletter.com/codingfordummies.

0003053984.INDD 248 Trim size: 7.375 in × 9.25 in March 31, 2017 4:25 AM

CHAPTER 2 Adding in JavaScript 249

0003053985.INDD 249 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

 Adding in JavaScript
“The best teacher is very interactive.”

 — BILL GATES

 J avaScript, one of the most popular and versatile programming languages on
the Internet, adds interactivity to websites. You have probably seen JavaScript
in action and not even realized it, perhaps while clicking buttons that change

color, viewing image galleries with thumbnail previews, or analyzing charts that
display customized data based on your input. These website features and more can
be created and customized using JavaScript.

 JavaScript is an extremely powerful programming language, and this entire book
could have been devoted to the topic. In this chapter, you fi nd JavaScript basics,
including how to write JavaScript code to perform basic tasks, access data using
an API, and program faster using a framework.

 What Does JavaScript Do?
 JavaScript creates and modifi es web page elements and works with the existing
web page HTML and CSS to achieve these eff ects. When you visit a web page with

Chapter 2

 IN THIS CHAPTER

 » Understanding JavaScript basics and
structure

 » Coding with variables, conditional
statements, and functions

 » Learning about API basics and
structure

 » Viewing an API request and response

0003053985.INDD 250 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

250 BOOK 4 Advanced Web Coding

JavaScript, your browser downloads the JavaScript code and runs it client-side, on
your machine. JavaScript can perform tasks to do any of the following:

 » Control web page appearance and layout by changing HTML attributes and
CSS styles.

 » Easily create web page elements like date pickers, as shown in Figure 2-1, and
drop-down menus.

 » Take user input in forms, and check for errors before submission.

 » Display and visualize data using complex charts and graphs.

 » Import and analyze data from other websites.

JavaScript is different from another programming language called Java. In 1996
Brendan Eich, at the time a Netscape engineer, created JavaScript, which was orig-
inally called LiveScript. As part of a marketing decision, LiveScript was renamed
to JavaScript to try and benefit from the reputation of then-popular Java.

JavaScript was created 20 years ago, and the language has continued to evolve
since then. In the past decade, its most important innovation has allowed devel-
opers to add content to web pages without requiring the user to reload the page.
This technique, called AJAX (asynchronous JavaScript), probably sounds trivial,
but has led to the creation of cutting-edge browser experiences such as Gmail
(shown in Figure 2-2).

FIGURE 2-1:
JavaScript can

create the date
picker found

on every travel
website.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 251 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 251

Before AJAX, the browser would display new data on a web page only after waiting
for the entire web page to reload. However, this slowed down the user experience,
especially when viewing web pages that had frequent real-time updates such as
web pages with news stories, sports updates, and stock information. JavaScript,
specifically AJAX, created a way for your browser to communicate with a server in
the background and to update your current web page with this new information.

Here is an easy way to think about AJAX: Imagine you’re at a coffee shop and just
ordered a coffee after waiting in a really long line. Before asynchronous Java-
Script, you had to wait patiently at the coffee bar until you received your coffee
before doing anything else. With asynchronous JavaScript, you can read the news-
paper, find a table, phone a friend, and do multiple other tasks until the barista
calls your name alerting you that your coffee is ready.

Understanding JavaScript Structure
JavaScript has a different structure and format from HTML and CSS. JavaScript
allows you to do more than position and style text on a web page — with
JavaScript, you can store numbers and text for later use, decide what code to run
based on conditions within your program, and even name pieces of your code so
you can easily reference them later. As with HTML and CSS, JavaScript has special
keywords and syntax that allow the computer to recognize what you’re trying to
do. Unlike HTML and CSS, however, JavaScript is intolerant of syntax mistakes.
If you forget to close an HTML tag or to include a closing curly brace in CSS, your
code may still run, and your browser will try its best to display your code. When

FIGURE 2-2:
Gmail uses AJAX,
which lets users
read new emails

without reloading
the web page.

0003053985.INDD 252 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

252 BOOK 4 Advanced Web Coding

coding in JavaScript, on the other hand, forgetting a single quote or parenthesis
can cause your entire program to fail to run at all.

HTML applies an effect between opening and closing tags — <h1>This is a
header. CSS uses the same HTML element and has properties and
 values between opening and closing curly braces — h1 { color: red;}.

Using semicolons, quotes,
parentheses, and braces
The following code illustrates the common punctuation used in JavaScript —
semicolons, quotes, parentheses, and braces (also called curly brackets):

var age=22;

var planet="Earth";

if (age>=18)

{

 console.log("You are an adult");

 console.log("You are over 18");

}

else

{

 console.log("You are not an adult");

 console.log("You are not over 18");

}

Here are some general rules of thumb to know while programming in JavaScript:

 » Semicolons separate JavaScript statements.

 » Quotes enclose text characters or strings (sequences of characters). Any
opening quote must have a closing quote.

 » Parentheses are used to modify commands with additional information called
arguments. Any opening parenthesis must have a closing parenthesis.

 » Braces group JavaScript statements into blocks so they execute together. Any
opening brace must have a closing brace.

These syntax rules can feel arbitrary and may be difficult to remember initially.
With some practice, however, these rules will feel like second nature to you.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 253 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 253

Coding Common JavaScript Tasks
JavaScript can be used to perform many tasks, from simple variable assignments
to complex data visualizations. The following tasks, here explained within a
JavaScript context, are core programming concepts that haven’t changed in the
past 20 years and won’t change in the next 20. They’re applicable to any program-
ming language. Finally, I’ve listed instructions on how to perform these tasks, but
if you prefer, you can also practice these skills right away by jumping ahead to the
“Writing Your First JavaScript Program” section, later in this chapter.

Storing data with variables
Variables, like those in algebra, are keywords used to store data values for later
use. Though the data stored in a variable may change, the variable name remains
the same. Think of a variable as being like a gym locker — what you store in the
locker changes, but the locker number always stays the same. The variable name
usually starts with a letter, and Table 2-1 lists some types of data that JavaScript
variables can store.

For a list of rules on variable names see the “JavaScript Variables” section at
www.w3schools.com/js/js_variables.asp.

The first time you use a variable name, you use the word var to declare the vari-
able name. Then you can optionally assign a value to the variable using the equal
sign. In the following code example, I declare three variables and assign values to
those variables:

var myName="Nik";

var pizzaCost=10;

var totalCost=pizzaCost * 2;

TABLE 2-1	 Data Stored by a Variable
Data Type Description Examples

Numbers Positive or negative numbers
with or without decimals.

156

-101.96

Strings Printable characters. Holly Novak

Señor

Boolean Value can be either true or false. true

false

0003053985.INDD 254 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

254 BOOK 4 Advanced Web Coding

Programmers say you have declared a variable when you first define it using the
var keyword. “Declaring” a variable tells the computer to reserve space in mem-
ory and to permanently store values using the variable name. View these values
by using the console.log statement. For example, after running the preceding
example code, running statement console.log(totalCost) returns the value 20.

After declaring a variable, you change its value by referring to just the variable
name and using the equal sign, as shown in the following examples:

myName="Steve";

pizzaCost=15;

Variable names are case-sensitive, so when referring to a variable in your pro-
gram, remember that MyName is a different variable from myname. In general, it’s a
good idea to give your variable a name that describes the data being stored.

Making decisions with if-else statements
After you have stored data in a variable, it is common to compare the variable’s
value to other variable values or to a fixed value, and then to make a decision
based on the outcome of the comparison. In JavaScript, these comparisons are
done using a conditional statement. The if-else statement is a type of conditional.
Its general syntax is as follows:

if (condition) {

 statement1 to execute if condition is true

}

else {

 statement2 to execute if condition is false

}

In this statement, the if is followed by a space, and a condition enclosed in paren-
theses evaluates to true or false. If the condition is true, then statement1,
located between the first set of curly brackets, is executed. If the condition is false
and if I include the else, which is optional, then statement2, located between the
second set of curly brackets, is executed. Note that when the else is not included
and the condition is false, the conditional statement simply ends.

Notice there are no parentheses after the else — the else line has no condition.
JavaScript executes the statement after else only when the preceding conditions
are false.

The condition in an if-else statement is a comparison of values using operators,
and common operators are described in Table 2-2.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 255 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 255

Here is a simple if statement, without the else:

var carSpeed=70;

if (carSpeed > 55) {

 alert("You are over the speed limit!");

}

In this statement, I declare a variable called carSpeed and set it equal to 70. Then
an if statement with a condition compares whether the value in the variable
carSpeed is greater than 55. If the condition is true, an alert, which is a pop-up
box, states “You are over the speed limit!” (See Figure 2-3.) In this case, the value
of carSpeed is 70, which is greater than 55, so the condition is true and the alert
is displayed. If the first line of code instead was var carSpeed=40;, then the con-
dition is false because 40 is less than 55, and no alert would be displayed.

Let us expand the if statement by adding else to create an if-else, as shown in
this code:

var carSpeed=40;

if (carSpeed > 55) {

 alert("You are over the speed limit!");

FIGURE 2-3:
The alert

pop-up box.

TABLE 2-2	 Common JavaScript Operators
Type Operator Description Example

Less than < Evaluates whether one value is less than another value. (x < 55)

Greater than > Evaluates whether one value is greater than
another value.

(x > 55)

Equality === Evaluates whether two values are equal. (x === 55)

Less than or equal to <= Evaluates whether one value is less than or equal to
another value.

(x <= 55)

Greater than
or equal to

>= Evaluates whether one value is greater than or equal to
another value.

(x >= 55)

Inequality != Evaluates whether two values are not equal. (x != 55)

0003053985.INDD 256 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

256 BOOK 4 Advanced Web Coding

}

else {

 alert("You are under the speed limit!");

}

In addition to the else, I added an alert statement inside the curly brackets
following the else, and set carSpeed equal to 40. When this if-else statement
executes, carSpeed is equal to 40, which is less than 55, so the condition is false,
and because the else has been added, an alert appears stating “You are under the
speed limit!” If the first line of code instead was var carSpeed=70; as before,
then the condition is true, because 70 is greater than 55, and the first alert would
be displayed.

Our current if-else statement allows us to test for one condition and to show
different results depending on whether the condition is true or false. To test for
two or more conditions, you can add one or more else if statements after the
original if statement. The general syntax for this is as follows:

if (condition1) {

 statement1 to execute if condition1 is true

}

else if (condition2) {

 statement2 to execute if condition2 is true

}

else {

 statement3 to execute if all previous conditions are false

}

The if-else is written as before, and the else if is followed by a space, and then
a condition enclosed in parentheses that evaluates to either true or false. If con-
dition1 is true, then statement1, located between the first set of curly brack-
ets, is executed. If the condition1 is false, then condition2 is evaluated and is
found to be either true or false. If condition2 is true, then statement2, located
between the second set of curly brackets, is executed. At this point, additional
else if statements could be added to test additional conditions. Only when all if
and else if conditions are false, and an else is included, is statement3 exe-
cuted. Only one statement is executed in a block of code, after which the remain-
ing statements are ignored and the next block of code is executed.

When writing the if-else, you must have one and only one if statement and, if
you so choose, one and only one else statement. The else if is optional, can be
used multiple times within a single if-else statement, and must come after the
original if statement and before the else. You cannot have an else if or an else
by itself, without a preceding if statement.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 257 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 257

Here is another example else if statement:

var carSpeed=40;

if (carSpeed > 55) {

 alert("You are over the speed limit!");

}

else if (carSpeed === 55) {

 alert("You are at the speed limit!");

}

When this if statement executes, carSpeed is equal to 40, which is less than 55,
so the condition is false, and then the else if condition is evaluated. The value
of carSpeed is not exactly equal to 55, so this condition is also false, and no alert
of any kind is shown, and the statement ends. If the first line of code were instead
var carSpeed=55;, then the first condition is false, because 55 is not greater
than 55. Then the else if condition is evaluated, and because 55 is exactly equal
to 55, the second alert is displayed, stating “You are at the speed limit!”

Look carefully at the preceding code — when setting the value of a variable, one
equal sign is used, but when comparing whether two values are equal, then three
equal signs (===) are used.

As a final example, here is an if-else statement with an else if statement:

var carSpeed=40;

if (carSpeed > 55) {

 alert("You are over the speed limit!");

}

else if (carSpeed === 55) {

 alert("You are at the speed limit!");

}

else {

 alert("You are under the speed limit!");

}

As the diagram in Figure 2-4 shows, two conditions, which appear in the figure as
diamonds, are evaluated in sequence. In this example, the carSpeed is equal to 40,
so the two conditions are false, and the statement after the else is executed,
showing an alert that says “You are under the speed limit!” Here carSpeed is
initially set to 40, but depending on the initial carSpeed variable value, any one of
the three alerts could be displayed.

The condition is always evaluated first, and every condition must either be true
or false. Independent from the condition is the statement that executes if the
condition is true.

0003053985.INDD 258 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

258 BOOK 4 Advanced Web Coding

Working with string and number methods
The most basic data types, usually stored in variables, are strings and numbers.
Programmers often need to manipulate strings and numbers to perform basic
tasks such as the following:

 » Determining the length of a string, as for a password

 » Selecting part (or substring) of a string, as when choosing the first name in a
string that includes the first and last name

 » Rounding a number to fixed numbers of decimal points, as when taking a
subtotal in an online shopping cart, calculating the tax, rounding the tax to
two decimal points, and adding the tax to the subtotal

These tasks are so common that JavaScript includes shortcuts called methods (ital-
icized in the preceding bullets) that make performing tasks like these easier. The
general syntax to perform these tasks is to follow the affected variable’s name
or value with a period and the name of the method, as follows for values and
variables:

value.method;

variable.method;

Table 2-3 shows examples of JavaScript methods for the basic tasks previously
discussed. Examples include methods applied to values, such as strings, and to
variables.

When using a string, or assigning a variable to a value that is a string, always
enclose the string in quotes.

FIGURE 2-4:
if-else with

an else if
 statement.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 259 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 259

The .toFixed and .length methods are relatively straightforward, but the .sub-
string method can be a little confusing. The starting and ending positions used
in .substring(start, end) do not reference actual characters, but instead ref-
erence the space between each character. Figure 2-5 shows how the start and
end position works. The statement "Inbox".substring(2,5) starts at position 2,
which is between "n" and "b", and ends at position 5, which is after the "x".

For a list of additional string and number methods, see W3Schools at www.
w3schools.com/js/js_number_methods.asp and www.w3schools.com/js/js_
string_ methods.asp.

Alerting users and prompting
them for input
Displaying messages to the user and collecting input are the beginnings of the
interactivity that JavaScript provides. Although more sophisticated techniques
exist today, the alert() method and prompt() method are easy ways to show a
pop-up box with a message and prompt the user for input.

TABLE 2-3	 Common JavaScript Methods
Method Description Example Result

.toFixed(n) Rounds a number to n decimal places. var jenny= 8.675309;
jenny.toFixed(2);

8.68

.length Represents the number of characters
in a string.

"Nik".length; 3

.substring
(start, end)

Extracts portion of the string beginning from
position start to end. Position refers to the
location between each character, and starts
before the first character with zero.

var name= "Inbox";name.
substring (2,5);

Box

FIGURE 2-5:
The

. substring
method

 references
 positions that

are between
 characters
in a string.

0003053985.INDD 260 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

260 BOOK 4 Advanced Web Coding

The syntax for creating an alert or a prompt is to write the method with text in
quotes placed inside the parentheses like so:

alert("You have mail");

prompt("What do you want for dinner?");

Figure 2-6 shows the alert pop-up box created by the alert() method, and the
prompt for user input created by the prompt() method.

Naming code with functions
Functions provide a way to group JavaScript statements and to name that group of
statements for easy reference with a function name. These statements are typi-
cally grouped together because they achieve a specific coding goal. You can use
the statements repeatedly just by writing the function name instead of writing
the statements over and over again. Functions prevent repetition and make your
code easier to maintain.

When I was younger, every Saturday morning my mother would tell me to brush
my teeth, fold the laundry, vacuum my room, and mow the lawn. Eventually,
my mother tired of repeating the same list over and over again, wrote the list of
chores on paper, titled it “Saturday chores,” and put it on the fridge. A function
names a group of statements, just like “Saturday chores” named my list of chores.

Functions are defined once using the word function, followed by a function name,
and then a set of statements inside curly brackets. This is called a function
declaration. The statements in the function are executed only when the func-
tion is called by name. In the following example, I declared a function called
greeting that asks for your name using the prompt() method, returns the name
you entered storing it in a variable called name, and displays a message with the
name variable using the alert() method:

function greeting() {

 var name=prompt("What is your name?");

 alert("Welcome to this website " + name);
}

FIGURE 2-6:
A JavaScript alert

pop-up box and a
user prompt.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 261 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 261

greeting();

greeting();

Beneath the function declaration, I called the function twice, and so I will trigger
two prompts for my name, which are stored in the variable name, and two mes-
sages welcoming the value in the variable name to this website.

The “+” operator is used to concatenate (combine) strings with other strings,
 values, or variables.

Functions can take inputs, called parameters, to help the function run, and can
return a value when the function is complete. After writing my list of chores, each
Saturday morning my mother would say “Nik, do the Saturday chores,” and when
my brother was old enough, she would say “Neel, do the Saturday chores.” If the
list of chores is the function declaration, and “Saturday chores” is the function
name, then “Nik” and “Neel” are the parameters. Finally, after I was finished, I
would let my mom know the chores were complete, much as a function returns
values.

In the following example, I declared a function called amountdue, which takes
price and quantity as parameters. The function, when called, calculates the
subtotal, adds the tax due, and then returns the total. The function amount
due(10,3) returns 31.5.

function amountdue(price, quantity) {

 var subtotal=price * quantity;

 var tax = 1.05;

 var total = subtotal * tax;

 return total;

}

alert("The amount due is $" + amountdue(10,3));

Every opening parenthesis has a closing parenthesis, every opening curly bracket
has a closing curly bracket, and every opening double quote has a closing double
quote. Can you find all the opening and closing pairs in the preceding example?

Adding JavaScript to the web page
The two ways to add JavaScript to the web page are

 » Embed JavaScript code in an HTML file using the script tag.

 » Link to a separate JavaScript file from the HTML file using the script tag.

0003053985.INDD 262 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

262 BOOK 4 Advanced Web Coding

To embed JavaScript code in an HTML file, use an opening and closing <script>
tag, and write your JavaScript statements between the two tags, as shown in the
following example:

<!DOCTYPE html>

<html>

 <head>

 <title>Embedded JavaScript</title>

 <script>

 alert("This is embedded JavaScript");

 </script>

 </head>

 <body>

 <h1>Example of embedded JavaScript</h1>

 </body>

</html>

The <script> tag can be placed inside the opening and closing <head> tag, as
shown in the preceding code, or inside the opening and closing <body> tag. There
are some performance advantages when choosing one approach over the other,
and you can read more at http://stackoverflow.com/questions/436411/
where-is-the-best-place-to-put-script-tags-in-html-markup.

The <script> tag is also used when linking to a separate JavaScript file, which is
the recommended approach. The <script> tag includes

 » A type attribute, which for JavaScript is always set equal to "text/
javascript"

 » A src attribute, which is set equal to the location of the JavaScript file

<!DOCTYPE html>

<html>

 <head>

 <title>Linking to a separate JavaScript file</title>

 <script type="text/javascript" src="script.js"></script>

 </head>

 <body>

 <h1>Linking to a separate JavaScript file</h1>

 </body>

</html>

The <script> tag has an opening and closing tag, whether the code is embedded
between the tags or linked to separate file using the src attribute.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 263 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 263

Writing Your First JavaScript Program
Practice your JavaScript online using the Codecademy website. Codecademy is a
free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. Practice all of the tags
(and a few more) that you find in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingaiolinks, and
click the link to Codecademy.

2. If you have a Codecademy account, sign in.

Signing up is discussed in Book 1, Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click Getting Started with Programming.

Background information is presented in the upper-left portion of the site, and
instructions are presented in the lower-left portion of the site.

4. Complete the instructions in the main coding window.

5. After you have finished completing the instructions, click the Save and
Submit Code button.

If you followed the instructions correctly, a green checkmark appears and you
proceed to the next exercise. If an error exists in your code, a warning appears
with a suggested fix. If you run into a problem, or have a bug you cannot fix, click
the hint, use the Q&A Forums, or tweet me at @nikhilgabraham and include the
hashtag #codingFD. Additionally, you can sign up for book updates and expla-
nations for changes to programming language commands by visiting http://
tinyletter.com/codingfordummies.

Working with APIs
Although APIs (application programming interfaces) have existed for decades, the
term has become popular over the past few years as I hear more conversation
and promotion around their use. Use the Facebook API! Why doesn’t Craigslist have
an API? Stripe’s entire business is to allow developers to accept payments online using its
payments API.

Many people use the term API, but few understand its meaning. This section will
help clarify what APIs do and how they can be used.

0003053985.INDD 264 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

264 BOOK 4 Advanced Web Coding

What do APIs do?
An API allows Program A to access select functions of another separate Program B.
Program B grants access by allowing Program A to make a data request in a struc-
tured, predictable, documented way; Program B responds to this data request with
a structured, predictable, documented response, as follows (see Figure 2-7):

 » It’s structured because the fields in the request and the data in the response
follow an easy-to-read standardized format. For example, the Yahoo Weather
API data response includes these selected structured data fields:

 "location": {

 "city": "New York",

 "region": "NY"

 },

 "units": {

 "temperature": "F"

 },

"forecast": {

 "date": "29 Oct 2014",

 "high": "68",

 "low": "48",

 "text": "PM Showers"

 }

See the full Yahoo Weather API response by visiting https://developer.
yahoo.com/weather.

 » It’s predictable because the fields that must be included and can be included in
the request are prespecified, and the response to a successful request will
always include the same field types.

 » It’s documented because the API is explained in detail. Any changes usually are
communicated through the website, social media, and email; even after the
API changes, there is often a period of backward compatibility when the old
API requests will receive a response. For example, when Google Maps issued
version 3 of its API, version 2 still operated for a certain grace period.

FIGURE 2-7:
An API allows
two separate

programs to talk
to each other.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 265 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 265

In the preceding code, you saw a weather API response, so what would you include
in a request to a weather API? The following fields are likely important to include:

 » Location, which can potentially be specified by using zip code, city and state,
current location in latitude and longitude coordinates, or IP address

 » Relevant time period, which could include the instant, daily, three-day, weekly,
or ten-day forecast

 » Units for temperature (Fahrenheit or Celsius) and precipitation (inches or
centimeters)

These fields in our request just specify the desired type and data format. The
actual weather data would be sent after the API knows your data preferences.

Can you think of any other factors to consider when making the request? Here is
one clue — imagine you work for Al Roker on NBC’s Today TV show, and you’re
responsible for updating the weather on the show’s website for one million visi-
tors each morning. Meanwhile, I have a website, NikWeather, which averages
ten daily visitors who check the weather there. The Today website and my web-
site both make a request to the same weather API at the same time. Who should
receive their data first? It seems intuitive that the needs of one million visitors on
the Today website should outweigh the needs of my website’s ten visitors. An API
can prioritize which request to serve first, when the request includes an API key.
An API key is a unique value, usually a long alpha-numeric string, which identi-
fies the requestor and is included in the API request. Depending on your agree-
ment with the API provider, your API key can entitle you to receive prioritized
responses, additional data, or extra support.

Can you think of any other factors to consider when making the request? Here
is another clue — is there any difference in working with weather data versus
financial data? The other factor to keep in mind is frequency of data requests and
updates. APIs will generally limit the number of times you can request data. In
the case of a weather API, maybe the request limit is once every minute. Related
to how often you can request the data is how often the data is refreshed. There
are two considerations — how often the underlying data changes, and how often
the API provider updates the data. For example, except in extreme circumstances,
the weather generally changes every 15 minutes. Our specific weather API pro-
vider may update its weather data every 30 minutes. Therefore you would send an
API request only once every 30 minutes, because sending more frequent requests
wouldn’t result in updated data. By contrast, financial data such as stock prices
and many public APIs, which change multiple times per second, allow one request
per second.

0003053985.INDD 266 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

266 BOOK 4 Advanced Web Coding

Scraping data without an API
In the absence of an API, those who want data from a third-party website create
processes to browse the website, search and copy data, and store it for later use.
This method of data retrieval is commonly referred to as screen scraping or web
scraping. These processes, which vary in sophistication from simple to complex,
include

 » People manually copying and pasting data from websites into a data-
base: Crowdsourced websites, such as www.retailmenot.com recently listed
on the NASDAQ stock exchange, obtain some data in this way.

 » Code snippets written to find and copy data that match preset patterns:
The preset patterns are also called regular expressions, which match character
and string combinations, and can be written using web languages like
JavaScript or Python.

 » Automated software tools that allow you to point-and-click the fields
you want to retrieve from a website: For example, www.import.io is one
point-and-click solution, and when the FIFA World Cup 2014 site lacked a
structured API, a similar solution was used to extract data, such as scores, and
made it easily accessible.

The advantage of screen scraping is that the data is likely to be available and with
fewer restrictions because it is content that regular users see. If an API fails, it
may go unnoticed and depending on the site take time to fix. By contrast, the main
website failing is usually a top priority item and needs fixing as soon as possible.
Additionally, companies may enforce limits on data retrieved from the API that
are rarely seen and harder to enforce when screen scraping.

The disadvantage of screen scraping is that the code written to capture data from
a website must be precise and can break easily. For example, a stock price is on a
web page in the second paragraph, on the third line, and is the fourth word. The
screen scraping code is programmed to extract the stock price from that location,
but unexpectedly the website changes its layout so the stock price is now in the
fifth paragraph. Suddenly, the data is inaccurate. Additionally, there may be legal
concerns with extracting data in this way, especially if the website terms and con-
ditions prohibit screen scraping. In one example, Craigslist terms and conditions
prohibited data extraction through screen scraping, and after litigation, a court
banned a company that accessed Craigslist data using this technique.

A
dd

in
g

in
 Ja

va
Sc

ri
pt

0003053985.INDD 267 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

CHAPTER 2 Adding in JavaScript 267

Researching and choosing an API
For any particular data task, there may be multiple APIs that can provide you with
the data you seek. The following are some factors to consider when selecting an
API for use in your programs:

 » Data availability: Make a wish list of fields you want to use with the API, and
compare it to fields actually offered by various API providers.

 » Data quality: Benchmark how various API providers gather data, and the
frequency with which the data is refreshed.

 » Site reliability: Measure site uptime because regardless of how good the
data may be, the website needs to stay online to provide API data. Site
reliability is a major factor in industries like finance and health care.

 » Documentation: Review the API documentation for reading ease and detail
so you can easily understand the API features and limitations before you
begin.

 » Support: Call support to see response times and customer support knowl-
edgeability. Something will go wrong, and when it does you want to be well
supported to quickly diagnose and solve any issues.

 » Cost: Many APIs provide free access below a certain request threshold.
Investigate cost structures if you exceed those levels so you can properly
budget for access to your API.

Using JavaScript Libraries
A JavaScript library is prewritten JavaScript code that makes the development pro-
cess easier. The library includes code for common tasks that has already been
tested and implemented by others. To use the code for these common tasks, you
only need to call the function or method as defined in the library. Two of the most
popular JavaScript libraries are jQuery and D3.js.

jQuery
jQuery uses JavaScript code to animate web pages by modifying CSS on the page,
and to provide a library of commonly used functions. Although you could write
JavaScript code to accomplish any jQuery effect, jQuery’s biggest advantage is
completing tasks by writing fewer lines of code. As the most popular JavaScript
library today, jQuery is used on the majority of the top 10,000 most visited web-
sites. Figure 2-8 shows a photo gallery with jQuery transition image effects.

0003053985.INDD 268 Trim size: 7.375 in × 9.25 in March 31, 2017 4:27 AM

268 BOOK 4 Advanced Web Coding

D3.js
D3.js is a JavaScript library for visualizing data. Just like with jQuery, similar
effects could be achieved using JavaScript, but only after writing many more lines
of code. The library is particularly adept at showing data across multiple dimen-
sions and creating interactive visualizations of datasets. The creator of D3.js is
currently employed at The New York Times, which extensively uses D3.js to create
charts and graphs for online articles. Figure 2-9 is an interactive chart showing
technology company IPO value and performance over time.

FIGURE 2-8:
Photo gallery

with jQuery
transition image
effects triggered

by navigation
arrows.

FIGURE 2-9:
An IPO chart
showing the

valuation of the
Facebook IPO

relative to other
technology IPOs.

CHAPTER 3 Understanding Callbacks and Closures 269

0003053986.INDD 269 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

 Understanding Callbacks
and Closures

“ O, call back yesterday, bid time return.”
 — EARL OF SALISBURY, RICHARD II

 C allbacks and closures are two of the most useful and widely used techniques
in JavaScript. In this chapter, you fi nd out how and why to pass functions as
parameters to other functions.

 What Are Callbacks?
JavaScript functions are objects. This statement is the key to understanding many
of the more advanced JavaScript topics, including callback functions.

 Functions, like any other object, can be assigned to variables, be passed as
 arguments to other functions, and created within and returned from functions.

Chapter 3

 IN THIS CHAPTER

 » Understanding callback functions

 » Using callbacks

 » Creating closures

0003053986.INDD 270 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

270 BOOK 4 Advanced Web Coding

Passing functions as arguments
A callback function is a function that is passed as an argument to another function.
Callback functions are a technique that’s possible in JavaScript because of the fact
that functions are objects.

Function objects contain a string with the code of the function. When you call a
function by naming the function, followed by (), you’re telling the function to
execute its code. When you name a function or pass a function without the (), the
function does not execute.

Here is an example of a callback function using the addEventListener method:

document.addEventListener('click',doSomething,false);

This method takes an event (click) and a Function object (doSomething) as
arguments. The callback function doesn’t execute right away. Instead, the
addEventListener method executes the function when the event occurs.

Writing functions with callbacks
Here’s a simple example function, doMath, that accepts a callback function as an
argument:

function doMath(number1,number2,callback) {

 var result = callback(number1,number2);

 document.write ("The result is: ": + result);
}

This function is a generic function for returning the result of any math operation
involving two operands. The callback function that you pass to it specifies what
actual operations will be done.

To call our doMath function, pass two number arguments and then a function as
the third argument:

doMath(5,2,function(number1,number2){

 var calculation = number1 * number2 / 6;

 return calculation;

});

Listing 3-1 is a complete web page that contains the doMath function and then
invokes it several times with different callback functions.

U
nd

er
st

an
di

ng

Ca
llb

ac
ks

 a
nd

 C
lo

su
re

s

0003053986.INDD 271 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

CHAPTER 3 Understanding Callbacks and Closures 271

LISTING 3-1: Calling a Function with Different Callback Functions

<html>

<head>

 <title>Introducing the doMath function</title>

 <script>

 function doMath(number1,number2,callback){

 var result = callback(number1,number2);

 document.getElementById("theResult").innerHTML +=

 ("The result is: " + result + "
");

 }

 document.addEventListener(‘DOMContentLoaded’, function() {

 doMath(5,2,function(number1,number2){

 var calculation = number1 * number2;

 return calculation;

 });

 doMath(10,3,function(number1,number2){

 var calculation = number1 / number2;

 return calculation;

 });

 doMath(81,9,function(number1,number2){

 var calculation = number1 % number2;

 return calculation;

 });

 }, false);

 </script>

</head>

<body>

 <h1>Do the Math</h1>

 <div id="theResult"></div>

</body>

</html>

The result of running Listing 3-1 in a browser is shown in Figure 3-1.

Using named callback functions
In the examples in the preceding section, the callback functions were all written
as anonymous functions. It’s also possible to define named functions and then
pass the name of the function as a callback function.

Anonymous functions are functions that you create without giving them names.

0003053986.INDD 272 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

272 BOOK 4 Advanced Web Coding

Using named functions as callbacks can reduce the visual code clutter that can
come with using anonymous functions. Listing 3-2 shows an example of how to
use a named function as a callback. This example also features the following two
improvements over Listing 3-1:

 » A test has been added to the doMath function to make sure that the callback
argument is actually a function.

 » It prints the code of the callback function before displaying the result of
running it.

LISTING 3-2: Using Named Functions as Callbacks

<html>

<head>

 <title>doMath with Named Functions</title>

 <script>

 function doMath(number1,number2,callback){

 if (typeof callback === "function") {

 var result = callback(number1,number2);

 document.getElementById("theResult").innerHTML += (callback.toString() +
 "

The result is: " + result + "

");
 }

 }

 function multiplyThem(number1,number2){

 var calculation = number1 * number2;

 return calculation;

 }

 function divideThem(number1,number2){

 var calculation = number1 / number2;

 return calculation;

FIGURE 3-1:
Doing

 calculations using
callbacks.

U
nd

er
st

an
di

ng

Ca
llb

ac
ks

 a
nd

 C
lo

su
re

s

0003053986.INDD 273 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

CHAPTER 3 Understanding Callbacks and Closures 273

 }

 function modThem(number1,number2){

 var calculation = number1 % number2;

 return calculation;

 }

 document.addEventListener('DOMContentLoaded', function() {

 doMath(5,2,multiplyThem);

 doMath(10,3,divideThem);

 doMath(81,9,modThem);

 }, false);

 </script>

</head>

<body>

 <h1>Do the Math</h1>

 <div id="theResult"</div>

</body>

</html>

The result of running Listing 3-2 in a browser is shown in Figure 3-2.

Using named functions for callbacks has two advantages over using anonymous
functions for callbacks:

 » It makes your code easier to read.

 » Named functions are multipurpose and can be used on their own or as
callbacks.

FIGURE 3-2:
Doing math with

named callbacks.

0003053986.INDD 274 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

274 BOOK 4 Advanced Web Coding

Understanding Closures
A closure is the local variable for a function, kept alive after the function has
returned.

Take a look at the example in Listing 3-3. In this example, an inner function is
defined within an outer function. When the outer function returns a reference to
the inner function, the returned reference can still access the local data from the
outer function.

In Listing 3-3, the greetVisitor function returns a function that is created
within it called sayWelcome. Notice that the return statement doesn’t use () after
sayWelcome. That’s because you don’t want to return the value of running the
function, but rather the code of the actual function.

LISTING 3-3: Creating a Function Using a Function

function greetVisitor(phrase) {

 var welcome = phrase + ". Great to see you!"; // Local variable
 var sayWelcome = function() {

 alert(welcome);

 }

 return sayWelcome;

}

var personalGreeting = greetVisitor('Hola Amiga');

personalGreeting(); // alerts "Hola Amiga. Great to see you!"

The useful thing about Listing 3-3 is that it uses the greetVisitor function to
create a new custom function called personalGreeting that can still access the
variables from the original function.

Normally, when a function has finished executing, the local variables within it
are inaccessible. By returning a function reference (sayWelcome), however, the
greetVisitor function’s internal data becomes accessible to the outside world.

The keys to understanding closures are to understand variable scope in JavaScript
and to understand the difference between executing a function and a function
reference. By assigning the return value of the greetVisitor function to the
new personalGreeting function, the program stores the code of the sayWelcome
function. You can test this by using the toString() method:

personalGreeting.toString()

U
nd

er
st

an
di

ng

Ca
llb

ac
ks

 a
nd

 C
lo

su
re

s

0003053986.INDD 275 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

CHAPTER 3 Understanding Callbacks and Closures 275

FIGURE 3-3:
A closure includes

the code of the
returned inner

function.

If you add to Listing 3-3 an alert statement to output the toString() value of
personalGreeting, you get the result shown in Figure 3-3.

In Figure 3-3, the variable welcome is a copy of the variable welcome from the
original greetVisitor function at the time that the closure was created.

In Listing 3-4, a new closure is created using a different argument to the greet-
Visitor function. Even though calling greetVisitor() changes the value of the
welcome variable, the result of calling the first function (personalGreeting)
remains the same.

LISTING 3-4: Closures Contain Secret References to Outer Function Variables

<html>

<head>

 <title>Using Closures</title>

 <script>

 function greetVisitor(phrase) {

 var welcome = phrase + ". Great to see you!

"; // Local variable
 var sayWelcome = function() {

 document.getElementById("greeting").innerHTML += welcome;
 }

 return sayWelcome;

 }

 // wait until the document is loaded

 document.addEventListener('DOMContentLoaded', function() {

 // make a function

 var personalGreeting = greetVisitor("Hola Amiga");

 // make another function

 var anotherGreeting = greetVisitor("Howdy, Friend");

 // look at the code of the first function

 document.getElementById("greeting").innerHTML +=
 "personalGreeting.toString()
" + personalGreeting.toString() + "
";
 // run the first function

 personalGreeting(); // alerts "Hola Amiga. Great to see you!""

 // look at the code of the 2nd function

(continued)

0003053986.INDD 276 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

276 BOOK 4 Advanced Web Coding

 document.getElementById("greeting").innerHTML +=
 "anotherGreeting.toString()
" + anotherGreeting.toString() + "
";
 // run the 2nd function

 anotherGreeting(); // alerts "Howdy, Friend. Great to see you!"

 // check the first function

 personalGreeting(); // alerts "Hola Amiga. Great to see you!""

 // finish the addEventListener method

 }, false);

 </script>

</head>

<body>

 <p id="greeting"</p>

</body>

</html>

The result of running Listing 3-4 in a web browser is shown in Figure 3-4.

Closures are not hard to understand after you know the underlying concepts and
have a need for them. Don’t worry if you don’t feel totally comfortable with them
just yet. It’s fully possible to code in JavaScript without using closures, but once
you do understand them, they can be quite useful and will make you a better
programmer.

FIGURE 3-4:
Creating

 customized
greetings with

closures.

LISTING 3-4: (continued)

U
nd

er
st

an
di

ng

Ca
llb

ac
ks

 a
nd

 C
lo

su
re

s

0003053986.INDD 277 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

CHAPTER 3 Understanding Callbacks and Closures 277

Using Closures
A closure is like keeping a copy of the local variables of a function as they were
when the closure was created.

In web programming, closures are frequently used to eliminate the duplication of
effort within a program or to hold values that need to be reused throughout a pro-
gram so that the program doesn’t need to recalculate the value each time it’s used.

Another use for closures is to create customized versions of functions for specific
uses.

In Listing 3-5, closures are used to create functions with error messages specific
to different problems that may occur in the program. All the error messages get
created using the same function.

When a function’s purpose is to create other functions, it’s known as a function
factory.

LISTING 3-5: Using a Function to Create Functions

<html>

<head>

 <title>function factory</title>

 <script>

 function createMessageAlert(theMessage){

 return function() {

 alert (theMessage);

 }

 }

 var badEmailError = createMessageAlert("Unknown email address!");

 var wrongPasswordError = createMessageAlert("That's not your password!");

 window.addEventListener('load', loader, false);

 function loader(){

 document.login.yourEmail.addEventListener('change',badEmailError);

 document.login.yourEmail.addEventListener('change',wrongPasswordError);

 }

 </script>

</head>

<body>

 <form name="login" id="loginform">

 <p>

 <label>Enter Your Email Address:

 <input type="text" name="yourEmail">

(continued)

0003053986.INDD 278 Trim size: 7.375 in × 9.25 in March 31, 2017 4:28 AM

278 BOOK 4 Advanced Web Coding

 </label>

 </p>

 <p>

 <label>Enter Your Password:

 <input type="text" name="yourPassword">

 </label>

 </p>

 <button>Submit</button>

</body>

</html>

The key to understanding Listing 3-5 is the factory function.

function createMessageAlert(theMessage){

 return function() {

 alert (theMessage);

 }

 }

To use this function factory, assign its return value to a variable, as in the follow-
ing statement:

var badEmailError = createMessageAlert("Unknown email address!");

The preceding statement creates a closure that can be used elsewhere in the pro-
gram just by running badEmailError as a function, as in the following event
handler:

document.login.yourEmail.addEventListener('change',badEmailError);

LISTING 3-5: (continued)

CHAPTER 4 Embracing AJAX and JSON 279

0003053987.INDD 279 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

 Embracing AJAX
and JSON

“The Web does not just connect machines, it connects people.”
 — TIM BERNERS-LEE

 A JAX is a technique for making web pages more dynamic by sending and
receiving data in the background while the user interacts with the pages.
JSON has become the standard data format used by AJAX applications. In

this chapter, you fi nd out how to use AJAX techniques to make your site sparkle!

 Working behind the Scenes with AJAX
Asynchronous JavaScript + XML (AJAX) is a term that’s used to describe a method
of using JavaScript, the DOM, HTML, and the XMLHttpRequest object together to
refresh parts of a web page with live data without needing to refresh the entire page.

AJAX was fi rst implemented on a large scale by Google’s Gmail in 2004 and then
was given its name by Jesse James Garret in 2005.

Chapter 4

 IN THIS CHAPTER

 » Reading and writing JSON

 » Understanding AJAX

 » Using AJAX

0003053987.INDD 280 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

280 BOOK 4 Advanced Web Coding

The HTML DOM changes the page dynamically. The important innovation that
AJAX made was to use the XMLHttpRequest object to retrieve data from the server
asynchronously (in the background) without blocking the execution of the rest of
the JavaScript on the web page.

Although AJAX originally relied on data formatted as XML (hence the X in the
name), it’s much more common today for AJAX applications to use a data format
called JavaScript Object Notation (JSON). Most people still call applications that
get JSON data asynchronously from a server AJAX, but a more technically accurate
(but less memorable) acronym would be AJAJ.

AJAX examples
When web developers first started to use AJAX, it became one of the hallmarks of
what was labeled Web 2.0. The most common way for web pages to show dynamic
data prior to AJAX was by downloading a new web page from the server. For
example, consider craigslist.org, shown in Figure 4-1.

To navigate through the categories of listings or search results on Craigslist, you
click links that cause the entire page to refresh and reveal the content of the page
you requested.

FIGURE 4-1:
Craigslist.org is

quite happy with
Web 1.0, thank
you very much.

Em
br

ac
in

g
A

JA
X

an
d

JS
O

N

0003053987.INDD 281 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 4 Embracing AJAX and JSON 281

While still very common, refreshing the entire page to display new data in just part
of the page is unnecessarily slow and can provide a less smooth user experience.

Compare the craigslist-style navigation with the more application-like navigation
of Google Plus, shown in Figure 4-2, which uses AJAX to load new content into
part of the screen while the navigation bar remains static.

In addition to making web page navigation smoother, AJAX is also great for
 creating live data elements in a web page. Prior to AJAX, if you wanted to display
live data, a chart, or an up-to-date view of an email inbox, you either needed to
use a plug-in (such as Adobe Flash) or periodically cause the web page to auto-
matically refresh.

With AJAX, it’s possible to periodically refresh data through an asynchronous pro-
cess that runs in the background and then update only the elements of the page
that need to be modified.

Weather Underground’s Wundermap, shown in Figure 4-3, shows a weather map
with constantly changing and updating data overlays. The data for the map is
retrieved from remote servers using AJAX.

FIGURE 4-2:
Google Plus uses

AJAX to provide
a modern user

experience.

0003053987.INDD 282 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

282 BOOK 4 Advanced Web Coding

Viewing AJAX in action
In Figure 4-3, shown in the preceding section, the Chrome Developer Tools
window is open to the Network tab. The Network tab shows all network activity
involving the current web page. When a page is loading, this includes the requests
and downloads of the page’s HTML, CSS, JavaScript, and images. After the page
is loaded, the Network tab also displays the asynchronous HTTP requests and
responses that make AJAX possible.

Follow these steps to view AJAX requests and responses in Chrome:

1. Open your Chrome web browser and navigate to www.wunderground.com/
wundermap.

2. Open your Chrome Developer Tools by using the Chrome menu or by
pressing Cmd+Option+I (on Mac) or Ctrl+Shift+I (on Windows).

3. Open the Network tab.

Your Developer Tools window should now resemble Figure 4-4. You may want
to drag the top border of the Developer Tools to make it larger at this point.
Don’t worry if this makes the content area of the browser too small to use.
What’s going on in the Developer Tools is the important thing right now.

Notice that new items are periodically appearing in the Network tab. These are
the AJAX requests and responses. Some of them are images returned from the
server, and some are data for use by the client-side JavaScript.

FIGURE 4-3:
Wundermap uses

AJAX to display
live weather data.

Em
br

ac
in

g
A

JA
X

an
d

JS
O

N

0003053987.INDD 283 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 4 Embracing AJAX and JSON 283

4. Click one of the rows in the Name column of the Networks tab.

Additional data will be displayed about that particular item, as shown in
Figure 4-5.

FIGURE 4-4:
The Network tab
of the Developer

Tools.

FIGURE 4-5:
Viewing

 additional
 information

about a particular
record in the
Network tab.

0003053987.INDD 284 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

284 BOOK 4 Advanced Web Coding

5. Click through the tabs (Headers, Preview, Response and so on) in the
detailed data pane and examine the data.

The first tab, Headers, displays the HTTP request that was sent to the remote
server. Take a look in particular at the Request URL. This is a standard website
address that passes data to a remote server.

6. Select and copy the value of the Request URL from one of the items you
inspected.

7. Open a new tab in your browser and paste the entire Request URL into
the address bar.

A page containing data or an image opens, as in Figure 4-6.

8. Compare the results of opening the Request URL in a new tab with the
results shown in the Response tab in the Developer Tools.

They should be similar, although they may not look identical because they
weren’t run at the same time.

As you can see, there’s really no magic to AJAX. The JavaScript on the web page
is simply requesting and receiving data from a server. Everything that happens
behind the scenes is open to inspection through the Chrome Developer Tools (or
the similar tools that are available with most other web browsers today).

FIGURE 4-6:
The result of

copying an HTTP
Request URL

from the
Network tab.

Em
br

ac
in

g
A

JA
X

an
d

JS
O

N

0003053987.INDD 285 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 4 Embracing AJAX and JSON 285

Using the XMLHttpRequest object
The XMLHttpRequest object provides a way for web browsers to request data from
a URL without having to refresh the page.

The XMLHttpRequest object was created and implemented first by Microsoft in
its Internet Explorer browser and has since become a web standard that has been
adopted by every modern web browser.

You can use the methods and properties of the XMLHttpRequest object to
retrieve data from a remote server or your local server. Despite its name, the
XMLHttpRequest object can get other types of data besides XML, and it can even
use different protocols to get data besides HTTP.

Listing 4-1 shows how you can use XMLHttpRequest to load the contents of an
external text document containing HTML into the current HTML document.

LISTING 4-1: Using XMLHttpRequest to Load External Data

<html>

<head>

 <title>Loading External Data</title>

 <script>

 window.addEventListener('load',init,false);

 function init(e){

 document.getElementById('myButton').addEventListener('click',

documentLoader,false);

 }

 function reqListener () {

 console.log(this.responseText);

 document.getElementById('content').innerHTML = this.responseText;

 }

 function documentLoader(){

 var oReq = new XMLHttpRequest();

 oReq.onload = reqListener;

 oReq.open("get", "loadme.txt", true);

 oReq.send();

 }

 </script>

</head>

<body>

 <form id="myForm">

 <button id="myButton" type="button">Click to Load</button>

 </form>

 <div id="content"></div>

</body>

 </html>

0003053987.INDD 286 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

286 BOOK 4 Advanced Web Coding

The heart of this document is the documentLoader function:

function documentLoader(){

 var oReq = new XMLHttpRequest();

 oReq.onload = reqListener;

 oReq.open("get", "loadme.txt", true);

 oReq.send();

}

The first line of code inside the function creates the new XMLHttpRequest object
and gives it the name of oReq:

var oReq = new XMLHttpRequest();

The methods and properties of the XMLHttpRequest object are accessible through
the oReq object.

This second line assigns a function, reqListener, to the onload event of the oReq
object. The purpose of this is to cause the reqListener function to be called when
oReq loads a document:

oReq.onload = reqListener;

The third line uses the open method to create a request:

oReq.open("get", "loadme.txt", true);

In this case, the function uses the HTTP GET method to load the file called loadme.
txt. The third parameter is the async argument. It specifies whether the request
should be asynchronous. If it’s set to false, the send method won’t return until
the request is complete. If it’s set to true, notifications about the completion of the
request will be provided through event listeners. Because the event listener is set
to listen for the load event, an asynchronous request is what’s desired.

It’s unlikely that you’ll run into a situation where you’ll want to set the async
argument to false. In fact, some browsers have begun to just ignore this argument
if it’s set to false and to treat it as if it’s true either way because of the bad effect
on the user experience that synchronous requests have.

The last line in the documentLoader function actually sends the requests that you
created with the open method:

oReq.send();

Em
br

ac
in

g
A

JA
X

an
d

JS
O

N

0003053987.INDD 287 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 4 Embracing AJAX and JSON 287

The .open method will get the latest version of the requested file. So-called live-
data applications often use loops to repeatedly request updated data from a server
using AJAX.

Working with the same-origin policy
If you save the HTML document in Listing 4-1 to your computer and open it in
a web browser, more than likely, you won’t get the results that you’d expect. If
you load the document from your computer and then open the Chrome Developer
Tools JavaScript console, you will see a couple of error messages similar to the
error in Figure 4-7.

The problem here is what’s called the same-origin policy. In order to prevent web
pages from causing users to unknowingly download code that may be malicious
using XMLHttpRequest, browsers will return an error by default whenever a script
tries to load a URL that doesn’t have the same origin. If you load a web page
from www.example.com and a script on that page tries to retrieve data from www.
watzthis.com, the browser will prevent the request with a similar error to the one
you see in Figure 4-7.

The same-origin policy also applies to files on your local computer. If it didn’t,
XMLHttpRequest could be used to compromise the security of your computer.

There’s no reason to worry about the examples in this book negatively affecting
your computer. However, in order for the examples in this chapter to work cor-
rectly on your computer, a way around the same-origin policy is needed.

FIGURE 4-7:
Errors when
 trying to use
XMLHttp

Request on a
local file.

0003053987.INDD 288 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

288 BOOK 4 Advanced Web Coding

The first way around the same-origin policy is to put the HTML file containing
the documentLoader function and the text file together onto the same web server.

The other way around the same-origin policy is to start up your browser with the
same-origin policy restrictions temporarily disabled.

These instructions are to allow you to test your own files on your local computer
only. Do not surf the web with the same-origin policy disabled. You may expose
your computer to malicious code.

To disable the same-origin policy on a Mac:

1. If your Chrome browser is open, close it.

2. Open the Terminal app and launch Chrome using the following command:

/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome --disable-web-

 security

To disable the same-origin policy on Windows:

1. If your Chrome browser is open, close it.

2. Open the Command prompt and navigate to the folder where you
installed Chrome.

3. Type the following command to launch the browser:

Chrome.exe --disable-web-security

Once the browser starts up, you’ll be able to run files containing AJAX requests
locally until you close the browser. Once the browser is closed and reopened, the
security restrictions will be re-enabled automatically.

Figure 4-8 shows the result of running Listing 4-1 in a browser without the same-
origin policy errors.

Using CORS, the silver bullet
for AJAX requests
It’s quite common for a web application to make requests to a different server in
order to retrieve data. For example, Google provides map data for free to third-
party applications.

In order for the transactions between servers to be secure, mechanisms have been
created for browsers and servers to work out their differences and establish trust.

Em
br

ac
in

g
A

JA
X

an
d

JS
O

N

0003053987.INDD 289 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 4 Embracing AJAX and JSON 289

Currently, the best method for allowing and restricting access to resources
between servers is the standard called Cross-Origin Resource Sharing (CORS).

To see CORS in action, using the Chrome web browser visit the Weather Under-
ground’s Wundermap (www.wunderground.com/wundermap). When the page has
loaded, right-click and select Inspect to open the Chrome Developer Tools, then
select the Network tab. Click one of the requests where the Name starts with “sta-
tiondata?” and the Type is xhr.

Click the Headers tab, and you’ll see the following text within the HTTP header:

Access-Control-Allow-Origin: *

This is the CORS response header that this particular server is configured to send.
The asterisk value after the colon indicates that this server will accept requests
from any origin. If the owners of wunderground.com wanted to restrict access to
the data at this script to only specific servers or authenticated users, they could
do so using CORS.

Putting Objects in Motion with JSON
In Listing 4-1, you use AJAX to open and display a text document containing a
snippet of HTML. Another common use for AJAX is to request and receive data for
processing by the browser.

FIGURE 4-8:
Listing 4-1 run in

a browser with
the same-origin
policy disabled.

0003053987.INDD 290 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

290 BOOK 4 Advanced Web Coding

For example, gasbuddy.com uses a map from Google along with data about gas
prices, to present a simple and up-to-date view of gas prices in different loca-
tions, as shown in Figure 4-9.

If you examine gasbuddy.com in the Network tab, you’ll find that some requests
have responses that look something like the code shown in Listing 4-2.

LISTING 4-2: Part of a Response to an AJAX Request on gasbuddy.com

([{id:”tuwtvtuvvvv”,base:[351289344,822599680],zrange:[11,11],

layer:”m@288429816”,features:[{

id:"17243857463485476481",a:[0,0],bb:[-8,-8,7,7,-47,7,48,22,-41,19,41,34],c:"{1:

{title:\"Folsom Lake State Recreation Area\"},4:{type:1}}"}]},{id:"tuwtvtuvvvw",zrange:

[11,11],layer:"m@288429816"},{id:"tuwtvtuvvwv",base:[351506432,824291328],zrange:

[11,11],layer:"m@288429816",features:[{id:"8748558518353272790",a:[0,0],bb:[-8,-8,

7,7,-41,7,41,22],c:"{1:{title:\"Deer Creek Hills\"},4:{type:1}}"}]},{id:"tuwtvtu

vvww",zrange:[11,11],layer:"m@288429816"}])

FIGURE 4-9:
gasbuddy.com

uses AJAX to
display gas prices

on a map.

Em
br

ac
in

g
A

JA
X

an
d

JS
O

N

0003053987.INDD 291 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 4 Embracing AJAX and JSON 291

If you take a small piece of data out of this block of code and reformat it, you get
something like Listing 4-3, which should look more familiar to you.

LISTING 4-3: gasbuddy.com Response Data, Reformatted

{id:"tuwtvtuvvvv",

base:[351289344,822599680],

zrange:[11,11],

layer:"m@288429816",

features:[{

id:"17243857463485476481",

a:[0,0],

bb:[-8,-8,7,7,-47,7,48,22,-41,19,41,34],

c:"{

1:{title:\"Folsom Lake State Recreation Area\"},

4:{type:1}

}"}

]}

}

By looking at the format of the data, you can see that it looks suspiciously like
the name:value format of a JavaScript object literal, also known as a comma-
separated list of name-value pairs enclosed in curly braces.

The main reason JSON is so easy to use is because it’s already in a format that
JavaScript can work with, so no conversion is necessary. For example, Listing 4-4
shows a JSON file containing information about this book.

LISTING 4-4: JSON Data Describing Coding For Dummies

{ "book_title": "Coding For Dummies",

 "book_author": "Nikhil Abraham",

 "summary": "Everything beginners need to know to start coding.",

 "isbn":"9781119363026"

}

Listing 4-5 shows how this data can be loaded into a web page using JavaScript
and then used to display its data in HTML.

0003053987.INDD 292 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

292 BOOK 4 Advanced Web Coding

LISTING 4-5: Displaying JSON Data with JavaScript

<html>

<head>

 <title>Displaying JSON Data</title>

 <script>

 window.addEventListener('load',init,false);

 function init(e){

 document.getElementById('myButton').addEventListener('click',

documentLoader,false);

 }

 function reqListener () {

 // convert the string from the file to an object with JSON.parse

 var obj = JSON.parse(this.responseText);

 // display the object's data like any object

 document.getElementById('book_title').innerHTML = obj.book_title;

 document.getElementById('book_author').innerHTML = obj.book_author;

 document.getElementById('summary').innerHTML = obj.summary;

 }

 function documentLoader(){

 var oReq = new XMLHttpRequest();

 oReq.onload = reqListener;

 oReq.open("get", "listing4-5.json", true);

 oReq.send();

 }

 </script>

</head>

<body>

 <form id="myForm">

 <button id="myButton" type="button">Click to Load</button>

 </form>

 <h1>Book Title</h1>

 <div id="book_title"></div>

 <h2>Authors</h2>

 <div id="book_author"></div>

 <h2>Summary</h2>

 <div id="summary"></div>

</body>

</html>

Em
br

ac
in

g
A

JA
X

an
d

JS
O

N

0003053987.INDD 293 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 4 Embracing AJAX and JSON 293

The key to displaying any JSON data that’s brought into a JavaScript document
from an external source is to convert it from a string to an object using the
JSON.parse method. After you do that, you can access the values within the JSON
file using dot notation or bracket notation as you would access the properties of
any JavaScript object.

Figure 4-10 shows the results of running Listing 4-5 in a web browser and press-
ing the button to load the JSON data.

FIGURE 4-10:
Displaying JSON

data within an
HTML page.

0003053987.INDD 294 Trim size: 7.375 in × 9.25 in March 31, 2017 4:29 AM

CHAPTER 5 jQuery 295

0003053988.INDD 295 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

 jQuery
 “ It’s best to have your tools with you. If you don’t, you’re apt to fi nd
something you didn’t expect and get discouraged. ”

 — STEPHEN KING

 J Query is the most popular JavaScript framework around and is used by nearly
every JavaScript programmer in order to speed up and simplify JavaScript
development. In this chapter, you discover the basics of jQuery and see why

it’s so popular.

 Writing More and Doing Less
 jQuery is currently used by more than 61 percent of the top 100,000 websites. It’s
so widely used that many people see it as an essential tool for doing JavaScript
coding.

 jQuery smoothes out some of the rough spots in JavaScript, such as problems
with browser compatibilities, and makes selecting and changing parts of an HTML
document easier. jQuery also includes some tools that you can use to add anima-
tion and interactivity to your web pages.

 The basics of jQuery are easy to grasp once you know JavaScript.

Chapter 5

 IN THIS CHAPTER

 » Understanding jQuery

 » Selecting elements

 » Creating animations and transitions
with jQuery

0003053988.INDD 296 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

296 BOOK 4 Advanced Web Coding

Getting Started with jQuery
To get started with jQuery, you first need to include the jQuery library in your web
pages. The easiest way to do this is to use a version hosted on a content delivery
network (CDN). The other method for including jQuery is to download the library
from the jQuery website and host it on your server. Listing 5-1 shows markup for
a simple web page that includes jQuery.

Google has hosted versions of many different JavaScript libraries, and you can
find links and include tags for them at https://developers.google.com/speed/
libraries/#jquery.

Once you’ve found a link for a CDN-hosted version, include it between your <head>
and </head> tags in every page that will use jQuery functionality.

There are currently two branches of jQuery: the 1.x branch and the 2.x branch. The
difference between the latest versions of the 1.x branch and the latest versions of
the 2.x branch is that the 1.x branch works in Internet Explorer 6-8, while the 2.x
branch eliminated support for these old and buggy browsers.

LISTING 5-1: Your First Web Page with jQuery

<html>

<head>

 <title>Hello JQuery</title>

 <style>

 #helloDiv {

 background: #333;

 color: #fff;

 font-size: 24px;

 text-align: center;

 border-radius: 3px;

 width: 200px;

 height: 200px;

 display: none;

 }

 </style>

 <script src="http://code.jquery.com/jquery-1.11.2.min.js"></script>

</head>

<body>

 <button id="clickme">Click me!</button>

 <div id="helloDiv">Hello, JQuery!</div>

 <script>

 $("#clickme").click(function () {

 if ($("#helloDiv").is(":hidden")) {

 $("#helloDiv").slideDown("slow");

jQ
ue

ry

0003053988.INDD 297 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

CHAPTER 5 jQuery 297

 } else {

 $("div").hide();

 }

 });

 </script>

</body>

</html>

The jQuery Object
All of jQuery’s functionality is enabled by the jQuery object. The jQuery object
can be referenced using two different methods: the jQuery keyword or the $ alias.
Both methods work exactly the same. The difference is that $ is shorter, and so it’s
become programmers' preferred method for using jQuery.

The basic syntax for using jQuery is the following:

$("selector").method();

The first part (in parentheses) indicates what elements you want to affect, and the
second part indicates what should be done to those elements.

In reality, jQuery statements often perform multiple actions on selected elements
by using a technique called chaining, which just attaches more methods to the
selector with additional periods. For example, in Listing 5-2, chaining is used to
first select a single element (with the ID of pageHeader) and then to style it.

LISTING 5-2: Using Chaining

<html>

<head>

 <title>JQuery Chaining Example</title>

 <script src="http://code.jquery.com/jquery-1.11.2.min.js"></script>

</head>

<body>

 <div id="pageHeader"/>

 <script type="text/javascript">

 $("#pageHeader").text("Hello, world!").css("color", "red").css("font-size",

 "60px");

 </script>

</body>

</html>

0003053988.INDD 298 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

298 BOOK 4 Advanced Web Coding

Chained jQuery methods can get pretty long and confusing after you put just a
couple of them together. However, keep in mind, JavaScript doesn’t really care
much about whitespace. It’s possible to reformat the chained statement from
Listing 5-2 into the following, much more readable, statement:

$("#pageHeader")

 .text("Hello, world!")

 .css("color", "red")

 .css("font-size", "60px");

Is Your Document Ready?
jQuery has its own way to indicate that everything is loaded and ready to go: the
document ready event. To avoid errors caused by the DOM or jQuery not being
loaded when the scripts run, it’s important to use document ready, unless you put
all your jQuery at the very bottom of your HTML document enclosed in script tags
(as shown earlier in Listing 5-1 and Listing 5-2).

Here’s the syntax for using document ready:

$(document).ready(function(){

 // jQuery methods go here...

});

Any jQuery that you want to be executed upon loading of the page needs to be
inside a document ready statement. Named functions can go outside document
ready, of course, because they don’t run until they’re called.

Using jQuery Selectors
Unlike the complicated ways that JavaScript provides for selecting elements,
jQuery makes element selection simple. In jQuery, programmers can use the same
techniques they use for selecting elements with CSS. Table 5-1 lists the most fre-
quently used jQuery and CSS selectors.

jQ
ue

ry

0003053988.INDD 299 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

CHAPTER 5 jQuery 299

In addition to these basic selectors, you can modify a section or combine selections
in many different ways. For example, to select the first p element in a document,
you can use

$('p:first')

To select the last p element, you can use

$('p:last')

To select the even numbered elements, you can use

$('li:even')

To select the odd numbered elements, you can use

$('li:odd')

To combine multiple selections, you can use commas. For example, the following
selector selects all the p, h1, h2, and h3 elements in a document.

$('p,h1,h2,h3')

You can select elements in many more ways with jQuery than with plain Java Script.
To see a complete list, visit http://api.jquery.com/category/selectors.

TABLE 5-1	 The Common jQuery/CSS Selectors
Selector HTML Example jQuery Example

Element <p></p> $('p').css

('font-size','12')

.class <p class="redtext">

</p>

$('.redtext').css

#id <p id="intro">

</p>

$('#intro').

fadeIn('slow)

[attribute] <p data-role="content">

</p>

$('[data-role]').

show()

0003053988.INDD 300 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

300 BOOK 4 Advanced Web Coding

Changing Things with jQuery
After you make a selection, the next step is to start changing some things. The
three main categories of things you can change with jQuery are attributes, CSS,
and elements.

Getting and setting attributes
The attr() method gives you access to attribute values. All that you need in order
to use attr() is the name of the attribute whose value you want to get or set. In
the following code, the attr() method is used to change the value of the href
attribute of an element with an id of "homepage-link".

$('a#homepage-link').attr('href') =

"http://www.techcrunch.com/";

The result of running this statement is that the selected element’s href attribute
will be changed in the DOM to the new value. When a user clicks the modified link,
the browser will open the web page at the specified address, rather than the one
that was originally written in the img element.

Modifying an element using jQuery changes only the element’s representation in
the DOM (and therefore on the user’s screen). jQuery doesn’t modify the actual
web page on the server, and if you view the source of the web page, you won’t see
any changes.

Changing CSS
Changing CSS using jQuery is very similar to the technique just described for
modifying an object’s properties. jQuery makes modifying the style properties
much easier than standard JavaScript, and the style properties are spelled exactly
the same as in CSS.

Listing 5-3 combines live CSS style changes with form events to give the user
control over how large the text is.

LISTING 5-3: Manipulating Styles with jQuery

<html>

<head>

 <title>JQuery CSS</title>

 <script src="http://code.jquery.com/

 jquery-1.11.2.min.js"></script>

jQ
ue

ry

0003053988.INDD 301 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

CHAPTER 5 jQuery 301

 <script type="text/javascript">

 $(document).ready(function(){

 $('#sizer').change(function() {

 $('#theText').css('font-size',$('#sizer').val());

 });

 });

 </script>

</head>

<body>

 <div id="theText">Hello!</div>

 <form id="controller">

 <input type="range" id="sizer" min="10" max="100">

 </form>

</body>

</html>

Figure 5-1 shows the results of running Listing 5-3 in a browser.

Manipulating elements in the DOM
jQuery features several methods for changing the content of elements, moving
elements, adding elements, removing elements, and much more. Table 5-2 lists
all the available methods for manipulating elements within the DOM.

FIGURE 5-1:
Changing CSS
with an input

 element.

0003053988.INDD 302 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

302 BOOK 4 Advanced Web Coding

Events
jQuery has its own syntax for registering event listeners and handling events,
which differs slightly from how these events are handled in JavaScript.

jQuery’s event method, on(), handles all of the complexity of ensuring that all
browsers will handle events in the same way, and it also requires far less typing
than the pure JavaScript solutions.

Using on() to attach events
The jQuery on() method takes an event and a function definition as arguments.
When the event happens on the selected element (or elements), the function is
executed. Listing 5-4 uses on() and a jQuery selector to change the color of every
other row in a table when a button is clicked.

TABLE 5-2	 Manipulating Elements within the DOM
Method Description Example

text() Get the combined text content of the matched
elements, or sets the text content of the
matched elements.

$('p').text('hello!')

html() Get the value of the first matched element, or set the
contents of every matched element.

$('div').html('<p>hi</p>')

val() Get the value of the first matched element, or set the
value of every matched element.

$('select#choices').val()

append() Insert content to the end of the matched elements. $('div #closing')

append('<p>Thank You</p>')

prepend() Insert content at the beginning of the
matched elements.

$('dive #introduction')

prepend('<p>Dear Aiden:</p>')

before() Insert content before the matched elements. $('#letter').

before(header)

after() Insert content after the matched elements. $('#letter').after(footer)

remove() Remove the matched elements. $('.phonenumber').remove()

empty() Remove all of the child nodes of the matched elements. $('.blackout').empty()

jQ
ue

ry

0003053988.INDD 303 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

CHAPTER 5 jQuery 303

LISTING 5-4: Changing Table Colors with the Click of a Button

<html>

<head>

 <title>jQuery CSS</title>

 <style>

 td {

 border: 1px solid black;

 }

 </style>

 <script src="http://code.jquery.com/jquery-1.11.2.min.js"></script>

 <script type="text/javascript">

 $(document).ready(function(){

 $('#colorizer').on('click',function() {

 $('#things tr:even').css('background','#ffeb3b');

 });

 });

 </script>

</head>

<body>

 <table id="things">

 <tr>

 <td>item1</td>

 <td>item2</td>

 <td>item3</td>

 </tr>

 <tr>

 <td>apples</td>

 <td>oranges</td>

 <td>lemons</td>

 </tr>

 <tr>

 <td>merlot</td>

 <td>malbec</td>

 <td>cabernet sauvignon</td>

 </tr>

 </table>

 <form id="tableControl">

 <button type="button" id="colorizer">Colorize</button>

 </form>

</body>

</html>

Figure 5-2 shows the alternating table formatting after the button is clicked.

0003053988.INDD 304 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

304 BOOK 4 Advanced Web Coding

Do you notice something seemingly odd about the shaded rows in Figure 5-2? The
first and third rows of the table are shaded, but the code told jQuery to shade the
even numbered rows. The explanation is simple: The even and odd determinations
are based on the index number of the tr elements, which always start with 0. So
the colorized ones are the first (index number 0) and the third (index number 2).

Detaching with off()
The off() method can be used to unregister a previously set event listener. For
example, if you want to disable the button in Listing 5-4 (maybe until the user
paid for the use of this feature), you use the following statement:

$('#colorizer').off('click');

Or, if you want to remove all event listeners on an element, you can do so by call-
ing off with no arguments:

$('colorizer').off();

Binding to events that don’t exist yet
With the dynamic nature of today’s web, you sometimes need to register an event
listener to an element that is created dynamically after the HTML loads.

To add event listeners to elements that are created dynamically, you can pass
a selector that should be monitored for new elements to the on() method. For
example, if you want to make sure that all rows, and all future rows, in the table
are clickable, you can use the following statement:

FIGURE 5-2:
Alternating

table colors.

jQ
ue

ry

0003053988.INDD 305 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

CHAPTER 5 jQuery 305

$(document).on('click','tr',function(){

 alert("Thanks for clicking!");

}

Other event methods
Besides on(), jQuery also has a simplified shortcut syntax for attaching event
listeners to selected elements. jQuery has methods with the same names as the
events that you can just pass the event handler to. For example, both of these
statements accomplish the same thing:

$('#myButton').on('click',function() {

 alert('Thanks!');

}

$('#myButton').click(function() {

 alert('Thanks!');

}

Other shortcut event methods include

 » change()

 » click()

 » dblclick()

 » focus()

 » hover()

 » keypress()

 » load()

For a complete list of event methods, visit the jQuery website at http://api.
jquery.com/category/events.

Effects
jQuery makes a JavaScript programmer’s life much easier. It even makes simple
animations and effects easier.

0003053988.INDD 306 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

306 BOOK 4 Advanced Web Coding

jQuery effects are so simple that they’re often overused. Once you see what can
be done and have played with each of the different variations, it would probably
be a good idea to build one web app that uses them all every time any event hap-
pens. Then delete this file and consider this urge to overuse effects to be out of
your system.

Basic effects
jQuery’s basic effects simply control whether selected elements are displayed or
not. The basic effects are

 » hide(): The hide method hides the matched elements.

 » show(): The show method shows the matched elements

 » toggle(): The toggle method toggles between hiding and showing the
matched elements:

• If the matched element is hidden, toggle will cause it to be shown.

• If the element is shown, toggle will cause it to be hidden.

Fading effects
You can transition selected elements between displaying and hiding by using a
fade effect. The fading effects are

 » fadeIn(): Causes the matched element to fade into view over a specified
amount of time (become opaque)

 » fadeOut(): Causes the matched element to fade out over a specified amount
of time (become transparent)

 » fadeTo(): Adjusts the opacity of elements to a specified level over a specified
amount of time

 » fadeToggle(): Fades matched elements in or out over a specified amount
of time

Sliding effects
The sliding effects transition selected elements between showing and hiding by
using an animated slide effect. The sliding effects are

jQ
ue

ry

0003053988.INDD 307 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

CHAPTER 5 jQuery 307

 » slideDown(): Displays the matched elements with an upward sliding motion

 » slideUp(): Hides the matched elements with an upward sliding motion

 » slideToggle(): Toggles between sliding up and sliding down

Setting arguments for animation methods
Each of the jQuery animation methods has a set of optional arguments that con-
trol the details of how the animation takes places and when.

The arguments of the basic, fading, and sliding methods are

 » duration: A numeric value indicating how long (in milliseconds) the anima-
tion should take.

 » easing: A string value defining what easing function should be used to do the
animation. An easing function determines how the element animates. For
example, it may start slow and speed up or start fast and slow down.

jQuery has two easing functions built-in:

• swing (default): Progress slightly lower at the beginning and end than in
the middle.

• linear: Progress at a constant rate through the animation.

 » complete: Specifies a function to execute when the current animation is
finished.

Custom effects with animate()
The animate method performs a custom animation of CSS properties. To spec-
ify the animation, you pass a set of properties to the animate method. When
it runs, the animation will move toward the values you set for each property.
For example, to animate increasing with width and color of a div, you could use
this statement:

 ('div #myDiv').animate(

{

 width: 800,

 color: 'blue'

}, 5000);

In addition to the required CSS properties argument, the animate method takes
the same optional arguments as the other animation methods.

0003053988.INDD 308 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

308 BOOK 4 Advanced Web Coding

Playing with jQuery animations
Listing 5-5 implements several of the jQuery animation methods. Try changing
values and experimenting with the different settings for each of these methods
and see what you come up with!

LISTING 5-5: Fun with jQuery Animations

<html>

<head>

 <title>JQuery CSS</title>

 <style>

 td {

 border: 1px solid black;

 }

 </style>

 <script src="http://code.jquery.com/jquery-1.11.2.min.js"></script>

 <script type="text/javascript">

 // wait for the DOM to be ready

 $(document).ready(function(){

 // when the animator button is clicked, start doing things

 $('#animator').on('click',function() {

 $('#items').fadeToggle(200);

 $('#fruits').slideUp(500);

 $('#wines').toggle(400,'swing',function(){

 $('#wines').toggle(400,'swing');

 });

 $('h1').hide();

 $('h1').slideDown(1000).animate({

 'color': 'red',

 'font-size': '100px'},1000);

 });

 });

 </script>

</head>

<body>

 <h1>Here are a bunch of things!</h1>

 <table id="things">

 <tr id="items">

 <td>item1</td>

 <td>item2</td>

 <td>item3</td>

 </tr>

 <tr id="fruits">

jQ
ue

ry

0003053988.INDD 309 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

CHAPTER 5 jQuery 309

 <td>apples</td>

 <td>oranges</td>

 <td>lemons</td>

 </tr>

 <tr id="wines">

 <td>merlot</td>

 <td>malbec</td>

 <td>cabernet sauvignon</td>

 </tr>

 </table>

 <form id="tableControl">

 <button type="button" id="animator">Animate Stuff!</button>

 </form>

</body>

</html>

AJAX
One of the most useful things about jQuery is how it simplifies AJAX and makes
working with external data easier.

Book 4, Chapter 4 discusses AJAX, the technique of loading new data into a web
page without refreshing the page. It also covers how to use JSON data in JavaScript.

Using the ajax() method
At the head of jQuery’s AJAX capabilities lies the ajax() method. The ajax()
method is the low-level way to send and retrieve data from an external file. At its
simplest level, the AJAX method can take just a filename or URL as an argument,
and it will load the indicated file. Your script can then assign the content of that
file to a variable.

You can also specify many different options about how the external URL should
be called and loaded, and you can set functions that should run if the request suc-
ceeds or fails.

For a complete list of the optional arguments of the ajax() method, visit http://
api.jquery.com/jQuery.ajax.

0003053988.INDD 310 Trim size: 7.375 in × 9.25 in March 31, 2017 4:30 AM

310 BOOK 4 Advanced Web Coding

Shorthand AJAX methods
jQuery also has several shorthand methods for handling AJAX. The syntax for
these is simplified because they’re designed for specific tasks. The shorthand
AJAX methods are as follows:

 » .get(): Loads data from a server using an HTTP GET request

 » .getJSON(): Loads JSON data from a server using an HTTP GET request

 » .getScript(): Loads a JavaScript file from a server using an HTTP GET
request and then executes it

 » .post(): Loads data from a server and places the returned HTML into the
matched element

To use the shorthand methods, you can pass them a URL and, optionally, a success
handler. For example, to get a file from a server using the get() method and then
insert it into the page, you can do the following:

$.get("getdata.html", function(data) {

 $(".result").html(data);

});

The preceding example is equivalent to the following full .ajax() statement:

$.ajax({

 url: getdata.html,

 success: function(data) {

 $(".result").html(data);

 }

});

The savings in effort isn’t enormous in this example. With more complex AJAX
requests, understanding and using the shorthand AJAX can result in more
 understandable and concise code.

5
0003053966.INDD 311 Trim size: 7.375 in × 9.25 in March 30, 2017 11:16 PM

 Creating Web
Applications

0003053966.INDD 312 Trim size: 7.375 in × 9.25 in March 30, 2017 11:16 PM

Contents at a Glance
CHAPTER 1: Building Your Own App . 313

Building a Location-Based Offer App . 313
Following an App Development Process . 315
Planning Your First Web Application . 316
Exploring the Overall Process . 317
Meeting the People Who Bring
a Web App to Life . 319

CHAPTER 2: Researching Your First Web Application 325
Dividing the App into Steps . 326
Identifying Research Sources. 333
Researching the Steps in the McDuck’s Offer App 335
Choosing a Solution for Each Step . 338

CHAPTER 3: Coding and Debugging Your First Web
Application . 341
Getting Ready to Code . 342
Coding Your First Web Application . 342
Debugging Your App . 350

CHAPTER 1 Building Your Own App 313

0003053989.INDD 313 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

 Building Your Own App
“If you have a dream, you can spend a lifetime . . . getting ready for it. What
you should be doing is getting started.”

 — DREW HOUSTON

 I f you have read (or skimmed) the previous minibooks, you now have enough
HTML, CSS, and JavaScript knowledge to write your own web application. To
review, HTML puts content on the web page, CSS styles that content, and

JavaScript allows for interaction with that content.

 You may feel like you don’t have enough coding knowledge to create an app, but
I promise that you do. Besides, the only way to know for certain is to get started
and try. In Book 5, you come to better understand a location-based app, and the
basic steps to create that app. Developers often begin with just the information
presented in this chapter and are expected to create a prototype. After reading this
chapter, think about how you would build the app, and then refer to chapters that
follow for more details on each step.

 Building a Location-Based Off er App
 Technology can provide developers (like you) one of the most valuable pieces of
information about your users — their current location. With mobile devices, such
as cell phones and tablets, you can even fi nd users’ location when they are on the go.

Chapter 1

 IN THIS CHAPTER

 » Completing a case study using an app

 » Understanding the process of
creating an app to solve a problem

 » Discovering the various people who
help create an app

0003053989.INDD 314 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

314 BOOK 5 Creating Web Applications

Although you likely have used an app to retrieve the time, weather, or even driv-
ing directions, you may never have received an offer on your phone to come into
a store while walking down the street or driving in a car. Imagine passing by a
Mexican restaurant during lunch time and receiving an offer for a free taco. I’m
hungry, so let’s get started!

Understanding the situation
The following is a fictitious case study. Any resemblance to real companies or events is
coincidental.

The McDuck’s Corporation is one of the largest fast food restaurants in the world,
specializing in selling hamburgers in a restaurant called McDuck’s. The company
has 35,000 of these restaurants, which serve 6.5 million burgers every day to
70 million people in over 100 countries. In September 2014, McDuck’s experienced
its worst sales decline in over a decade. After many meetings, the executive team
decided that the key to improving sales would be increasing restaurant foot traf-
fic. “Our restaurant experience, with burger visuals and french-fry aromas, is the
best in the industry — once a customer comes in, it is a guaranteed sale,” says
McDuck’s CEO Duck Corleone. To promote restaurant visits, McDuck’s wants a
web application so customers can check into their favorite store, and receive an
offer or coupon if they are close to a restaurant. “Giving customers who are five
or ten minutes away from a restaurant an extra nudge may result in a visit. Even
if customers use this app while at the restaurant, this will allow us to maintain a
relationship with them long after they have left,” says Corleone.

The McDuck’s Corporation wants to run a pilot to better understand whether
location-based offers will increase sales. Your task is to

 » Create an app that will prove whether location-based offers are effective.

 » Limit the app to work on just one McDuck’s store of your choice.

 » Obtain the location of customers using the app.

 » Show offers to those customers who are five or ten minutes from the store.

McDuck’s currently has a website and a mobile app, but both show only menu and
store location information. If this pilot is successful, McDuck’s will incorporate
your code into its website and mobile app.

Plotting your next steps
Now that you understand McDuck’s request, you likely have many questions:

Bu
ild

in
g

Yo
ur

 O
w

n
A

pp

0003053989.INDD 315 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

CHAPTER 1 Building Your Own App 315

 » What will the app look like?

 » What programming languages will I use to create the app?

 » How will I write code to locate a user’s present location?

 » What offer will I show to a user who is five to ten minutes away?

These are natural questions to ask, and to make sure you are asking all the
 necessary questions upfront in an organized way, you will follow a standard
development process.

Following an App Development Process
Building an app can take as little time as an hour or as long as decades. For most
startups, the development processes for the initial product prototype averages one
or two months to complete, whereas enterprise development processes for com-
mercial grade software take six months to a few years to complete, depending on
the industry and the project’s complexity. A brief overview of the entire process is
described here, and then each step is covered in additional detail as you build the
app for McDuck’s.

An app can be a software program that runs on desktop or mobile devices.

The four steps you will follow when building your app are

 » Planning and discovery of app requirements

 » Researching of technology needed to build the app, and designing the app’s
look and feel

 » Coding your app using a programming language

 » Debugging and testing your code when it behaves differently than you
intended

In total, you should plan to spend between two to five hours building this app. As
shown in Figure 1-1, planning and research alone will take more than half your
time, especially if this is the first time you’re building an app. You might be sur-
prised to learn that actually writing code will take a relatively small amount of
time, with the rest of your time spent debugging your code to correct syntax and
logic errors.

0003053989.INDD 316 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

316 BOOK 5 Creating Web Applications

App development processes have different names, and the two biggest processes
are called waterfall and agile. Waterfall is a set of sequential steps followed to cre-
ate a program, whereas agile is a set of iterative steps followed to create a pro-
gram. Additional discussion can be found in Book 1, Chapter 3.

Planning Your First Web Application
You or your client has a web app idea, and planning is the process of putting those
ideas down on paper. Documenting all the features that will go into the app is so
important, because as the cartoon in Figure 1-2 shows for web development, and
in computer science generally, it can be difficult to understand upfront what fea-
tures are technically easy versus difficult to implement.

The planning phase also facilitates an up-front conversation around time, project
scope, and budget, where a common saying is to “pick two out of the three.” In
some situations, such as with projects for finance companies, timelines and proj-
ect scope may be legally mandated or tied to a big client and cannot be changed,
so additional budgeting may be required to meet both. In other situations, such as
projects for small startups, resources are scarce, so it’s more common to adjust
the project scope or extend the timeline than to increase the project’s budget.
Before writing any code, it will be helpful to understand which dimensions can be
flexed and which are fixed.

FIGURE 1-1:
Time allocated

to complete the
four steps in the

app development
process.

Bu
ild

in
g

Yo
ur

 O
w

n
A

pp

0003053989.INDD 317 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

CHAPTER 1 Building Your Own App 317

Finally, although you will likely play multiple roles in the creation of this web app,
in real life teams of people help bring to life the web apps you use every day. You
will see the roles people play, and how they all work together.

Exploring the Overall Process
The purpose of the planning phase is to

 » Understand the client goals. Some clients may want to be the first to enter
an industry with an app, even if it means sacrificing quality. Other clients may
require the highest standards of quality, reliability, and stability. Similarly,
others may prioritize retaining existing customers, while others want to attract
new customers. All these motivations affect the product design and imple-
mentation in big and small ways.

FIGURE 1-2:
It can be difficult

to separate
 technically easy

from difficult
projects.

0003053989.INDD 318 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

318 BOOK 5 Creating Web Applications

If you’re a developer in a large company, your client is usually not the end user
but whoever in your internal team must greenlight the app before it is released
to the public. At many companies, such as Google, Yahoo!, and Facebook, most
projects do not pass internal review and are never released to the public.

 » Document product and feature requests. Clients usually have an overall
product vision, a list of tasks the user must be able to complete with the app.
Often, clients have features in mind that will help accomplish those tasks.

 » Agree on deliverables and a timeline. Almost every client will imagine a
much bigger product than you have time to build. For a developer, it is
extremely important to understand what features are absolutely necessary
and must be built, and what features are “nice to have” if there is time
remaining at the end of the project. If every feature is a “must have,” you need
to either push the client to prioritize something or make sure you have given
yourself enough time.

Estimating the time to complete software projects is one of the most difficult
project management tasks because there is greater variability and uncertainty
than with physical construction projects, like building a house, or intellectual
projects, like writing a memo. The most experienced developers at the world’s
best software companies routinely miss estimates, so don’t feel bad if
completion takes longer than you think it will. Your estimation skills will
improve with time and practice.

After separating the necessary features from the “nice to have,” you need to
decide which features are easy to accomplish and which are complex. Without
previous experience, this might seem difficult, but think about whether other
applications have similar functionality. You need to also try searching the web
for forum posts or for products that have the feature. If no product imple-
ments the feature, and all online discussions portray the task as difficult, it
would be worthwhile to agree upfront on an alternative.

 » Discuss tools and software that you will use to complete the project and
that your users will use to consume the project. Take the time to under-
stand your client and user’s workflow to avoid surprises from incompatible
software. Web software usually works across a variety of devices, but older
operating systems and browsers can cause problems. Defining at the start of
the project exactly which browser versions you will support (such as Internet
Explorer 9 and later), and which devices (such as desktop and iPhone only) will
save development and testing time. Usually, these decisions are based on
how many existing users are on those platforms, and many organizations will
support a browser version if used by a substantial part of the user base —
usually at least five percent.

Browser incompatibilities are decreasing as the latest desktop and mobile brows-
ers update themselves, and are now easier to keep up to date.

Bu
ild

in
g

Yo
ur

 O
w

n
A

pp

0003053989.INDD 319 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

CHAPTER 1 Building Your Own App 319

Meeting the People Who Bring
a Web App to Life

You will be able to complete the app in this book by yourself, but the apps you
build at work or use every day, like Google Maps or Instagram, are created by
teams of people. Teams for a single product can vary in size, reaching to upward of
50 people, and each person plays a specific role across areas like design, develop-
ment, product management, and testing. In smaller companies, the same person
may perform multiple roles, while at larger companies, the roles become more
specialized, and individual people perform each role.

Creating with designers
Before any code is written, designers work to create the site’s look and feel
through layout, visuals, and interactions. Designers answer simple questions like
“Should the navigational menu be at the top of the page or the bottom?” to more
complex questions like “How can we convey a sense of simplicity, creativity, and
playfulness?” In general, designers answer these types of questions by interview-
ing users, creating many designs of the same product idea, and then making a
final decision by choosing one design. Good design can greatly increase adoption
of a product or use of a site, and products like Apple’s iPhone and Airbnb.com.
(See Figure 1-3.)

FIGURE 1-3:
Jonathan Ive,

SVP of Design at
Apple, is credited
for Apple’s design

successes.

0003053989.INDD 320 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

320 BOOK 5 Creating Web Applications

When building a website or app, you may decide you need a designer, but keep in
mind that within design, there are multiple roles that designers play. The following
roles are complementary, and may all be done by one person or by separate people:

 » User interface (UI) and user experience (UX) designers deal primarily with
“look and feel” and with layout. When you browse a website, for example
Amazon, you may notice that across all pages, the navigation menus and
content are in the same place and use identical or very similar font, buttons,
input boxes, and images. The UI/UX designer thinks about the order in which
screens are displayed to the user, along with where and how the user clicks,
enters text, and otherwise interacts with the website. If you were to eavesdrop
on UI/UX designers, you might hear conversation like, “His page is too busy
with too many calls to action. Our users don’t make this many decisions
anywhere else on the site. Let’s simplify the layout by having just a single Buy
button, so anyone can order with just one click.”

 » Visual designers deal primarily with creating the final graphics used on a
website, and this role is most closely associated with “designer.” The visual
designer creates final versions of icons, logos, buttons, typography, and
images. For example, look at your Internet browser — the browser icon, the
Back, Reload, and Bookmark buttons are all created by a visual designer, and
anyone using the browser for the first time will know what the icons mean
without explanation. If you were to eavesdrop on visual designers, you might
hear conversation like, “The color contrast on these icons is too light to be
readable, and if including text with the icon, let’s center-align the text below
the icon instead of above it.”

 » Interaction designers deal primarily with interactions and animations based
on user input and the situation. Initially, interaction designs were limited to
keyboard and mouse interactions, but today touch sensors on mobile devices
have created many more potential user interactions. The interaction designer
thinks about how to use the best interaction so the user is able to complete a
task as easily as possible. For example, think about how you check your email
on your mobile phone. For many years, the traditional interaction was to see a
list of messages, click a message, and then click a button to reply, flag, save to a
folder, or delete the message. In 2013, interaction designers rethought the
email app interaction and created an interaction so users could swipe their
finger left or right to delete or reply to email messages instead of having to click
through multiple menus. If you were to eavesdrop on interaction designers, you
might hear conversation like, “While users are navigating with our maps app,
instead of letting us know they are lost by clicking or swiping, maybe they could
shake the phone and we could instantly have a location specialist call them.”

If creating an app were like making a movie, designers would be screenwriters.

Bu
ild

in
g

Yo
ur

 O
w

n
A

pp

0003053989.INDD 321 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

CHAPTER 1 Building Your Own App 321

Coding with front- and back-end developers
After the design is complete, the front-end and back-end developers make those
designs a reality. Front-end developers, such as Mark Otto and Jacob Thornton
(see Figure 1-4), code in HTML, CSS, and JavaScript, and convert the design into a
user interface. These developers write the same code that you have been learning
throughout this book and ensure that the website looks consistent across devices
(desktop, laptop, and mobile), browsers (Chrome, Firefox, Safari, and so on),
and operating systems (Windows, Mac, and so on). All these factors, especially
increased adoption of mobile device, result in thousands of combinations that
must be coded for and tested because every device, browser, and operating system
renders HTML and CSS differently.

If creating an app were like making a movie, front-end developers would be the
starring actors.

Back-end developers such as Yukihiro Matsumoto (see Figure 1-5) add functionality
to the user interface created by the front-end developers. Back-end developers
ensure that everything that’s not visible to the user and behind the scenes is in
place for the product to work as expected. Back-end developers use server-side
languages like Python, PHP, and Ruby to add logic around what content to show,
when, and to whom. In addition, they use databases to store user data, and create
servers to serve all of this code to the users.

If creating an app were like making a movie, back-end developers would be the
cinematographers, stunt coordinators, makeup artists, and set designers.

FIGURE 1-4:
Mark Otto and

Jacob Thornton
 created

 Bootstrap, the
most popular

front-end
 framework.

0003053989.INDD 322 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

322 BOOK 5 Creating Web Applications

Managing with product managers
Product managers help define the product to be built and manage the product
development process. When engineering teams are small (such as 14 people or
fewer), communication, roles, and accountability are easily managed internally
without much formal oversight. As engineering teams grow, the overhead of
everyone communicating with each other also grows, and without some process,
the interactions can become unmanageable, leading to miscommunication and
missed deadlines. Product managers serve to lessen the communication overhead,
and when issues arise as products are being built, these managers decide whether
to extend timelines, cut scope, or add more resources to the team.

Product managers are often former engineers, who have a natural advantage in
helping solve technical challenges that arise, but nontechnical people are also
assuming these roles with success. Usually, no engineers report to the prod-
uct manager, causing some to comment that product managers have “all of
the responsibility, and none of the authority.” One product manager wielding
great responsibility and authority is Sundar Pichai, who originally was a product
manager for the Google toolbar and recently was appointed to oversee many of
Google’s products, including search, Android, Chrome, maps, ads, and Google+.
(See Figure 1-6.)

Testing with quality assurance
Testing is the final step of the journey after an app or website has been built. As a
result of the many hands that helped with production, the newly created product
will inevitably have bugs. Lists are made of all the core app user tasks and flows,
and human testers along with automated programs go through the list over and
over again on different browsers, devices, and operating systems to find errors.

FIGURE 1-5:
Yukihiro

 Matsumoto
 created Ruby,

a popular
 server-side

language used to
create websites.

Bu
ild

in
g

Yo
ur

 O
w

n
A

pp

0003053989.INDD 323 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

CHAPTER 1 Building Your Own App 323

Testers compile the newly discovered bugs and send them back to the developers,
who prioritize which bugs to squash first. Trade-offs are always made between
how many users are affected by a bug, the time it takes to fix the bug, and the time
left until the product must be released. The most important bugs are fixed imme-
diately, and minor bugs are scheduled to be fixed with updates or later releases.
Today, companies also rely on feedback systems and collect error reports from
users, with feedback forms and in some cases through automated reporting.

FIGURE 1-6:
Sundar Pichai

oversees almost
every major

Google product.

0003053989.INDD 324 Trim size: 7.375 in × 9.25 in March 31, 2017 4:33 AM

CHAPTER 2 Researching Your First Web Application 325

0003053990.INDD 325 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

 Researching Your First
Web Application

“If we knew what it was we were doing, it would not be called research.”
 — ALBERT EINSTEIN

 W ith the basic requirements defi ned, the next step is researching how to
build the application. Apps consist of two main parts: functionality and
form (design). For each of these parts, you must

 » Divide the app into steps. Although it’s good practice to divide anything
you’re going to build into steps, dividing apps into manageable pieces is an
absolute necessity for large software projects with many people working
across multiple teams.

 » Research each step. When doing your research, the fi rst question to ask is
whether you must build a solution yourself or use an existing solution built by
someone else. Building your own solution usually is the best way to directly
address your need, but it takes time, whereas implementing someone else’s
solution is fast but may meet only part of your needs.

 » Choose a solution for each step. You should have all the solutions selected
before writing any code. For each step, decide whether you’re writing your
own code, or using prebuilt code. If you’re not writing the code yourself,
compare a few options so you can pick one with confi dence.

Chapter 2

 IN THIS CHAPTER

 » Dividing an app into smaller pieces,
or steps

 » Using code from various sources to
perform those steps

 » Creating app designs by reviewing
and improving upon existing
solutions

0003053990.INDD 326 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

326 BOOK 5 Creating Web Applications

Dividing the App into Steps
The biggest challenge with dividing an app into steps is knowing how big or small
to make each step. The key is to make sure each step is discrete and independent.
To test whether you have the right number of steps, ask yourself if someone else
could solve and complete the step with minimal guidance.

Finding your app’s functionality
Recall, from Book 5, Chapter 1, that McDuck’s wants to promote restaurant visits
by using a web application that sends customers an offer or coupon if they’re close
to a restaurant. To make this job easier, you are to create the app for customers
visiting just one store.

Your first move is to break down this app into steps needed for the app to func-
tion. These steps should not be too specific. Think of them in broad terms, as if
you were explaining the process to a kindergartner. With a pen and paper, write
down these steps in order. Don’t worry about whether each step is correct, as your
skill will improve with practice and time. To help you start, here are some clues:

 » Assume the McDuck’s app activates when the customer presses a button in
the app to check into a store.

 » When the button is pressed, what are the two locations that the app must be
aware of?

 » When the app is aware of these two locations, what calculation involving these
two locations must the computer make?

 » After computing this calculation, what effect will the computer show?

Fill out your list now, and don’t continue reading until you’ve completed it.

Finding your app’s functionality: My version
The following is my version of the steps needed to make the app function accord-
ing to McDuck’s specifications. My steps may differ from yours, of course, and
this variation is completely fine. The important lesson here is that you understand
why each of these steps is necessary for the app to work.

1. The customer presses a button on the app.

The preceding instructions said to initiate the app with the press of a button.
That being said, there are two other options for launching the app:

Re
se

ar
ch

in
g

Yo
ur

 F
ir

st

W
eb

 A
pp

lic
at

io
n

0003053990.INDD 327 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

CHAPTER 2 Researching Your First Web Application 327

• Executing the steps only when the customer opens the app

• Executing the steps continuously in the background, regularly checking the
customer’s location

Currently, this technique places a heavy drain on the battery, and is not
usually recommended.

2. After the button is pressed, find the customer’s current location.

The customer’s location is one of the two locations you need to identify. The
customer’s current location is not fixed, and it changes, for example, when the
customer is walking or driving.

3. Find the fixed location of a McDuck’s store.

The McDuck’s restaurant location is the other location you need to identify.
Because this is a pilot, you only need to identify the location for one McDuck’s
restaurant, a fixed location that will not change. Hypothetically, assuming that
the pilot is successful and that McDuck’s wants to implement this app for users
visiting all 35,000 restaurants, you’d have to track many more restaurant
locations. Additionally, in a larger rollout, the locations would need to be updated
regularly, as new restaurants open and as existing restaurants move or close.

4. Calculate the distance between the customer’s current location and the
McDuck’s restaurant, and name this distance Customer Distance.

This step calculates how far away the customer is from the McDuck’s restau-
rant. One complexity to be aware of — but not to worry about right now — is
the direction in which the customer is moving. Although McDuck’s did not
specify whether it wants to display offers to customers heading both toward
and away from their store, this may be a question worth asking anyway.

5. Convert five to ten minutes of customer travel into a distance called
Threshold Distance.

McDuck’s CEO, Duck Corleone, wants to target customers who are five to ten
minutes away from the store. Distance, in this sense, can be measured in both
time and units of distance such as miles. For consistency, however, plan to
convert time into distance — translate those five to ten minutes into miles. The
number of miles traveled in this time will vary by common mode of transporta-
tion and by location, because five to ten minutes of travel in New York City
won’t get you as far as five to ten minutes of travel in Houston, Texas.

6. If the Customer Distance is less than the Threshold Distance, then show
an offer to the customer.

Following McDuck’s specifications, the app should attract customers to come
to the store, so the app only shows offers to customers who are close to the
restaurant. Another complexity to be aware of — but not to worry about right
now — is that the Customer Distance can change quickly. Customers traveling

0003053990.INDD 328 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

328 BOOK 5 Creating Web Applications

by car could easily be outside the Threshold Distance one minute and inside it
the next. Figure 2-1 shows the customers we want to target, relative to a fixed
restaurant location.

Many software logic mistakes happen at this stage, because the programmer for-
gets to include a step. Take your time reviewing these steps and understanding
why each step is essential, and why this list of steps is the minimum necessary to
operate the app.

Finding your app’s form
After you settle on what the app will do, you must find the best way to present this
functionality to users. Users can interact with your app’s functionality many ways,
so picking out the right approach can be tricky. Designing an app can be fun and
rewarding, but it’s hard work. After the first iteration of an app’s design, devel-
opers are often disappointed: Users will rarely use the product as intended and
will find many parts of the app confusing. This is natural — especially because at
this stage you’re often creating something or having the user do something that
hasn’t been done before. Your only choice is to keep trying and to keep testing,
modifying, and creating new designs until your app is easy for everyone to use.
Although the iPod is a hardware product, the approach Apple took to perfect it was
basically the same. Figure 2-2 shows how the design can change over time, with
the button layout changing from the original click-wheel to individual horizontal
buttons, and finally back to the click-wheel again.

FIGURE 2-1:
Customers we
want to target

based on a
fixed restaurant

 location.

Re
se

ar
ch

in
g

Yo
ur

 F
ir

st

W
eb

 A
pp

lic
at

io
n

0003053990.INDD 329 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

CHAPTER 2 Researching Your First Web Application 329

The following list describes a basic design process to create the look and feel of
your app:

1. Define the main goals of your app.

If you were at a party, and you had to explain what your app did in one
sentence, what would it be? Some apps help you hail a taxi, reserve a table at a
restaurant, or book a flight. Famously, the goal for the iPod was 1,000 songs in
your pocket accessible within three clicks, which helped create an easy-to-use
user interface. An explicitly defined goal will serve as your north star, helping
you to resolve questions and forcing you to keep trying.

2. Break these goals into tasks.

Each goal is the sum of many tasks, and listing them will help you design the
shortest path to completing each task and ultimately the goal. For instance, if
your app’s goal is for a user to book a flight, then the app will likely need to
record desired flying times and destinations, search and select flights depart-
ing during those times, record personal and payment information, present
seats for selection, and confirm payment of the flight. Sometimes designers
will segment tasks by user persona, another name for the person completing
the task. For example, this app may be used by business and leisure travelers.
Leisure travelers may need to do heavy searching and pick flights based on
price, while business travelers mostly rebook completed flights and pick flights
based on schedule.

FIGURE 2-2:
Apple’s iPod

design changes
over multiple

product releases.

0003053990.INDD 330 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

330 BOOK 5 Creating Web Applications

3. Research the flows and interactions necessary to accomplish these tasks.

For example, our flight app requires the user to select dates and times. One
immediate question is whether the date and time should be two separate
fields or one field, and on a different or same screen as the destination. Try to
sketch what feels intuitive for you, and research how others have solved this
problem. You can use Google to find other travel apps, list all the various
designs, and either pick or improve upon the design you like best. Figure 2-3
shows two different approaches to flight search. Similarly, you can also use
design-centric sites, such as www.dribbble.com, to search designer portfolios
for features and commentary.

4. Create basic designs, called wireframes, and collect feedback.

Wireframes, as shown in Figure 2-4, are low-fidelity website drawings that
show structurally how site content and interface interact. Wireframes are
simple to create, but should have enough detail to elicit feedback from others.
Many wireframe tools use a simple almost pencil-like drawing to help anyone
providing comments to focus on the structural and bigger picture design,
instead of smaller details like button colors or border thicknesses. Feedback at
this stage to refine design is so important because the first wireframe likely
doesn’t address users’ main concerns and overcomplicates the tasks a user
needs to do.

With mobile devices increasing in popularity relative to desktop devices,
remember to create mobile and desktop versions of your wireframes.

FIGURE 2-3:
Different

designs for flight
 reservation

from Hipmunk.
com and United

Airlines.

Re
se

ar
ch

in
g

Yo
ur

 F
ir

st

W
eb

 A
pp

lic
at

io
n

0003053990.INDD 331 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

CHAPTER 2 Researching Your First Web Application 331

5. Create mockups and collect more feedback. (See Figure 2-5.)

After you have finished talking to your client and to users, it is time to create
mockups, which are high-fidelity website previews. These designs have all the
details a developer needs to create the website, including final layout, colors,
images, logos, and sequences of screens to show when the user interacts with
the web page. After creating a mockup, plan to collect more feedback.

Collecting feedback at every stage of the design process might seem unneces-
sary, but it is much easier to explore different designs and make changes
before any code has been written.

6. Send the final file to the developers.

After the mockup has been created and approved, you typically send a final
image file to the developer. Although this file could be in any image file format,
like PNG or JPG, the most popular file format used by designers is PSD, created
using Adobe Photoshop.

FIGURE 2-4:
A wireframe for
an email client.

FIGURE 2-5:
A mockup for an

email client.

0003053990.INDD 332 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

332 BOOK 5 Creating Web Applications

Finding your app’s form: The McDuck’s
Offer App design
In this section, you follow the design process described in the previous section to
create a simple design for the McDuck’s Offer App. As part of the design, you do
the following things:

1. Define the main goals of your app.

The main goal for McDuck’s is to use offers to attract customers to restaurants.

2. Break these goals into tasks.

Customers need to view the offer, navigate to the store, and use the offer.

3. Research the flows and interactions needed to accomplish these tasks.

Because this is the first iteration of the app, let’s focus on just allowing the
customer to view the offer.

One function that McDuck’s did not specify is the ability to save single-use
coupons and to share general-use coupons. However, when looking at other
apps, like the ones in Figure 2-6, the need for this becomes more obvious. Also,
some similar apps allow the customer to spend money to buy coupons —
maybe this functionality should be added as well. These questions would be
great to present to McDuck’s later.

The apps in Figure 2-6 also all display various “call to action” buttons to the user
before displaying the deal. Some apps ask the user to check into a location,
other apps ask the user to purchase the coupon, and still others show a
collection of new or trending coupons today.

For now, and to keep things simple, let’s assume that our McDuck’s app has a
button that allows customers to check into their favorite McDuck’s location,
and when clicked within the target distance, the app displays a general-use
coupon that customers receive for free.

FIGURE 2-6:
Example flow

from deals
and offer apps

currently in the
market.

Re
se

ar
ch

in
g

Yo
ur

 F
ir

st

W
eb

 A
pp

lic
at

io
n

0003053990.INDD 333 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

CHAPTER 2 Researching Your First Web Application 333

4. Create basic designs, called wireframes, and collect feedback.

A sample design for the app, based on the look and feel of other apps, appears
in Figure 2-7.

5. Create mockups and collect more feedback.

Ordinarily, you would create mockups, which are more polished designs with real
images, from the wireframes and present them to customers for feedback. In this
case, however, the app is simple enough that you can just start coding.

Identifying Research Sources
Now that you know what your app will do, you can focus on how your app will do
it. After breaking down your app into steps, you go over each step to determine
how to accomplish it. For more complicated apps, developers first decide which of
these two methods is the best way to complete each step:

 » Building code from scratch: This is the best option if the functionality in a
particular step is unique or strategically important, an area of strength for the
app, and existing solutions are expensive or nonexistent. With this option, you
and developers within the company write the code.

 » Buying or using a preexisting solution: This is the best option if the functional-
ity in a particular step is a common, noncore technical area for the app, and
existing solutions are competitively priced. With this option, you and developers
working on the app use code written by external third-party developers.

FIGURE 2-7:
A sample

wireframe for
the McDuck’s

offer app.

0003053990.INDD 334 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

334 BOOK 5 Creating Web Applications

One company that recently made this decision — publicly and painfully — is
Apple with its Maps product. In 2012, after years of using Google Maps on its
mobile devices, Apple decided to introduce its own mapping application that it
had been developing for two years. Although the Maps product Apple built inter-
nally turned out to initially be a failure, Apple decided to build its own mapping
application because it viewed mapping capabilities as strategically important and
because turn-by-turn navigation solutions were not available in the solution pro-
vided by Google.

Whether you’re building or buying, research is your next step. Here are some
sources to consider when researching:

 » Search engines: Use Google.com or another search engine to type in what
you’re trying to accomplish with each step. One challenge can be discovering
how the task you’re trying to achieve is referred to by programmers. For
instance, if I want to find my current location, I might enter show my location in
an app into a search engine, but this results in a list of location-sharing apps.
After reading a few of the top-ten results, I see that location-tracking is also
referred to as geolocation. When I search again for geolocation, the top results
include many examples of code that show my current location.

For more generic searches for code examples, try including the name of the
computer language and the word syntax. For example, if you want to insert an
image on a web page, search for image html syntax to find code examples.

 » Prior commercial and open-source apps: Examining how others built their
apps can give you ideas on how to improve upon what already exists, and
insight into pushing existing technology to the limit to achieve an interesting
effect. For instance, say you wanted to build a mobile app that recognized TV
ads from the “audio fingerprint” of those ads and directed viewers to a
product page on a mobile device. To create this app, you could build your own
audio fingerprinting technology, which would likely take months or longer to
build, or you could partner with Shazam, a commercial application, or
Echoprint, an open-source music fingerprinting service. Either app can record
a 10- to 20-second audio sample, create a digital fingerprint after overcoming
background noise and poor microphone quality, compare the fingerprint to a
large audio database, and then return identification information for the audio
sample.

 » Industry news and blogs: Traditional newspapers, like The Wall Street Journal,
and tech blogs, like TechCrunch.com, report on the latest innovations in
technology. Regularly reading or searching through these sites is a good way
to find others who have launched apps in your space.

 » API directories: You can easily search thousands of APIs for the functionality
you need to implement. For example, if you were creating an app that used

Re
se

ar
ch

in
g

Yo
ur

 F
ir

st

W
eb

 A
pp

lic
at

io
n

0003053990.INDD 335 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

CHAPTER 2 Researching Your First Web Application 335

face recognition instead of a password, you could search for face detection APIs
and use an API you find instead of trying to build a face detection algorithm
from scratch. Popular API directories include www.programmableweb.com and
www.mashape.com.

As discussed in Book 4, Chapter 2, APIs are a way for you to request and receive
data from other programs in a structured, predictable, documented way.

 » User-generated coding websites: Developers in different companies
frequently face the same questions on how to implement functionality for
features. Communities of developers online talk about shared problems and
contribute code so anyone can see how these problems have been solved in
the past. You can participate in developer conversations and see the code
other developers have written by using www.stackoverflow.com and www.
github.com.

Researching the Steps in the
McDuck’s Offer App

To implement the functionality in the McDuck’s Offer App, you broke down the
app into six steps using plain English. Each step is an item in the bulleted list
that follows, and you will research how to accomplish each step using code. Your
app will require HTML to put content on the page, CSS to style that content, and
JavaScript for the more interactive effects. Research the steps on your own before
looking over the suggested code in the next section:

 » “The customer presses a button on the app.” This code creates a button
that triggers every subsequent step. Creating a button on a web page is a very
common task, so to narrow the results, search for html button tag. Review
some of the links in the top-ten search results, and then write down the HTML
tag syntax to create a button that says “McDuck’s Check-in.”

In your search results, sites like w3schools.com are designed for beginners,
and will include example code and simple explanations.

 » “After the button is pressed, find the customer’s current location.” In
web lingo, finding a user’s location is called geolocation. I will provide you with
JavaScript geolocation code, along with an explanation for how it works and
where I found it. To trigger this JavaScript code, you need to add an attribute
to the HTML button tag to call a JavaScript function named getlocation().

As described in Book 3, Chapter 1, HTML attributes are inserted in the
opening HTML tag.

0003053990.INDD 336 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

336 BOOK 5 Creating Web Applications

Search for html button javascript button on click to find out how to insert the
onclick attribute to your button HTML code. Review the search results, and
then write down the HTML syntax for your button code.

 » “Find the fixed location of a McDuck’s store.” You’ll need a real-world
address to serve as the McDuck’s store. Use a mapping website like http://
maps.google.com to find the street address of a burger restaurant near you.
Computers typically represent physical addresses using latitude and longitude
numbers instead of street addresses. You can search for websites that
convert street addresses into latitude and longitude numbers, or if you’re
using Google Maps, you can find the numbers in the URL, as shown in
Figure 2-8. The first number after the @ sign and up to the comma is the
latitude, and the second number between the two commas is the longitude.
Figure 2-8 shows a McDonald’s store in New York City, where the latitude is
40.7410344 and the longitude is –73.9880763.

Track down the latitude and longitude numbers for the burger restaurant of
your choice, up to seven decimal places, and write them on a piece of paper.

Include a negative sign if you see one, and all seven decimal places for the
greatest accuracy.

FIGURE 2-8:
Latitude and

longitude of a
McDonald’s in
New York City.

Re
se

ar
ch

in
g

Yo
ur

 F
ir

st

W
eb

 A
pp

lic
at

io
n

0003053990.INDD 337 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

CHAPTER 2 Researching Your First Web Application 337

 » “Calculate the distance between the customer’s current location and the
McDuck’s restaurant, and name this distance Customer Distance.”
Latitude and longitude are coordinates that represent a location on a sphere.
The distance along the surface of the sphere between two sets of latitude and
longitude coordinates is calculated using the Haversine formula. You can find
a JavaScript version of the formula at http://stackoverflow.com/
questions/27928/how-do-i-calculate-distance-between-two-
latitude-longitude-points. This is the formula you will use to calculate
distance when creating the McDuck’s app, and I will include this code for you.

Don’t get bogged down in the details of how the Haversine formula works.
Abstraction is an important concept to remember when programming, and
this basically means that as long as you understand the inputs to a system
and the outputs, you don’t really need to understand the system itself, much
as you don’t need to understand the mechanics of the internal combustion
engine in order to drive a car.

 » “Convert five to ten minutes of customer travel into a distance called
Threshold Distance.” Using the most common method of transportation in
your current city, write down the number of miles you could you travel, on
average, in five to ten minutes.

 » “If the Customer Distance is less than the Threshold Distance, then show
an offer to the customer.” The two pieces to research for this step are the
conditional statement that decides when to show the offer to the consumer
and the actual offer:

• The conditional statement: This is written in JavaScript using an if-else
statement. If the customer is within the threshold distance, then it shows
the offer; otherwise (else), it shows another message. To review the if-else
syntax, search Google or another search engine for JavaScript if-else
statement syntax (or refer to Book 4, Chapter 2 to review the coverage of
the if-else statement syntax there).

• The offer to show to the consumer: The easiest way to show an offer is to use
the JavaScript alert(). Search for JavaScript alert syntax.

After you’ve conducted your searches, write down your if-else statement
with a text alert() for a free burger if the customer is within the Threshold
Distance, and a text alert() notifying the customer he or she has checked in.

When you have the if-else statement working, you can replace the text
alert() with an image. Search https://images.google.com for a burger
coupon image. After you find the image, left-click it from the image grid in the
search results, and left-click again the View Image button. When the image
loads, the direct link to the image will be in the URL address bar in the
browser. The code to insert the image is shown in Book 3, Chapter 1.

0003053990.INDD 338 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

338 BOOK 5 Creating Web Applications

Choosing a Solution for Each Step
With your research finished, it’s time to find the best solution. If multiple solu-
tions exist for each step, you now need to choose one. To help you choose, weigh
each of your multiple solutions across a variety of factors, such as these:

 » Functionality: Will the code you write or the prebuilt solution you found do
everything you need?

 » Documentation: Is there documentation for the prebuilt solution, like
instructions or a manual, that is well written with examples?

 » Community and support: If something goes wrong while writing your code,
is there a community you can turn to for help? Similarly, does the prebuilt
solution have support options you can turn to if needed?

 » Ease of implementation: Is implementation as simple as copying a few lines
of code? Or is a more complex setup or an installation of other supporting
software necessary?

 » Price: Every solution has a price, whether it is the time spent coding your own
solution or the money paid for someone else’s prebuilt code. Think carefully
about whether your time or your money is more important to you at this stage.

The following are suggested solutions for the previous McDuck’s Offer App
research questions. Your answers may vary, so review each answer to see where
your code differs from mine:

 » “The customer presses a button on the app.” The HTML tag syntax to
create a button that says “McDuck’s Check-in” is

<button>McDuck’s Check-in</button>

The syntax for an HTML button is available here www.w3schools.com/tags/
tag_button.asp.

 » “After the button is pressed, find the customer’s current location.” The
HTML syntax for your button code is

<button onclick="getLocation()">McDuck’s Check-in</button>

The syntax for calling a JavaScript function by pressing a button is available
here: www.w3schools.com/jsref/event_onclick.asp.

Re
se

ar
ch

in
g

Yo
ur

 F
ir

st

W
eb

 A
pp

lic
at

io
n

0003053990.INDD 339 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

CHAPTER 2 Researching Your First Web Application 339

 » “Find the fixed location of a McDuck’s store.” I picked a McDonald’s store in
New York City near Madison Square Park whose latitude is 40.7410344 and
longitude is –73.9880763. The latitude and longitude for your restaurant, of
course, will likely differ.

 » “Calculate the distance between the customer’s current location and the
McDuck’s restaurant, and name this distance Customer Distance.” The
following is the actual code for the Haversine formula, used to calculate the
distance between two location coordinates, found on Stackoverflow at
http://stackoverflow.com/questions/27928/how-do-i-calculate-
distance-between-two-latitude-longitude-points. I modified this code
slightly so that it returned miles instead of kilometers:

function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {

 var R = 6371; // Radius of the earth in km

 var dLat = deg2rad(lat2-lat1); // deg2rad below

 var dLon = deg2rad(lon2-lon1);

 var a =

 Math.sin(dLat/2) * Math.sin(dLat/2) +
 Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *

 Math.sin(dLon/2) * Math.sin(dLon/2)

 ;

 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

 var d = R * c * 0.621371; // Distance in miles

 return d;

}

function deg2rad(deg) {

 return deg * (Math.PI/180);

}

An explanation of how this formula works is outside the scope of this book,
but make sure you understand the formula’s inputs (latitude and longitude)
and the output (distance between two points in miles).

 » “Convert five to ten minutes of customer travel into a distance called
Threshold Distance.” In New York City, people usually walk, so traveling for
five to ten minutes would take you 0.5 mile, which is my Threshold Distance.

0003053990.INDD 340 Trim size: 7.375 in × 9.25 in March 31, 2017 4:34 AM

340 BOOK 5 Creating Web Applications

 » “If the Customer Distance is less than the Threshold Distance, then
display an offer to the customer.” The syntax for the if-else statement
with the two text alert() methods is

If (distance < 0.5) {

 alert("You get a free burger");

}

else {

 alert("Thanks for checking in!");

}

The syntax for a JavaScript if-else statement is available at www.w3schools.
com/js/js_if_else.asp.

CHAPTER 3 Coding and Debugging Your First Web Application 341

0003053991.INDD 341 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

 Coding and Debugging
Your First Web
Application

“Talk is cheap. Show me the code.”
 — LINUS TORVALDS

 I t may not feel like it, but you’ve already done the majority of work toward
creating your fi rst web application. You painfully broke down your app into
steps, and researched each step to determine functionality and design. As Linus

Torvalds, creator of the Linux operator system, said, “Talk is cheap.” So let’s start
actually coding.

Chapter 3

 IN THIS CHAPTER

 » Reviewing code to see preexisting
functionality

 » Writing code by following steps to
create your app

 » Debugging your code by looking for
common syntax errors

0003053991.INDD 342 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

342 BOOK 5 Creating Web Applications

Getting Ready to Code
Before you start coding, do a few housekeeping items. First, ensure that you are
doing all of the following:

 » Using the Chrome browser: Download and install the latest version of
Chrome, as it offers the most support for the latest HTML standards and is
available for download at www.google.com/chrome/browser.

 » Working on a desktop or laptop computer: Although it is possible to code
on a mobile device, it can be more difficult and all layouts may not appear
properly.

 » Remembering to indent your code to make it easier to read: One main
source of mistakes is forgetting to close a tag or curly brace, and indenting
your code will make spotting these errors easier.

 » Remembering to enable location services on your browser and com-
puter: To enable location services within Chrome, click on the settings icon
(three horizontal lines on the top right of the browser), and click on Settings.
Then click on the Settings tab, and at the bottom of the screen click on “Show
Advanced settings . . . ” Under the Privacy menu heading, click on “Content
settings . . . ” and scroll down to Location and make sure that “Ask when a site
tries to track your physical location” is selected. You can read more here:
support.google.com/chrome/answer/142065.

To enable location services on a PC no additional setting is necessary, but on a
Mac using OS X Mountain Lion or later, from the Apple menu choose System
Preferences, then click on the Security & Privacy icon, and click the Privacy tab.
Click the padlock icon on the lower left, and select Location Services, and
check Enable Location Services. You can read more here: support.apple.
com/en-us/ht5403.

Finally, you need to set up your development environment. To emulate a devel-
opment environment without instructional content use Codepen.io. Codepen.io
offers a free stand-alone development environment, and makes it easy to share
your code. Open this URL in in your browser: codepen.io/nabraham/pen/ExnsA.

Coding Your First Web Application
With the Codepen.io URL loaded, let us review the development environment, the
prewritten code, and the coding steps for you to follow.

Co
di

ng
 a

nd
 D

eb
ug

gi
ng

 Y
ou

r
Fi

rs
t

W
eb

 A
pp

lic
at

io
n

0003053991.INDD 343 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

CHAPTER 3 Coding and Debugging Your First Web Application 343

Development environment
The Codepen.io development environment, as shown in Figure 3-1, has three cod-
ing panels, one each for HTML, CSS, and JavaScript. There is also a preview pane
to see the live results of your code. Using the button at the bottom of the screen,
you can hide any coding panel you aren’t using, and the layout of the coding pan-
els can be changed.

Signing up for a Codepen.io account is completely optional, and allows you to fork
or save the code you have written, and share it with others.

Prewritten code
The Codepen.io development environment includes some prewritten HTML, CSS,
and JavaScript code for the McDuck’s app. The prewritten code includes code you
have seen in previous chapters, and new code that is explained in the following
sections.

HTML
The HTML code for the McDuck’s app follows, and includes

 » Two sections:

• An opening and closing <head> tag

• An opening and closing <body> tag

FIGURE 3-1:
The Codepen.

io development
environment.

0003053991.INDD 344 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

344 BOOK 5 Creating Web Applications

 » Inside the <body> tags are <h1> tags to create a heading and <div> tags.

 » Additional <div> tags to display messages created in the JavaScript file. The
<div> tag is a container that can hold content of any type:

• The first <div> tag is used to display your current longitude and latitude.

• The second <div> tag can be used to display additional content to the user.

 » Instructions to insert the HTML button and onclick attribute code, which you
researched in Book 5, Chapter 2.

Here’s the HTML code:

<!DOCTYPE html>

<html>

<head>

 <title>McDuck's App</title>

</head>

<body>

 <h1> McDuck's Local Offers</h1>

<!--1. Create a HTML button that when clicked calls the JavaScript

getLocation() function -->

<!--Two containers, called divs, used to show messages to user -->

 <div id="geodisplay"></div>

 <div id="effect"></div>

</body>

</html>

CSS
The CSS code for the McDuck’s app follows, and includes:

 » Selectors for the body, heading, and paragraph tags

 » Properties and values that set the text alignment, background color, font
family, font color, and font size

Once your app is functioning, style the app by adding a McDuck’s color scheme
and background image logo.

Co
di

ng
 a

nd
 D

eb
ug

gi
ng

 Y
ou

r
Fi

rs
t

W
eb

 A
pp

lic
at

io
n

0003053991.INDD 345 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

CHAPTER 3 Coding and Debugging Your First Web Application 345

Here’s the CSS:

body {

 text-align: center;

 background: white;

}

h1, h2, h3, p {

 font-family: Sans-Serif;

 color: black;

}

p {

 font-size: 1em;

}

JavaScript
The JavaScript code for the McDuck’s app follows. This prewritten code is a little
complex, because it calculates the current location of the user using the HTML
Geolocation API. In this section, I review the code at a high level so you can under-
stand how it works and where it came from.

The Geolocation API is the product of billions of dollars of research and is available
to you for free. The most recent browsers support geolocation, though some older
browsers do not. At a basic level, code is written to ask whether the browser sup-
ports the Geolocation API, and, if yes, to return the current location of the user.
When called, the Geolocation API balances a number of data inputs to determine
the user’s current location. These data inputs include GPS, wireless network con-
nection strength, cell tower and signal strength, and IP address.

With this in mind, let’s look at the JavaScript code. The JavaScript code includes
two functions, as follows:

 » The getLocation() function: This function determines whether the browser
supports geolocation. It does this by using an if statement and navigator.
geolocation, which is recognized by the browser as part of the Geolocation
API and which returns a true value if geolocation is supported.

Here is the getLocation() function:

function getLocation() {

 if (navigator.geolocation){

 navigator.geolocation.getCurrentPosition(showLocation);

 }

}

0003053991.INDD 346 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

346 BOOK 5 Creating Web Applications

 » The showLocation() function: When the browser supports geolocation, the
next step is to call the showlocation function, which calculates and displays
the user’s location.

And here is the showLocation() function:

function showLocation(position){

// 2. Hardcode your store location on line 12 and 13, and update the comment to

// reflect your McDuck's restaurant address

// Nik's apt @ Perry & W 4th St (change to your restaurant location)

var mcduckslat=40.735383;

var mcduckslon=-74.002994;

// current location

var currentpositionlat=position.coords.latitude;

var currentpositionlon=position.coords.longitude;

// calculate the distance between current location and McDuck's location

var distance=getDistanceFromLatLonInMiles(mcduckslat, mcduckslon,currentpositionlat,

 currentpositionlon);

// Displays the location using .innerHTML property and the lat & long coordinates

// for your current location

document.getElementById("geodisplay").innerHTML="Latitude: " + currentpositionlat +
 "
Longitude: " + currentpositionlon;
}

// haversine distance formula

The rest omitted for brevity because it's shown in Book 5, Chapter 2.

The showLocation() function performs the following tasks:

 » Assigns the McDuck longitude and latitude to mduckslat and mcduckslon
(Lines 12 and 13 of the code).

 » Assigns the longitude and latitude of the customer’s current location to
currentpositionlat and currentpositionlon (Lines 16 and 17 of
the code).

 » Calculates the distance in miles between those two points and assigns that
distance to a variable called distance (Line 20 of the code).

The Haversine formula calculates the distance between two points on a
sphere, in this case the earth, and the code is shown online but omitted here
for brevity.

Co
di

ng
 a

nd
 D

eb
ug

gi
ng

 Y
ou

r
Fi

rs
t

W
eb

 A
pp

lic
at

io
n

0003053991.INDD 347 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

CHAPTER 3 Coding and Debugging Your First Web Application 347

 » After the button is clicked, the getElementByID and .innerHTML methods
display the customer’s current longitude and latitude in an HTML tag named
“geodisplay” using the id attribute.

JavaScript functions are case-sensitive, so getLocation() differs from get
location(). The letter L is uppercase in the first function, and lowercase in the
second function. Similarly, showLocation() differs from showlocation() for the
same reason.

Coding steps for you to follow
With some of the code already written, and with research in the previous chapter,
follow these steps to insert the code:

1. Insert the HTML button code below with onclick attribute calling the
getLocation() function after line 8 in the HTML file.

<button onclick="getLocation()">McDuck's Check-in</button>

After you insert this code, press the button. If your location settings are
enabled and you inserted the code properly, you will see a dialog box asking
for your permission to share your computer’s location. As shown in Figure 3-2,
look at the top of your browser window and click Allow.

2. Update lines 12 and 13 in the JavaScript file with the latitude and longi-
tude of the restaurant near you serving as the McDuck’s store.

After you have updated the location, make sure to change the comment in line
10 to reflect the address of your restaurant (instead of my apartment).

3. Add an alert that displays the distance between your location and the
restaurant.

The distance variable stores the miles from your current location to the
restaurant. Make a rough estimate — or use a map for greater precision — of
your current distance from the restaurant you picked. Then using an alert,
show the distance by inserting this code below in line 23.

alert(distance);

If the distance in the alert is larger or smaller than you expected, you likely
entered in incorrect values for the latitude or longitude. If the distance matches
your estimate, insert two slashes ("//") before the alert and comment it out.

0003053991.INDD 348 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

348 BOOK 5 Creating Web Applications

4. Write an if-else statement on line 26 to show an alert if you are within
your threshold distance to the restaurant.

My code, based on a half-mile threshold distance, is displayed below — yours
may vary depending on your alert text and threshold distance. (See Figure 3-3.)

if (distance < 0.5) {

 alert("You get a free burger");

}

else {

 alert("Thanks for checking in!");

}

When your app logic is working, you can change alert("You get a free
burger"); to an actual picture of a coupon or burger. To do so, replace the
entire line the alert is on with the following code:

document.getElementById("effect").innerHTML="<img

src'http://www.image.com/image.jpg'>";

Replace the URL after src and within the single quotes to your own image
URL. Be sure to keep the double quotation marks after the first equal sign and
before the semicolon, and the single quotation marks after the second equal
sign and before the right angle bracket.

FIGURE 3-2:
The browser
asks for your

 permission
before sharing
your location.

Co
di

ng
 a

nd
 D

eb
ug

gi
ng

 Y
ou

r
Fi

rs
t

W
eb

 A
pp

lic
at

io
n

0003053991.INDD 349 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

CHAPTER 3 Coding and Debugging Your First Web Application 349

5. (Optional) When the app is working, change the text colors and insert
background images to make the app look more professional.

Use hex-values or color names, as discussed in Book 3, Chapter 3, to change
the text and background colors. Additionally, you can insert a background
image, as you did in the Codecademy About You exercise, using the following
code (see Figure 3-4):

background-image: url("http://www.image.com/image.jpg");

FIGURE 3-3:
The McDuck’s

app displaying an
offer to come to

the store.

FIGURE 3-4:
The completed

McDuck’s
app with

styled content
displaying an
image to the

user.

0003053991.INDD 350 Trim size: 7.375 in × 9.25 in March 31, 2017 4:35 AM

350 BOOK 5 Creating Web Applications

Debugging Your App
When coding your app, you will almost inevitably write code that does not behave
as you intended. HTML and CSS are relatively forgiving, with the browser even
going so far as to insert tags so the page renders properly. However, JavaScript
isn’t so forgiving, and the smallest error, such as a missing quotation mark, can
cause the page to not render properly.

Errors in web applications can consist of syntax errors, logic errors, and display
errors. Given that we worked through the logic together, the most likely culprit
causing errors in your code will be syntax related. Here are some common errors
to check when debugging your code:

 » Opening and closing tags: In HTML, every opening tag has a closing tag, and
you always close the most recently opened tag first.

 » Right and left angle brackets: In HTML, every left angle bracket < has a right
angle bracket >.

 » Right and left curly brackets: In CSS and JavaScript, every left curly bracket
must have a right curly bracket. It can be easy to accidentally delete it or
forget to include it.

 » Indentation: Indent your code and use plenty of tabs and returns to make
your code as readable as possible. Proper indentation will make it easier for
you to identify missing tags, angle brackets, and curly brackets.

 » Misspelled statements: Tags in any language can be misspelled, or spelled
correctly but not part of the specification. For example, in HTML, <img
scr="image.jpg"> is incorrect because scr should really be src for the
image to render properly. Similarly, in CSS font-color looks like it is spelled
correctly but no such property exists. The correct property to set font color is
just color.

Keep these errors in mind when debugging — they may not solve all your
problems, but they should solve many of them. If you have tried the steps above
and still cannot debug your code, tweet me at @nikhilgabraham and include the
#codingFD hashtag and your codepen.io URL in your tweet.

6
0003053967.INDD 351 Trim size: 7.375 in × 9.25 in March 30, 2017 11:17 PM

 Selecting Data
Analysis Tools

0003053967.INDD 352 Trim size: 7.375 in × 9.25 in March 30, 2017 11:17 PM

Contents at a Glance
CHAPTER 1: Wrapping Your Head around Python 353

What Does Python Do? . 354
Defining Python Structure . 355
Coding Common Python Tasks and Commands 357
Shaping Your Strings . 363
Building a Simple Tip Calculator Using Python 365

CHAPTER 2: Installing a Python Distribution 367
Choosing a Python Distribution with
Machine Learning in Mind . 368
Installing Python on Linux . 371
Installing Python on Mac OS X . 372
Installing Python on Windows . 374
Downloading the Data Sets and Example Code 378

CHAPTER 3: Working with Real Data . 387
Uploading, Streaming, and Sampling Data 388
Accessing Data in Structured Flat-File Form 392
Sending Data in Unstructured File Form . 397
Managing Data from Relational Databases 400
Interacting with Data from NoSQL Databases 401
Accessing Data from the Web . 402

CHAPTER 1 Wrapping Your Head around Python 353

0003053992.INDD 353 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

 Wrapping Your Head
around Python

 “I chose Python as a working title for the project, being in a slightly irreverent
mood and a big fan of Monty Python’s Flying Circus.”

 — GUIDO VAN ROSSUM

 P ython is a server-side language created by Guido van Rossum, a developer
who was bored during the winter of 1989 and looking for a project to do. At
the time, van Rossum had already helped create one language, called ABC,

and the experience had given him many ideas that he thought would appeal to pro-
grammers. He executed these ideas when he created Python. Although ABC never
achieved popularity with programmers, Python was a runaway success. Python is
one of the world’s most popular programming languages, used by beginners just
starting out and professionals building heavy-duty applications.

 In this chapter, you deal with Python basics, including the design philosophy
behind Python, how to write Python code to perform basic tasks, and steps to cre-
ate your fi rst Python program.

Chapter 1

 IN THIS CHAPTER

 » Understanding Python principles and
style

 » Practicing Python code, such as
assigning variables and using if
statements

 » Producing a simple Python project

0003053992.INDD 354 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

354 BOOK 6 Selecting Data Analysis Tools

What Does Python Do?
Python is a general-purpose programming language typically used for web devel-
opment. Python allows for storing data after the user has navigated away from
the page or closed the browser, unlike HTML, CSS, and JavaScript. Using Python
commands, you can create, update, store, and retrieve this data in a database.
For example, imagine I wanted to create a local search and ratings site like Yelp.
com. The reviews users write are stored in a central database. Review authors can
exit the browser, turn off the computer, and come back to the website later to
find their reviews. Additionally, when others search for venues, this same central
database is queried, and the same reviews are displayed. Storing data in a database
is a common task for Python developers, and existing Python libraries include
prebuilt code that makes it easy to create and query databases.

SQLite is one free, lightweight database commonly used by Python programmers
to store data.

Many highly trafficked websites, such as YouTube, are created with Python. Other
websites currently using Python include

 » Quora for its community question and answer site

 » Spotify for internal data analysis

 » Dropbox for its desktop client software

 » Reddit for generating crowd-sourced news

 » Industrial Light & Magic and Disney Animation for creating film special effects

From websites to software to special effects, Python is an extremely versatile lan-
guage, powerful enough to support a range of applications. In addition, to help
spread Python code, Python programmers create libraries, which are stand-alone
prewritten sets of code that do certain tasks, and make them publicly available
for others to use and improve. For example, a library called Scrapy performs web
scraping, while another library called SciPy performs math functions used by
scientists and mathematicians. The Python community maintains thousands of
libraries like these, and most are free and open-source software.

You can generally confirm the front-end programming language used by any
major website with BuiltWith available at www.builtwith.com. After entering
the website address in the search bar, look under the Frameworks section for
Python. Note that websites may use Python for back-end services not visible to
BuiltWith.

W
ra

pp
in

g
Yo

ur
 H

ea
d

ar
ou

nd
 P

yt
ho

n

0003053992.INDD 355 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

CHAPTER 1 Wrapping Your Head around Python 355

Defining Python Structure
Python has its own set of design principles that guide how the rest of the lan-
guage is structured. To implement these principles, every language has its own
conventions, such as curly braces in JavaScript or opening and closing tags in
HTML. Python is no different, and I cover both design principles and conventions
so you can understand what Python code looks like, understand Python’s style,
and know the special keywords and syntax that allow the computer to recognize
what you’re trying to do. Python, like JavaScript, can be very particular about
syntax, and misspelling a keyword or forgetting a necessary character will result
in the program not running.

Understanding the Zen of Python
Nineteen design principles describe how the Python language is organized. Some
of the most important principles include

 » Readability counts. This is possibly Python’s most important design principle.
Python code looks almost like English, and even enforces certain formatting,
such as indenting, to make the code easier to read. Highly readable code
means that six months from now when you revisit your code to fix a bug or
add a feature, you will be able to jump in without trying too hard to remember
what you did. Readable code also means others can use your code or help
debug your code with ease.

Reddit.com is among the top 10 most visited websites in the United States
and the top 50 most visited websites in the world. Its cofounder, Steve
Huffman, initially coded the website in Lisp and switched to Python because
Python is “extremely readable, and extremely writeable.”

 » There should be one — and preferably only one — obvious way to do it.
This principle is directly opposite to Perl’s motto, “There’s more than one way
to do it.” In Python, two different programmers may approach the same
problem and write two different programs, but the ideal is that the code will
be similar and easy to read, adopt, and understand. Although Python does
allow multiple ways to do a task — as, for example, when combining two
strings — if an obvious and common option exists, it should be used.

 » If the implementation is hard to explain, it’s a bad idea. Historically,
programmers were known to write esoteric code to increase performance.
However, Python was designed not to be the fastest language, and this
principle reminds programmers that easy-to-understand implementations are
preferable over faster but harder-to-explain ones.

0003053992.INDD 356 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

356 BOOK 6 Selecting Data Analysis Tools

Access the full list by design principles, which is in the form of a poem, by typ-
ing import this; into any Python interpreter, or by visiting www.python.org/dev/
peps/pep-0020. These principles, written by Tim Peters, a Python community
member, were meant to describe the intentions of Python’s creator, van Rossum,
who is also referred to as the Benevolent Dictator for Life (BDFL).

Styling and spacing
Python generally uses less punctuation than other programming languages you
may have previously tried. Some sample code is included here:

first_name=raw_input("What's your first name?")

first_name=first_name.upper()

if first_name=="NIK":

 print "You may enter!"

else:

 print "Nothing to see here."

The examples in this book are written for Python 2.7. Two popular versions of
Python are currently in use — Python 2.7 and Python 3. Python 3 is the latest
version of the language, but it isn’t backward-compatible, so code written using
Python 2.7 syntax doesn’t work when using a Python 3 interpreter. Initially,
Python 2.7 had more external libraries and support than Python 3, but this is
changing. For more about the differences between versions see https://wiki.
python.org/moin/Python2orPython3.

If you were to run this code, it would do the following:

 » Print a line asking for your first name.

 » Take user input (raw_input(What’s your first name?)) and save it to the
first_name variable.

 » Transform any input text into uppercase.

 » Test the user input. If it equals “NIK,” then the code will print “You may
enter!” Otherwise it will print “Nothing to see here.”

Each of these statement types is covered in more detail later in this chapter. For
now, as you look at the code, notice some of its styling characteristics:

 » Uses less punctuation. Unlike JavaScript, Python has no curly braces, and
unlike HTML, no angle brackets.

W
ra

pp
in

g
Yo

ur
 H

ea
d

ar
ou

nd
 P

yt
ho

n

0003053992.INDD 357 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

CHAPTER 1 Wrapping Your Head around Python 357

 » Whitespace matters. Statements indented to the same level are grouped
together. In the preceding example, notice how the if and else align, and the
print statements underneath each are indented the same amount. You can
decide on the amount of indentation and whether to use tabs or spaces as
long as you’re consistent. Generally, four spaces from the left margin is
considered the style norm.

See Python style suggestions on indentation, whitespace, and commenting by
visiting https://www.python.org/dev/peps/pep-0008.

 » Newlines indicate the end of statements. Although you can use semicolons
to put more than one statement on a line, the preferred and more common
method is to put each statement on its own line.

 » Colons separate code blocks. New Python programmers sometimes ask
why using colons to indicate code blocks, like the one at the end of the if
statement, is necessary when newlines would suffice. Early user testing with
and without the colons showed that beginner programmers better under-
stood the code with the colon.

Coding Common Python Tasks
and Commands

Python, as with other programming languages, can do everything from simple
text manipulation to designing complex graphics in games. The following basic
tasks are explained within a Python context, but they’re foundational to under-
standing any programming language. Even experienced developers learning a
new language, like Apple’s recently released Swift programming language, start
by learning these foundational tasks.

Start using some basic Python now, or practice these skills right away by jump-
ing ahead to the “Building a Simple Tip Calculator Using Python” section, later in
this chapter.

Millions of people have used Python, so it’s easy to find answers to questions that
might arise while learning simply by conducting an Internet search. The odds are
in your favor that someone has asked your question before.

Defining data types and variables
Variables, like the ones in algebra, are keywords used to store data values for
later use. Though the data stored in a variable may change, the variable name will

0003053992.INDD 358 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

358 BOOK 6 Selecting Data Analysis Tools

always be the same. Think of a variable as a gym locker — what you store in the
locker changes, but the locker number always stays the same.

Variables in Python are named using alphanumeric characters and the underscore
(_) character, and they must start with a letter or an underscore. Table 1-1 lists
some of the data types that Python can store.

To initially set or change a variable’s value, write the variable name, a single equal
sign, and the variable value, as shown in the following example:

myName = "Nik"

pizzaCost = 10

totalCost = pizzaCost * 2

Avoid starting your variable names with the number one (1), a lowercase “L” (l),
or uppercase i (I). Depending on the font used, these characters can all look the
same, causing confusion for you or others later!

Variable names are case-sensitive, so when referring to a variable in your pro-
gram, remember that MyName is a different variable than myname. In general, give
your variable a name that describes the data being stored.

Computing simple and advanced math
After you create variables, you may want to do some math on the numerical val-
ues stored in those variables. Simple math like addition, subtraction, multiplica-
tion, and division is done using operators you already know. Exponentiation (for
example, 2 to the power of 3) is done differently in Python than in JavaScript and
uses two asterisks. Examples are shown here:

TABLE 1-1	 Data Stored by a Variable
Data Type Description Example

Numbers Positive or negative numbers with or without decimals 156

-101.96

Strings Printable characters Holly Novak

Señor

Boolean Value can either be true or false true

false

W
ra

pp
in

g
Yo

ur
 H

ea
d

ar
ou

nd
 P

yt
ho

n

0003053992.INDD 359 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

CHAPTER 1 Wrapping Your Head around Python 359

num1 = 1+1 #equals 2
num2 = 5-1 #equals 4

num3 = 3*4 #equals 12

num4 = 9/3 #equals 3

num5 = 2**3 #equals 8

The # symbol indicates a comment in Python.

Don’t just read these commands, try them! Go to http://repl.it/languages/
Python for a lightweight in-browser Python interpreter that you can use right in
your browser without downloading or installing any software.

Advanced math like absolute value, rounding to the nearest decimal, rounding up,
or rounding down can be performed by using math functions. Python has some
functions that are built-in prewritten code that can be referenced to make per-
forming certain tasks easier. The general syntax to use Python math functions is
to list the function name, followed by the variable name or value as an argument,
as follows:

method(value)

method(variable)

The math functions for absolute value and rounding follow the preceding syntax,
but some math functions, like rounding up or rounding down, are stored in a
separate math module. To use these math functions you must

 » Write the statement import math just once in your code before using the
math functions in the math module.

 » Reference the math module, as follows: math.method(value) or math.
method(variable).

See these math functions with examples in Table 1-2.

TABLE 1-2	 Common Python Math Functions
Function Name Description Example Result

abs(n) Return the absolute value of a number (n). abs(-99) 99

round (n, d) Round a number (n) to a number of decimal points (d). round (3.1415, 2) 3.14

math.floor(n) Round down to the nearest integer. math.floor(4.7) 4.0

math.ceil(n) Round up to the nearest integer. math.ceil(7.3) 8.0

0003053992.INDD 360 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

360 BOOK 6 Selecting Data Analysis Tools

Modules are separate files that contain Python code, and the module must be ref-
erenced or imported before any code from the module can be used.

See all the function in the math module by visiting https://docs.python.org/2/
library/math.html.

Using strings and special characters
Along with numbers, variables in Python can also store strings. To assign a value
to a string, you can use single or double quotation marks, as follows:

firstname = "Travis"

lastname = 'Kalanick'

Variables can also store numbers as strings instead of numbers. However, even
though the string looks like a number, Python will not be able to add, subtract, or
divide strings and numbers. For example, consider amountdue = "18" + 24 —
running this code as is would result in an error. Python does multiply strings but
in an interesting way — print 'Ha' * 3 results in 'HaHaHa'.

Including a single or double quote in your string can be problematic because the
quotes inside your string will terminate the string definition prematurely. For
example, if I want to store a string with the value ‘I’m on my way home’ Python
will assume the ' after the first letter I is the end of the variable assignment,
and the remaining characters will cause an error. The solution is to use special
characters called escape sequences to indicate when you want to use characters
like quotation marks, which normally signal the beginning or end of a string, or
other nonprintable characters like tabs. Table 1-3 shows some examples of escape
sequences.

TABLE 1-3	 Common Python Escape Sequences
Special Character Description Example Result

\' or \" Quotation marks print "You had me at
\"Hello\""

You had me
at "Hello"

\t Tab print "Item\tUnits \tPrice" Item Units Price

\n Newline print "Anheuser?\nBusch?
\nBueller? Bueller?"

Anheuser?

Busch?

Bueller? Bueller?

W
ra

pp
in

g
Yo

ur
 H

ea
d

ar
ou

nd
 P

yt
ho

n

0003053992.INDD 361 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

CHAPTER 1 Wrapping Your Head around Python 361

Escape sequences are interpreted only for strings with double quotation marks.
For a full list of escape sequences, see the table under Section 2.4 “Literals” at
http://docs.python.org/2/reference/lexical_analysis.html.

Deciding with conditionals: if, elif, else
With data stored in a variable, one common task is to compare the variable’s value
to a fixed value or another variable’s value, and then make a decision based on the
comparison. If you previously read the chapters on JavaScript, the discussion and
concepts here are very similar. The general syntax for an if-elif-else statement
is as follows:

if conditional1:

 statement1 to execute if conditional1 is true

elif conditional2:

 statement2 to execute if conditional2 is true

else:

 statement3 to run if all previous conditional are false

Notice there are no curly brackets or semicolons, but don’t forget the colons and
to indent your statements!

The initial if statement will evaluate to true or false. When conditional1 is
true, then statement1 is executed. This is the minimum necessary syntax needed
for an if-statement, and the elif and else are optional. When present, the elif
tests for an additional condition when conditional1 is false. You can test for as
many conditions as you like using elif. Specifying every condition to test for can
become tedious, so having a “catchall” is useful. When present, the else serves as
the “catchall” and executes when all previous conditionals are false.

You cannot have an elif or an else by itself, without a preceding if statement.
You can include many elif statements, but one and only one else statement.

The conditional in an if statement compares values using comparison operators,
and common comparison operators are described in Table 1-4.

Here is an example if statement:

carSpeed=55

if carSpeed > 55:

 print "You are over the speed limit!"

elif carSpeed == 55:

 print "You are at the speed limit!"

else:

 print "You are under the speed limit!"

0003053992.INDD 362 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

362 BOOK 6 Selecting Data Analysis Tools

As the diagram in Figure 1-1 shows, there are two conditions, each signaled by
the diamond, which are evaluated in sequence. In this example, carSpeed is equal
to 55, so the first condition (carSpeed > 55) is false, the second conditional
(carSpeed==55) is true, and the statement executes printing “You are at the
speed limit!” When a conditional is true, the if statement stops executing, and
the else is never reached.

Input and output
Python can collect input from the user and display output to the user. To collect
user input use the raw_input("Prompt") method, which stores the user input as
a string. In the following example, the user enters his full name, which is stored
in a variable called full_name.

full_name = raw_input("What's your full name?")

TABLE 1-4	 Common Python Comparison Operators
Type Operator Description Example

Less than < Evaluates whether one value is less than another value. x < 55

Greater than > Evaluates whether one value is greater than another value. x > 55

Equality == Evaluates whether two values are equal. x == 55

Less than or
equal to

<= Evaluates whether one value is less than or equal to
another value.

x <= 55

Greater than
or equal to

>= Evaluates whether one value is greater than or equal to
another value.

x >= 55

Inequality != Evaluates whether two values are not equal. x != 55

FIGURE 1-1:
An if-else

statement with
an elif.

W
ra

pp
in

g
Yo

ur
 H

ea
d

ar
ou

nd
 P

yt
ho

n

0003053992.INDD 363 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

CHAPTER 1 Wrapping Your Head around Python 363

Imagine that the user entered his name as “Jeff Bezos.” You can display the value
of the variable using print full_name, in which case, you will see this:

Jeff Bezos

Python does not store the newline \n escape sequence after user input.

At this point, you may feel like printing variables and values in a Python inter-
preter console window is very different from dynamically creating web pages with
variables created in Python. Integrating Python into a web page to respond to user
requests and generate HTML pages is typically done with a Python web frame-
work, like Django or Flask, which have prewritten code to make the process easier.
These frameworks typically require some installation and setup work, and gener-
ally separate the data being displayed from templates used to display the page to
the user.

Shaping Your Strings
Whenever you collect input from users, you need to clean the input to remove
errors and inconsistencies. Here are some common data cleaning tasks:

 » Standardizing strings to have consistent uppercase and lowercase

 » Removing whitespace from user input

 » Inserting a variable’s value in strings displayed to the user

Python includes many built-in methods that make processing strings easy.

Dot notation with upper(), lower(),
capitalize(), and strip()
Standardizing user input to have proper case and to remove extra whitespace
characters is often necessary to easily sort the data later. For example, imagine
you are designing a website for the New York Knicks so fans can meet players after
the game. The page asks fans to enter their names so that team security can later
check fan names against this list before entry. Reviewing past fan entries, you see
that fans enter the same name several ways like “Mark,” “mark,” “marK,” and
other similar variants that cause issues when the list is sorted alphabetically. To
make the input and these names consistent, you could use the string functions
described in Table 1-5.

0003053992.INDD 364 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

364 BOOK 6 Selecting Data Analysis Tools

String formatting with %
To insert variable values into strings shown to the user, you can use the string
format operator %. Inserted into the string definition, %d is used to specify inte-
gers, %s is used to specify strings, and the variables to format (mapping key) are
specified in parenthesis after the string is defined. Here is the example code and
result:

Code:

yearofbirth = 1990

pplinroom = 20

name = "Mary"

print "Your year of birth is %d. Is this correct?" % (yearofbirth)

print 'Your year of birth is %d. Is this correct?' % (yearofbirth)

print "There are %d women in the room born in %d and %s is one of them."

% (pplinroom/2,

yearofbirth, name)

Result:

Your year of birth is 1990. Is this correct?

Your year of birth is 1990. Is this correct?

There are 10 women in the room born in 1990 and Mary is one of them.

The first string used double quotes, and the variable was inserted into the string
and displayed to the user. The second string behaved just like the first string,
because defining strings with single quotes does not affect the string formatting.
The third string shows that code can be evaluated (pplinroom / 2) and inserted
into the string.

The string.format() method is another way to format strings in Python.

TABLE 1-5	 Select Python String Functions
Function Name Description Example Result

string.upper() Returns all uppercase characters. "nY".upper() "NY"

string.lower() Returns all lowercase characters. "Hi".lower() "hi"

string.capitalize() Capitalizes first letter, lowercases
remaining letters.

"wake UP".capitalize() "Wake up"

string.strip() Removes leading and trailing
whitespaces.

" Ny ".strip() "Ny"

W
ra

pp
in

g
Yo

ur
 H

ea
d

ar
ou

nd
 P

yt
ho

n

0003053992.INDD 365 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

CHAPTER 1 Wrapping Your Head around Python 365

Building a Simple Tip Calculator
Using Python

Practice your Python online using the Codecademy website. Codecademy is a free
website created in 2011 to allow anyone to learn how to code right in the browser,
without installing or downloading any software. Practice all the tags (and a few
more) that you found in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingaiolinks, and
click the link to Codecademy.

2. If you have a Codecademy account, sign in.

Signing up is discussed in Book 1, Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click Python Syntax to practice some basic Python
commands.

Background information is presented in the upper-left portion of the site, and
instructions are presented in the lower-left portion of the site.

4. Complete the instructions in the main coding window.

5. After you have finished completing the instructions, click the Save and
Submit Code button.

If you have followed the instructions correctly, a green checkmark appears,
and you proceed to the next exercise. If an error exists in your code, a warning
appears with a suggested fix. If you run into a problem, or have a bug you
cannot fix, click the hint, use the Q&A Forum, or tweet me at @nikhilgabraham
and include the hashtag #codingFD. Additionally, you can sign up for book
updates and explanations for changes to programming language commands
by visiting http://tinyletter.com/codingfordummies.

0003053992.INDD 366 Trim size: 7.375 in × 9.25 in March 31, 2017 4:37 AM

CHAPTER 2 Installing a Python Distribution 367

0003053993.INDD 367	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

 Installing a Python
Distribution

 “For many people my software is something you install and forget. I like to
keep it that way.”

 — WIETSE VENEMA

 B efore you can do too much with Python or use it to solve machine learning
problems, you need a workable installation. In addition, you need access
to the data sets and code used for this book. Downloading the sample code

(found at www.dummies.com/go/codingaiodownloads) and installing it on your
system is the best way to get a good learning experience from the book. This
chapter helps you get your system set up so that you can easily follow the exam-
ples in the remainder of the book.

Using the downloadable source code doesn’t prevent you from typing the exam-
ples on your own, following them using a debugger, expanding them, or working
with the code in all sorts of ways. The downloadable source code is there to help
you get a good start with your machine learning and Python learning experience.
After you see how the code works when it’s correctly typed and confi gured, you
can try to create the examples on your own. If you make a mistake, you can com-
pare what you’ve typed with the downloadable source code and discover precisely
where the error exists. You can fi nd the downloadable source for this chapter in
the ML4D; 06; Sample.ipynb and ML4D; 06; Dataset Load.ipynb fi les.

Chapter 2

 IN THIS CHAPTER

 » Determining which Python
distribution to use for machine
learning

 » Performing a Linux, Mac OS X, and
Windows installation

 » Obtaining the data sets and example
code

0003053993.INDD 368	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

368 		BOOK	6	 Selecting Data Analysis Tools

Choosing a Python Distribution with
Machine Learning in Mind

It’s entirely possible to obtain a generic copy of Python and add all the required
machine learning libraries to it. The process can be difficult because you need to
ensure that you have all the required libraries in the correct versions to guarantee

USING PYTHON 2.7.X FOR THIS BOOK
There	are	currently	two	parallel	Python	developments.	Most	books	rely	on	the	newest	
version	of	a	language	for	examples.	Actually,	however,	two	new	versions	of	Python	
exist	that	you	can	use	as	of	this	writing:	2.7.13	and	3.6.0.	Python	is	unique	in	that	some	
groups	use	one	version	and	other	groups	use	the	other	version.	Because	data	scientists	
and	others	who	perform	machine	learning	tasks	mainly	use	the	2.7.x	version	of	Python,	
this	book	concentrates	on	that	version.	(Eventually,	all	development	tasks	will	move	to	
the	3.x	version	of	the	product.)	Using	the	2.7.x	version	means	that	you’re	better	able	to	
work	with	other	people	who	perform	machine	learning	tasks	when	you	complete	this	
book.	If	the	book	used	the	3.6.x	version	instead,	you	might	find	it	hard	to	understand	
examples	that	you	see	in	real-world	applications.

If	you	truly	want	to	use	the	3.6.x	version	with	this	book,	you	can	do	so,	but	you	need	to	
understand	that	the	examples	may	not	always	work	as	written.	For	example,	when	using	
the	Python	2.7	print()	function,	you	don’t	absolutely	need	to	include	parentheses.	The	
Python	3.6	version	of	the	same	function	raises	an	error	unless	you	do	use	the	paren-
theses.	Even	though	it	seems	like	a	minor	difference,	it’s	enough	to	cause	confusion	for	
some	people,	and	you	need	to	keep	it	in	mind	as	you	work	through	the	examples.

Fortunately,	you	can	find	a	number	of	online	sites	that	document	the	version	2.7	and	
version	3.6	differences:

• One	of	the	easiest	sites	to	understand	is	nbviewer	at	http://nbviewer.ipython.
org/github/rasbt/python_reference/blob/master/tutorials/key_
differences_between_python_2_and_3.ipynb.

• Another	good	place	to	look	is	the	DigitalOcean	blog	at	https://www.digital
ocean.com/community/tutorials/python-2-vs-python-3-practical-
considerations-2.

These	sites	will	help	you	if	you	choose	to	use	version	3.6	with	this	book.	However,	the	
book	supports	only	version	2.7,	and	you	use	version	3.6	at	your	own	risk.

0003053993.INDD 369	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 369

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

success. In addition, you need to perform the configuration required to make sure
that the libraries are accessible when you need them. Fortunately, going through
the required work is not necessary because a number of Python machine learning
products are available for you to use. These products provide everything needed to
get started with machine learning projects.

You can use any of the packages mentioned in the following sections to work with
the examples in this book. However, the book’s source code and downloadable
source code rely on Continuum Analytics Anaconda because this particular pack-
age works on every platform this book supports: Linux, Mac OS X, and Windows.
The book doesn’t mention a specific package in the chapters that follow, but all
screenshots reflect how things look when using Anaconda on Windows. You may
need to tweak the code to use another package, and the screens will look different
if you use Anaconda on another platform.

Windows 10 presents some serious installation issues when working with Python.
Windows 10 doesn’t provide a great environment for Python, because the auto-
matic upgrades mean your system is always changing. If you’re working with
Windows 10, simply be aware that your road to a Python installation will be a
rocky one. If you run into problems, try installing Python 3.x and run the program
from the command line instead of from the Start menu.

Getting Continuum Analytics Anaconda
The basic Anaconda package is a free download that you obtain at www.
continuum.io/downloads. Simply click Download Anaconda to obtain access
to the free product. You do need to provide an email address to get a copy of
 Anaconda. After you provide your email address, you go to another page, where
you can choose your platform and the installer for that platform. Anaconda
 supports the following platforms:

 » Windows	32-bit	and	64-bit

The	installer	may	offer	you	only	the	64-bit	or	32-bit	version,	depending	on	
which	version	of	Windows	it	detects.

 » Linux	32-bit	and	64-bit

 » Mac	OS	X	64-bit

The code written for this book requires Anaconda 2.1.0 using Python 2.7, which
you can download at https://repo.continuum.io/archive (refer to the “Using
Python 2.7.x for this book” sidebar for details). You can also choose to install
Python 3.5 by clicking one of the links where the filename begins with Anaconda3.

0003053993.INDD 370	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

370 		BOOK	6	 Selecting Data Analysis Tools

Both Windows and Mac OS X provide graphical installers. When using Linux, you
rely on the bash utility.

The code exercises and commands in this book will not work as-is if you use the
latest version of Anaconda, as a new version is expected to be released during the
book’s publication with a different command syntax. Make sure you download
and use Anaconda 2.1.0.

The Miniconda installer can potentially save time by limiting the number of features
you install. However, trying to figure out precisely which packages you do need is
an error-prone and time-consuming process. In general, you want to perform a full
installation to ensure that you have everything needed for your projects. Even a full
install doesn’t require much time or effort to download and install on most systems.

The free product is all you need for this book. However, when you look at the
site, you see that many other add-on products are available. These products can
help you create robust applications. For example, when you add Accelerate to the
mix, you obtain the capability to perform multicore and GPU-enabled opera-
tions. The use of these add-on products is outside the scope of this book, but the
 Anaconda site provides details on using them.

The following Python software packages are alternatives to the basic Anaconda
package, but you do not need to install all or even any of these software programs.

Getting Enthought Canopy Express
Enthought Canopy Express is a free product for producing both technical and
scientific applications using Python. You can obtain it at www.enthought.com/
canopy-express. Click Download Free on the main page to see a listing of the ver-
sions that you can download. Only Canopy Express is free; the full Canopy product
comes at a cost. However, you can use Canopy Express to work with the examples
in this book. Canopy Express supports the following platforms:

 » Windows	32-bit	and	64-bit

 » Linux	32-bit	and	64-bit

 » Mac	OS	X	32-bit	and	64-bit

Choose the platform and version you want to download. When you click Down-
load Canopy Express, you see an optional form for providing information about
yourself. The download starts automatically, even if you don’t provide personal
information to the company.

0003053993.INDD 371	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 371

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

One of the advantages of Canopy Express is that Using Python 2.7.x for this book is
heavily involved in providing support for both students and teachers. People also
can take classes, including online classes, that teach the use of Canopy Express in
various ways (see https://training.enthought.com/courses).

Getting Python(x,y)
The Python(x,y) Integrated Development Environment (IDE) is a community
project hosted on Google at http://python-xy.github.io. It’s a Windows-only
product, so you can’t easily use it for cross-platform needs. (In fact, it supports
only Windows Vista, Windows 7, and Windows 8.) However, it does come with a
full set of libraries, and you can easily use it for this book if you want.

Because Python(x,y) uses the GNU General Public License (GPL) v3 (see www.gnu.
org/licenses/gpl.html), you have no add-ons, training, or other paid features
to worry about. No one will come calling at your door hoping to sell you some-
thing. In addition, you have access to all the source code for Python(x,y), so you
can make modifications if you want.

Getting WinPython
The name tells you that WinPython is a Windows-only product that you can find
at winpython.github.io. This product is actually a spin-off of Python(x,y) and
isn’t meant to replace it. Quite the contrary: WinPython is simply a more flexible
way to work with Python(x,y). You can read about the motivation for creating
WinPython at https://sourceforge.net/p/winpython/wiki/Roadmap.

The bottom line for this product is that you gain flexibility at the cost of friendli-
ness and a little platform integration. However, for developers who need to main-
tain multiple versions of an IDE, WinPython may make a significant difference.
When using WinPython with this book, make sure to pay particular attention to
configuration issues, or you’ll find that even the downloadable code has little
chance of working.

Installing Python on Linux
You use the command line to install Anaconda on Linux — there is no graphi-
cal installation option. Before you can perform the install, you must download a
copy of the Linux software from the Continuum Analytics site. You can find the

0003053993.INDD 372	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

372 		BOOK	6	 Selecting Data Analysis Tools

required download information in the “Getting Continuum Analytics Anaconda”
section, earlier in this chapter. The following procedure should work fine on any
Linux system, whether you use the 32-bit or 64-bit version of Anaconda:

1. Open a copy of Terminal.

The	Terminal	window	appears.

2. Change directories to the downloaded copy of Anaconda on your system.

The	name	of	this	file	varies,	but	normally	it	appears	as	Anaconda-2.1.0-
Linux-x86.sh	for	32-bit	systems	and	Anaconda-2.1.0-Linux-x86_64.sh
for	64-bit	systems.

The	version	number	is	embedded	as	part	of	the	filename.	In	this	case,	the	
filename	refers	to	version	2.1.0,	which	is	the	version	used	for	this	book.	If	you	
use	some	other	version,	you	may	experience	problems	with	the	source	code	
and	need	to	make	adjustments	when	working	with	it.

3. Type	bash	Anaconda-2.1.0-Linux-x86.sh	(for the 32-bit version) or	Anaconda-
2.1.0-Linux-x86_64.sh	(for the 64-bit version) and press Enter.

An	installation	wizard	starts	that	asks	you	to	accept	the	licensing	terms	for	
using	Anaconda.

4. Read the licensing agreement and accept the terms using the method
required for your version of Linux.

The	wizard	asks	you	to	provide	an	installation	location	for	Anaconda.	The	book	
assumes	that	you	use	the	default	location	of	~/anaconda.	If	you	choose	some	
other	location,	you	may	have	to	modify	some	procedures	later	in	the	book	to	
work	with	your	setup.

5. Provide an installation location (if necessary) and press Enter (or click
Next).

The	application	extraction	process	begins.	After	the	extraction	is	complete,	you	
see	a	completion	message.

6. Add the installation path to your PATH statement using the method
required for your version of Linux.

You’re	ready	to	begin	using	Anaconda.

Installing Python on Mac OS X
The Mac OS X installation comes in only one form: 64-bit.

0003053993.INDD 373	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 373

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

Before you can perform the install, you must download a copy of the Mac software
from the Continuum Analytics site. You can find the required download infor-
mation in the “Getting Continuum Analytics Anaconda” section, earlier in this
chapter.

The following steps help you install Anaconda 64-bit on a Mac system:

1. Locate the downloaded copy of Anaconda on your system.

The	name	of	this	file	varies,	but	normally	it	appears	as	Anaconda-2.1.0-MacOSX-
x86_64.pkg.	The	version	number	is	embedded	as	part	of	the	filename.	In	this	
case,	the	filename	refers	to	version	2.1.0,	which	is	the	version	used	for	this	book.	
If	you	use	some	other	version,	you	may	experience	problems	with	the	source	
code	and	need	to	make	adjustments	when	working	with	it.

2. Double-click the installation file.

An	introduction	dialog	box	appears.

3. Click Continue.

The	wizard	asks	whether	you	want	to	review	the	Read	Me	materials.

You	can	read	these	materials	later.	For	now,	you	can	safely	skip	the	information.

4. Click Continue.

The	wizard	displays	a	licensing	agreement.

Be	sure	to	read	through	the	licensing	agreement	so	that	you	know	the	terms	of	
usage.

5. Click I Agree if you agree to the licensing agreement.

The	wizard	asks	you	to	provide	a	destination	for	the	installation.	The	destina-
tion	controls	whether	the	installation	is	for	an	individual	user	or	a	group.

You	may	see	an	error	message	stating	that	you	can’t	install	Anaconda	on	the	
system.	The	error	message	occurs	because	of	a	bug	in	the	installer	and	has	nothing	
to	do	with	your	system.	To	get	rid	of	the	error	message,	choose	the	Install	Only	for	
Me	option.	You	can’t	install	Anaconda	for	a	group	of	users	on	a	Mac	system.

6. Click Continue.

The	installer	displays	a	dialog	box	containing	options	for	changing	the	installa-
tion	type.	Click	Change	Install	Location	if	you	want	to	modify	where	Anaconda	
is	installed	on	your	system.	(The	book	assumes	that	you	use	the	default	path	of	
~/anaconda.)	Click	Customize	if	you	want	to	modify	how	the	installer	works.	
For	example,	you	can	choose	not	to	add	Anaconda	to	your	PATH	statement.	
However,	the	book	assumes	that	you	have	chosen	the	default	install	options,	
and	no	good	reason	exists	to	change	them	unless	you	have	another	copy	of	
Python	2.7	installed	somewhere	else.

0003053993.INDD 374	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

374 		BOOK	6	 Selecting Data Analysis Tools

7. Click Install.

The	installation	begins.	A	progress	bar	tells	you	how	the	installation	process	is	
progressing.	When	the	installation	is	complete,	you	see	a	completion	dialog	box.

8. Click Continue.

You’re	ready	to	begin	using	Anaconda.

Continuum also provides a command-line version of the Mac OS X installation.
This file has a filename of Anaconda-2.1.0-MacOSX-x86_64.sh, and you use the
bash utility to install it in the same way that you do on any Linux system. How-
ever, installing Anaconda from the command line gives you no advantage unless
you need to perform it as part of an automated setup. Using the GUI version, as
described in this section, is much easier.

Installing Python on Windows
Anaconda comes with a graphical installation application for Windows, so getting
a good install means using a wizard, as you would for any other installation. Of
course, you need a copy of the installation file before you begin, and you can find
the required download information in the “Getting Continuum Analytics Ana-
conda” section, earlier in this chapter.

The following procedure should work fine on any Windows system, whether you
use the 32-bit or the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The	name	of	this	file	varies,	but	normally	it	appears	as	Anaconda-2.1.0-
Windows-x86.exe	for	32-bit	systems	and	Anaconda-2.1.0-Windows-
x86_64.exe	for	64-bit	systems.	The	version	number	is	embedded	as	part	
of the	filename.	In	this	case,	the	filename	refers	to	version	2.1.0,	which	is	
the version	used	for	this	book.	If	you	use	some	other	version,	you	may	
experience	problems	with	the	source	code	and	need	to	make	adjustments	
when	working	with	it.

2. Double-click the installation file.

You	may	see	an	Open	File –	Security	Warning	dialog	box	that	asks	whether	you	
want	to	run	this	file.	Click	Run	if	this	dialog	box	pops	up.

You	see	an	Anaconda	2.1.0	Setup	dialog	box	similar	to	the	one	shown	in	
Figure 2-1.	The	exact	dialog	box	that	you	see	depends	on	which	version	of	the	
Anaconda	installation	program	you	download.	If	you	have	a	64-bit	operating	
system,	using	the	64-bit	version	of	Anaconda	is	always	best	so	that	you	obtain	

0003053993.INDD 375	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 375

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

the	best	possible	performance.	This	first	dialog	box	tells	you	when	you	have	
the	64-bit	version	of	the	product.

3. Click Next.

The	wizard	displays	a	licensing	agreement.	Be	sure	to	read	through	the	
licensing	agreement	so	that	you	know	the	terms	of	usage.

4. Click I Agree if you agree to the licensing agreement.

You’re	asked	what	sort	of	installation	type	to	perform,	as	shown	in	Figure 2-2.

In	most	cases,	you	want	to	install	the	product	just	for	yourself.	The	exception	is	
if	you	have	multiple	people	using	your	system	and	they	all	need	access	to	
Anaconda.

FIGURE 2-1:
The	setup	

process	begins	
by	telling	you	

whether	you	have	
the	64-bit	version.

FIGURE 2-2:
Tell	the	wizard	
how	to	install	
Anaconda	on	
your	system.

0003053993.INDD 376	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

376 		BOOK	6	 Selecting Data Analysis Tools

5. Choose one of the installation types and then click Next.

The	wizard	asks	where	to	install	Anaconda	on	disk,	as	shown	in	Figure 2-3.

The	book	assumes	that	you	use	the	default	location.	If	you	choose	some	other	
location,	you	may	have	to	modify	some	procedures	later	in	the	book	to	work	
with	your	setup.

6. Choose an installation location (if necessary) and then click Next.

You	see	the	Advanced	Installation	Options,	shown	in	Figure 2-4.

These	options	are	selected	by	default,	and	no	good	reason	exists	to	change	
them	in	most	cases.	You	might	need	to	change	them	if	Anaconda	won’t	
provide	your	default	Python	2.7	(or	Python	3.5)	setup.	However,	the	book	
assumes	that	you’ve	set	up	Anaconda	using	the	default	options.

7. Change the advanced installation options (if necessary) and then click
Install.

You	see	an	Installing	dialog	box	with	a	progress	bar.

The	installation	process	can	take	a	few	minutes,	so	get	yourself	a	cup	of	coffee	
and	read	the	comics	for	a	while.

When	the	installation	process	is	over,	a	Next	button	is	enabled.

FIGURE 2-3:
Specify	an	
	installation	

	location.

0003053993.INDD 377	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 377

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

8. Click Next.

The	wizard	tells	you	that	the	installation	is	complete.

9. Click Finish.

You’re	ready	to	begin	using	Anaconda.

FIGURE 2-4:
Configure	

the	advanced	
	installation	

options.

A WORD ABOUT THE SCREENSHOTS
As	you	work	your	way	through	the	book,	you	use	an	IDE	of	your	choice	to	open	the	
Python	and	Python	Notebook	files	containing	the	book’s	source	code.	Every	screenshot	
that	contains	IDE-specific	information	relies	on	Anaconda	because	Anaconda	runs	on	all	
three	platforms	supported	by	the	book.	The	use	of	Anaconda	doesn’t	imply	that	it’s	the	
best	IDE;	Anaconda	simply	works	well	as	a	demonstration	product.

When	you	work	with	Anaconda,	the	name	of	the	graphical	(GUI)	environment,	Jupyter	
Notebook,	is	precisely	the	same	across	all	three	platforms,	and	you	won’t	even	see	any	
significant	difference	in	the	presentation.	Jupyter	Notebook	is	a	recent	evolution	of	
IPython,	so	you	may	see	online	resources	refer	to	IPython	Notebook.	The	differences	
that	you	do	see	are	minor,	and	you	should	ignore	them	as	you	work	through	the	book.	
When	working	on	Linux,	Mac	OS	X,	or	other	versions	of	Windows,	you	should	expect	to	
see	some	differences	in	presentation,	but	these	differences	shouldn’t	reduce	your	abil-
ity	to	work	with	the	examples.

0003053993.INDD 378	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

378 		BOOK	6	 Selecting Data Analysis Tools

Downloading the Data Sets
and Example Code

This book is about using Python to perform machine learning tasks. Of course, you
can spend all your time creating the example code from scratch, debugging it, and
only then discovering how it relates to machine learning, or you can take the easy
way and download the prewritten code at www.dummies.com/go/codingaiodown
loads so that you can get right to work. Likewise, creating data sets large enough
for machine learning purposes would take quite a while. Fortunately, you can
access standardized, previously created data sets quite easily using features pro-
vided in some of the data science libraries (which also work just fine for machine
learning). The following sections help you download and use the example code
and data sets so that you can save time and get right to work with data science-
specific tasks.

Using Jupyter Notebook
To make working with the relatively complex code in this book easier, you can use
Jupyter Notebook. This interface lets you easily create Python notebook files that
can contain any number of examples, each of which can run individually. The pro-
gram runs in your browser, so which platform you use for development doesn’t
matter; as long as it has a browser, you should be okay.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. Just open this icon to
access Jupyter Notebook. For example, on a Windows system, you choose Start ➪ All
Programs ➪ Anaconda➪ Jupyter Notebook. Figure 2-5 shows how the interface
looks when viewed in a Firefox browser. The precise appearance on your system
depends on the browser you use and the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon, you can use
these steps to access Jupyter Notebook:

1. Open a Command Prompt or Terminal Window on your system.

The	window	opens	so	that	you	can	type	commands.

0003053993.INDD 379	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 379

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

2. Change directories to the \Anaconda2\Scripts directory on your
machine.

Most	systems	let	you	use	the	CD	command	for	this	task.

3. Type	..\python	ipython2-script.py	notebook	and press Enter.

The	Jupyter	Notebook	page	opens	in	your	browser.

Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Jupyter Notebook. This window contains a server that makes
the application work. After you close the browser window when a session is com-
plete, select the server window and press Ctrl+C or Ctrl+Break to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard
drive. Think of a repository as a kind of filing cabinet where you put your code.
Notebook opens a drawer, takes out the folder, and shows the code to you. You
can modify it, run individual examples within the folder, add new examples, and
simply interact with your code in a natural manner. The following sections get you
started with Notebook so that you can see how this whole repository concept works.

FIGURE 2-5:
Jupyter	Notebook	
provides	an	easy	
method	to	create	
machine	learning	

examples.

0003053993.INDD 380	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

380 		BOOK	6	 Selecting Data Analysis Tools

Defining the book’s folder
It pays to organize your files so that you can access them easier later. Book 6 keeps
its files in the ML4D folder, which stands for Machine Learning for Dummies. Use
these steps within Notebook to create a new folder:

1. Choose New ➪ Folder.

Notebook	creates	a	new	folder	named	Untitled	Folder,	as	shown	in	Figure 2-6.	
The	file	will	appear	in	alphanumeric	order,	so	you	may	not	initially	see	it.	You	
must	scroll	down	to	the	correct	location.

2. Check the box next to the Untitled Folder entry.

3. Click Rename at the top of the page.

You	see	a	Rename	Directory	dialog	box	like	the	one	shown	in	Figure 2-7.

FIGURE 2-6:
New	folders	will	
appear	with	a	

name	of	Untitled	
Folder.

FIGURE 2-7:
Rename	the	

folder	so	that	you	
remember	the	

kinds	of	entries	it	
contains.

0003053993.INDD 381	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 381

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

4. Type	ML4D	and click OK.

Notebook	changes	the	name	of	the	folder	for	you.

5. Click the new ML4D entry in the list.

Notebook	changes	the	location	to	the	ML4D	folder	where	you	perform	tasks	
related	to	the	exercises	in	this	book.

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within
the file folder, just as you would sheets of paper into a physical file folder. Each
example appears in a cell.

Use these steps to create a new notebook:

1. Click New ➪ Python 2.

A	new	tab	opens	in	the	browser	with	the	new	notebook,	as	shown	in	Figure 2-8.	
Notice	that	the	notebook	contains	a	cell	and	that	Notebook	has	highlighted	the	
cell	so	that	you	can	begin	typing	code	in	it.	The	title	of	the	notebook	is	Untitled	
right	now.	That’s	not	a	particularly	helpful	title,	so	you	need	to	change	it.

2. Click Untitled on the page.

Notebook	asks	what	you	want	to	use	as	a	new	name,	as	shown	in	Figure 2-9.

3. Type	ML4D;	06;	Sample	and press Enter.

FIGURE 2-8:
A	notebook	

	contains	cells	
that	you	use	to	

hold	code.

0003053993.INDD 382	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

382 		BOOK	6	 Selecting Data Analysis Tools

Of course, the Sample notebook doesn’t contain anything just yet. Place the cursor
in the cell, type print ‘Python is really cool!’, and then click the Run button (the
button with the right-pointing arrow on the toolbar). You see the output shown
in Figure 2-10. The output is part of the same cell as the code. However, Notebook
visually separates the output from the code so that you can tell them apart. Note-
book automatically creates a new cell for you.

When you finish working with a notebook, shutting it down is important. To close
a notebook, choose File ➪ Close and Halt. You return to the home page, where you
can see the notebook you just created added to the list, as shown in Figure 2-11.

FIGURE 2-9:
Provide	a	new	
name	for	your	

notebook.

FIGURE 2-10:
Notebook	

uses	cells	to	
store	your	code.

0003053993.INDD 383	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 383

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some
point, you want to share them with other people. To perform this task, you must
export your notebook from the repository to a file. You can then send the file to
someone else, who will import it into his or her repository.

The previous section shows how to create a notebook named ML4D; 06; Sam-
ple. You can open this notebook by clicking its entry in the repository list. The
file reopens so that you can see your code again. To export this code, choose
File ➪ Download As ➪ IPython Notebook. What you see next depends on your
browser, but you generally see some sort of dialog box for saving the notebook as
a file. Utilize the same method for saving the IPython Notebook file as you do for
any other file you save using your browser.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them
any longer. Rather than allow your repository to get clogged with files you don’t
need, you can remove these unwanted notebooks from the list. Use these steps to
remove the file:

1. Select the box next to the ML4D; 06; Sample.ipynb entry.

2. Click the trash can icon (Delete) at the top of the page.

You	see	a	Delete	notebook	warning	message	like	the	one	shown	in	Figure 2-12.

3. Click Delete.

The	file	is	removed	from	the	list.

FIGURE 2-11:
Any	notebooks	

you	create	
appear	in	the	
repository	list.

0003053993.INDD 384	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

384 		BOOK	6	 Selecting Data Analysis Tools

Importing a notebook
To use the source code from this book, you must import the downloaded files
into your repository. The source code comes in an archive file that you extract
to a location on your hard drive. The archive contains a list of .ipynb (IPython
Notebook) files containing the source code for this book found at www.dummies.
com/go/codingaiodownloads. The following steps tell how to import these files
into your repository:

1. Click Upload at the top of the page.

What	you	see	depends	on	your	browser.	In	most	cases,	you	see	some	type	of	
File	Upload	dialog	box	that	provides	access	to	the	files	on	your	hard	drive.

2. Navigate to the directory containing the files that you want to import
into Notebook.

3. Highlight one or more files to import and click the Open (or other,
similar) button to begin the upload process.

You	see	the	file	added	to	an	upload	list,	as	shown	in	Figure 2-13.	The	file	isn’t	
part	of	the	repository	yet —	you’ve	simply	selected	it	for	upload.

4. Click Upload.

Notebook	places	the	file	in	the	repository	so	that	you	can	begin	using	it.

FIGURE 2-12:
Notebook	warns	

you	before	
removing	any	
files	from	the	

repository.

0003053993.INDD 385	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

CHAPTER 2 Installing a Python Distribution 385

In
st

al
lin

g
a

Py
th

on

D
is

tr
ib

ut
io

n

Understanding the data sets
used in this book
This book uses a number of data sets, all of which appear in the scikit-learn
library. These data sets demonstrate various ways in which you can interact with
data, and you use them in the examples to perform a variety of tasks. The follow-
ing list provides a quick overview of the function used to import each of the data
sets into your Python code:

 » load_boston():	Regression	analysis	with	the	Boston	house-prices	data	set

 » load_iris():	Classification	with	the	iris	data	set

 » load_diabetes():	Regression	with	the	diabetes	data	set

 » load_digits([n_class]):	Classification	with	the	digits	data	set

 » fetch_20newsgroups(subset='train'):	Data	from	20	newsgroups

 » fetch_olivetti_faces():	Olivetti	faces	data	set	from	AT&T

The technique for loading each of these data sets is the same across examples. The
following example shows how to load the Boston house-prices data set. You can
find the code in the ML4D; 06; Dataset Load.ipynb notebook.

from sklearn.datasets import load_boston

Boston = load_boston()

print Boston.data.shape

To see how the code works, click Run Cell. The output from the print call is
(506L, 13L). You can see the output in Figure 2-14.

FIGURE 2-13:
The	files	that	you	

want	to	add	to	
the	repository	

appear	as	part	of	
an	upload	list.

0003053993.INDD 386	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:38	AM

386 		BOOK	6	 Selecting Data Analysis Tools

FIGURE 2-14:
The	Boston

object	contains	
the	loaded	
data	set.

CHAPTER 3 Working with Real Data 387

0003053994.INDD 387	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

 Working with Real Data
“Real data is a reality check.”

 — NATE SILVER

 D ata science applications require data by defi nition. It would be nice if you
could simply go to a data store somewhere, purchase the data you need in
an easy-open package, and then write an application to access that data.

However, data is messy. It appears in all sorts of places, in many diff erent forms,
and you can interpret it in many diff erent ways. Every organization has a diff erent
method of viewing data and stores it in a diff erent manner as well. Even when the
data management system used by one company is the same as the data manage-
ment system used by another company, the chances are slim that the data will
appear in the same format or even use the same data types. In short, before you
can do any data science work, you must discover how to access the data in all its
myriad forms. Real data requires a lot of work in order to use it, and fortunately
Python is up to the task of manipulating data as needed.

 This chapter helps you understand the techniques required to access data in a
number of forms and locations. For example, memory streams represent a form
of data storage that your computer supports natively; fl at fi les exist on your hard
drive; relational databases commonly appear on networks (although smaller rela-
tional databases, such as those found in Access, could appear on your hard drive
as well); and web-based data usually appears on the Internet. You won’t visit
every form of data storage available (such as that stored on a point-of-sale, or
POS, system). Quite possibly, an entire book on the topic wouldn’t suffi ce to cover

Chapter 3

 IN THIS CHAPTER

 » Manipulating data streams

 » Working with fl at and unstructured
fi les

 » Interacting with relational and NoSQL
databases

 » Interacting with web-based data

0003053994.INDD 388	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

388 BOOK 6 Selecting Data Analysis Tools

the topic of data formats in any detail. However, the techniques in this chapter
do demonstrate how to access data in the formats you most commonly encounter
when working with real-world data.

The scikit-learn library includes a number of toy data sets (small data sets meant
for you to play with). These data sets are complex enough to perform a number of
tasks, such as experimenting with Python to perform data science tasks. Because
this data is readily available, and making the examples too complicated to under-
stand is a bad idea, this book relies on these toy data sets as input for many of the
examples. The toy data sets and techniques shown reduce complexity and make
the examples clearer, but the techniques work equally well on real-world data.

You don’t have to type the source code for this chapter by hand. In fact, it’s a
lot easier if you use the downloadable source available at www.dummies.com/go/
codingaiodownloads. The source code for this chapter appears in the P4DS4D; 05;
Dataset Load.ipynb source code file.

It’s essential that the Colors.txt, Titanic.csv, Values.xls, and XMLData.xml
files that come with the downloadable source code appear in the same folder
(directory) as your IPython Notebook files. Otherwise, the examples in the follow-
ing sections fail with an input/output (IO) error. The file location varies according
to the platform you’re using. For example, on a Windows system, you find the
notebooks stored in the C:\Users\Username\My Documents\IPython Notebooks
folder, where Username is your login name. To make the examples work, simply
copy the four files from the downloadable source folder into your IPython Note-
book folder.

Uploading, Streaming, and Sampling Data
Storing data in local computer memory represents the fastest and most reliable
means to access it. The data could reside anywhere. However, you don’t actually
interact with the data in its storage location. You load the data into memory from
the storage location and then interact with it in memory.

The columns in a database are sometimes called features or variables. The rows are
cases. Each row represents a collection of variables that you can analyze.

Uploading small amounts
of data into memory
This section uses the Colors.txt file, shown in Figure 3-1, for input.

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 389	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 389

The example also relies on native Python functionality to get the task done. When
you load a file (of any type), the entire data set is available at all times, and the
loading process is quite short. Here is an example of how this technique works:

with open("Colors.txt", 'rb') as open_file:

 print 'Colors.txt content:\n' + open_file.read()

The example begins by using the open() method to obtain a file object. The
open() function accepts the filename and an access mode. In this case, the access
mode is read binary (rb). (When using Python 3.x, you may have to change the
mode to read (r) in order to avoid error messages.) It then uses the read() method
of the file object to read all the data in the file. If you were to specify a size argu-
ment as part of read(), such as read(15), Python would read only the number
of characters that you specify or stop when it reaches the End Of File (EOF). When
you run this example, you see the following output:

Colors.txt content:

Color Value

Red 1

Orange 2

Yellow 3

Green 4

Blue 5

Purple 6

Black 7

White 8

The entire data set is loaded from the library into free memory. Of course, the
loading process will fail if your system lacks sufficient memory to hold the data
set. When this problem occurs, you need to consider other techniques for work-
ing with the data set, such as streaming it or sampling it. In short, before you use
this technique, you must ensure that the data set will actually fit in memory. You
won’t normally experience any problems when working with the toy data sets in
the scikit-learn library.

FIGURE 3-1:
Format	of	the	

Colors.txt	file.

0003053994.INDD 390	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

390 BOOK 6 Selecting Data Analysis Tools

Streaming large amounts
of data into memory
Some data sets will be so large that you won’t be able to fit them entirely in mem-
ory at one time. In addition, you may find that some data sets load slowly because
they reside on a remote site. Streaming answers both needs by making it possible
to work with the data a little at a time. You download individual pieces, making
it possible to work with just part of the data and to work with it as you receive it,
rather than waiting for the entire data set to download. Here’s an example of how
you can stream data using Python:

with open("Colors.txt", 'rb') as open_file:

 for observation in open_file:

 print 'Reading Data: ' + observation

This example relies on the Colors.txt file, which contains a header, and then a
number of records that associate a color name with a value. The open_file file
object contains a pointer to the open file.

As the code performs data reads in the for loop, the file pointer moves to the next
record. Each record appears one at a time in observation. The code outputs the
value in observation using a print statement. You should receive this output:

Reading Data: Color Value

Reading Data: Red 1

Reading Data: Orange 2

Reading Data: Yellow 3

Reading Data: Green 4

Reading Data: Blue 5

Reading Data: Purple 6

Reading Data: Black 7

Reading Data: White 8

Python streams each record from the source. This means that you must perform a
read for each record you want.

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 391	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 391

Sampling data
Data streaming obtains all the records from a data source. You may find that you
don’t need all the records. You can save time and resources by simply sampling
the data. This means retrieving records a set number of records apart, such as
every fifth record, or by making random samples. The following code shows how
to retrieve every other record in the Colors.txt file:

n = 2

with open("Colors.txt", 'rb') as open_file:

 for j, observation in enumerate(open_file):

 if j % n==0:

 print('Reading Line: ' + str(j) +
 ' Content: ' + observation)

The basic idea of sampling is the same as streaming. However, in this case, the
application uses enumerate() to retrieve a row number. When j % n == 0, the
row is one that you want to keep and the application outputs the information. In
this case, you see the following output:

Reading Line: 0 Content: Color Value

Reading Line: 2 Content: Orange 2

Reading Line: 4 Content: Green 4

Reading Line: 6 Content: Purple 6

Reading Line: 8 Content: White 8

The value of n is important in determining which records appear as part of the
data set. Try changing n to 3. The output will change to sample just the header
and rows 3 and 6.

You can perform random sampling as well. All you need to do is randomize the
selector, like this:

from random import random

sample_size = 0.25

with open("Colors.txt", 'rb') as open_file:

 for j, observation in enumerate(open_file):

 if random()<=sample_size:

 print('Reading Line: ' + str(j) +
 ' Content: ' + observation)

To make this form of selection work, you must import the random class. The
 random() method outputs a value between 0 and 1. However, Python randomizes

0003053994.INDD 392	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

392 BOOK 6 Selecting Data Analysis Tools

the output so that you don’t know what value you receive. The sample_size vari-
able contains a number between 0 and 1 to determine the sample size. For exam-
ple, 0.25 selects 25 percent of the items in the file.

The output will still appear in numeric order. For example, you won’t see Green
come before Orange. However, the items selected are random, and you won’t
always get precisely the same number of return values. The spaces between return
values will differ as well. Here is an example of what you might see as output
(although your output will likely vary):

Reading Line: 1 Content: Red 1

Reading Line: 4 Content: Green 4

Reading Line: 8 Content: White 8

Accessing Data in Structured
Flat-File Form

In many cases, the data you need to work with won’t appear within a library, such
as the toy data sets in the scikit-learn library. Real-world data usually appears in
a file of some type. A flat file presents the easiest kind of file to work with. The
data appears as a simple list of entries that you can read one at a time, if desired,
into memory. Depending on the requirements for your project, you can read all or
part of the file.

A problem with using native Python techniques is that the input isn’t intelligent.
For example, when a file contains a header, Python simply reads it as yet more
data to process, rather than as a header. You can’t easily select a particular column
of data. The pandas library used in the sections that follow makes it much easier
to read and understand flat-file data. Classes and methods in the pandas library
interpret (parse) the flat-file data to make it easier to manipulate.

The least formatted and therefore easiest-to-read flat-file format is the text file.
However, a text file also treats all data as strings, so you often have to convert
numeric data into other forms. A comma-separated value (CSV) file provides more
formatting and more information, but it requires a little more effort to read. At the
high end of flat-file formatting are custom data formats, such as an Excel file, which
contain extensive formatting and could include multiple data sets in a single file.

The following sections describe these three levels of flat-file data sets and show
how to use them. These sections assume that the file structures the data in some

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 393	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 393

way. For example, the CSV file uses commas to separate data fields. A text file
might rely on tabs to separate data fields. An Excel file uses a complex method
to separate data fields and to provide a wealth of information about each field.
You can work with unstructured data as well, but working with structured data is
much easier because you know where each field begins and ends.

Reading from a text file
Text files can use a variety of storage formats. However, a common format is to have
a header line that documents the purpose of each field, followed by another line for
each record in the file. The file separates the fields using tabs. Refer to Figure 3-1 for
an example of the Colors.txt file used for the example in this section.

Native Python provides a wide variety of methods you can use to read such a file.
However, it’s far easier to let someone else do the work. In this case, you can use
the pandas library to perform the task. Within the pandas library, you find a set of
parsers, code used to read individual bits of data and determine the purpose of each
bit according to the format of the entire file. Using the correct parser is essential
if you want to make sense of file content. In this case, you use the read_table()
method to accomplish the task, as shown in the following code:

import pandas as pd

color_table = pd.io.parsers.read_table("Colors.txt")

print color_table

The code imports the pandas library, uses the read_table() method to read
Colors.txt into a variable named color_table, and then displays the result-
ing memory data on-screen using the print function. Here’s the output you can
expect to see from this example:

 Color Value

0 Red 1

1 Orange 2

2 Yellow 3

3 Green 4

4 Blue 5

5 Purple 6

6 Black 7

7 White 8

Notice that the parser correctly interprets the first row as consisting of field names.
It numbers the records from 0 through 7. Using read_table() method arguments,
you can adjust how the parser interprets the input file, but the default settings
usually work best. You can read more about the read_table() arguments at
pandas.pydata.org/pandas-docs/dev/generated/pandas.io.parsers.read_
table.html#pandas.io.parsers.read_table.

0003053994.INDD 394	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

394 BOOK 6 Selecting Data Analysis Tools

Reading CSV delimited format
A CSV file provides more formatting than a simple text file. In fact, CSV files can
become quite complicated. There is a standard that defines the format of CSV files,
and you can see it at https://tools.ietf.org/html/rfc4180. The CSV file used
for this example is quite simple:

 » A	header	defines	each	of	the	fields.

 » Fields	are	separated	by	commas.

 » Records	are	separated	by	linefeeds.

 » Strings	are	enclosed	in	double	quotes.

 » Integers	and	real	numbers	appear	without	double	quotes.

Figure 3-2 shows the raw format for the Titanic.csv file used for this example.
You can see the raw format using any text editor.

Applications such as Excel can import and format CSV files so that they become
easier to read. Figure 3-3 shows the same file in Excel.

Excel actually recognizes the header as a header. If you were to use features such
as data sorting, you could select header columns to obtain the desired result. For-
tunately, pandas also makes it possible to work with the CSV file as formatted
data, as shown in the following example:

import pandas as pd

titanic = pd.io.parsers.read_csv("Titanic.csv")

X = titanic[['age']]

print X

FIGURE 3-2:
The	raw	format	

of	a	CSV	file	is	still	
text	and	quite	

readable.

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 395	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 395

Notice that the parser of choice this time is read_csv(), which understands CSV
files and provides you with new options for working with it. (You can read more
about this parser at pandas.pydata.org/pandas-docs/dev/io.html#io-read-
csv-table.) Selecting a specific field is quite easy — you just supply the field
name as shown. The output from this example looks like this (some values omit-
ted for the sake of space):

 age

0 29.0000

1 0.9167

2 2.0000

3 30.0000

4 25.0000

5 48.0000

...

1304 14.5000

1305 9999.0000

1306 26.5000

1307 27.0000

1308 29.0000

[1309 rows x 1 columns]

Of course, a human readable output like this one is nice when working through an
example, but you might also need the output as a list. To create the output as a list,
you simply change the third line of code to read X = titanic[[’age’]].values.
Notice the addition of the values property. The output changes to something like
this (some values omitted for the sake of space):

[[29.]

 [0.91670001]

 [2.]

 ...,

 [26.5]

 [27.]

 [29.]]

FIGURE 3-3:
Use	an	applica-

tion	such	as	
Excel	to	create	

a	formatted	CSV	
presentation.

0003053994.INDD 396	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

396 BOOK 6 Selecting Data Analysis Tools

Reading Excel and other
Microsoft Office files
Excel and other Microsoft Office applications provide highly formatted content.
You can specify every aspect of the information these files contain. The Values.
xls file used for this example provides a listing of sine, cosine, and tangent values
for a random list of angles. You can see this file in Figure 3-4.

When you work with Excel or other Microsoft Office products, you begin to expe-
rience some complexity. For example, an Excel file can contain more than one
worksheet, so you need to tell pandas which worksheet to process. In fact, you
can choose to process multiple worksheets, if desired. When working with other
Office products, you have to be specific about what to process. Just telling pandas
to process something isn’t good enough. Here’s an example of working with the
Values.xls file:

import pandas as pd

xls = pd.ExcelFile("Values.xls")

trig_values = xls.parse('Sheet1', index_col=None,

 na_values=['NA'])

print trig_values

The code begins by importing the pandas library as normal. It then creates a
pointer to the Excel file using the ExcelFile() constructor. This pointer, xls, lets
you access a worksheet, define an index column, and specify how to present empty
values. The index column is the one that the worksheet uses to index the records.
Using a value of None means that pandas should generate an index for you. The
parse() method obtains the values you request. You can read more about the Excel
parser options at pandas.pydata.org/pandas-docs/dev/io.html#io-excel.

FIGURE 3-4:
An	Excel	

file	is	highly	
	formatted	and	
might		contain	
	information	of	
various	types.

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 397	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 397

You don’t absolutely have to use the two-step process of obtaining a file pointer
and then parsing the content. You can also perform the task using a single step
like this: trig_values = pd.read_excel("Values.xls", 'Sheet1', index_
col=None, na_values=['NA']). Because Excel files are more complex, using the
two-step process is often more convenient and efficient because you don’t have to
reopen the file for each read of the data.

Sending Data in Unstructured File Form
Unstructured data files consist of a series of bits. The file doesn’t separate the
bits from each other in any way. You can’t simply look into the file and see any
structure because there isn’t any to see. Unstructured file formats rely on the file
user to know how to interpret the data. For example, each pixel of a picture file
could consist of three 32-bit fields. Knowing that each field is 32-bits is up to you.
A header at the beginning of the file may provide clues about interpreting the file,
but even so, it’s up to you to know how to interact with the file.

The example in this section shows how to work with a picture as an unstruc-
tured file. The example image is a public domain offering from https://commons.
wikimedia.org/wiki/Main_Page. To work with images, you need to access the
scikit-image library (scikit-image.org), which is a free-of-charge collection of
algorithms used for image processing. You can find a tutorial for this library at
scipy-lectures.github.io/packages/scikit-image. The first task is to be able
to display the image on-screen using the following code. (This code can require a
little time to run. The image is ready when the busy indicator disappears from the
IPython Notebook tab.)

from skimage.io import imread

from skimage.transform import resize

from matplotlib import pyplot as plt

import matplotlib.cm as cm

example_file = ("http://upload.wikimedia.org/" +
 "wikipedia/commons/7/7d/Dog_face.png")

image = imread(example_file, as_grey=True)

plt.imshow(image, cmap=cm.gray)

plt.show()

The code begins by importing a number of libraries. It then creates a string that
points to the example file online and places it in example_file. This string is
part of the imread() method call, along with as_grey, which is set to True. The
as_grey argument tells Python to turn color images into grayscale. Any images
that are already in grayscale remain that way.

0003053994.INDD 398	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

398 BOOK 6 Selecting Data Analysis Tools

Now that you have an image loaded, it’s time to render it (make it ready to display
on-screen. The imshow() function performs the rendering and uses a grayscale color
map. The show() function actually displays image for you, as shown in Figure 3-5.

Close the image when you’re finished viewing it. (The asterisk in the In [*]:
entry tells you that the code is still running and you can’t move on to the next
step.) The act of closing the image ends the code segment. You now have an image
in memory, and you may want to find out more about it. When you run the fol-
lowing code, you discover the image type and size:

print("data type: %s, shape: %s" %

 (type(image), image.shape))

The output from this call tells you that the image type is a numpy.ndarray and
that the image size is 90 pixels by 90 pixels. The image is actually an array of pix-
els that you can manipulate in various ways. For example, if you want to crop the
image, you can use the following code to manipulate the image array:

image2 = image[5:70,0:70]

plt.imshow(image2, cmap=cm.gray)

plt.show()

The numpy.ndarray in image2 is smaller than the one in image, so the output is
smaller as well. Figure 3-6 shows typical results. The purpose of cropping the
image is to make it a specific size. Both images must be the same size for you to
analyze them. Cropping is one way to ensure that the images are the correct size
for analysis.

FIGURE 3-5:
The	image	
appears	

on-screen	after	
you render	
and show	it.

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 399	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 399

Another method that you can use to change the image size is to resize it. The fol-
lowing code resizes the image to a specific size for analysis:

image3 = resize(image2, (30, 30), mode='nearest')

plt.imshow(image3, cmap=cm.gray)

print("data type: %s, shape: %s" %

 (type(image3), image3.shape))

The output from the print() function tells you that the image is now 30 pixels
by 30 pixels in size. You can compare it to any image with the same dimensions.

After you have all the images in the right size, you need to flatten them. A data
set row is always a single dimension, not two dimensions. The image is currently
an array of 30 pixels by 30 pixels, so you can’t make it part of a data set. The fol-
lowing code flattens image3 so that it becomes an array of 900 elements that is
stored in image_row:

image_row = image3.flatten()

print("data type: %s, shape: %s" %

 (type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a data
set and then use the data set for analysis purposes. The size is 900 elements, as
anticipated.

FIGURE 3-6:
Cropping	the	

image	makes	it	
smaller.

0003053994.INDD 400	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

400 BOOK 6 Selecting Data Analysis Tools

Managing Data from Relational Databases
Databases come in all sorts of forms. However, the vast majority of data used by
organizations rely on relational databases because these databases provide the
means for organizing massive amounts of complex data in a manner that makes
the data easy to manipulate. The goal of a database manager is to make data easy
to manipulate. The focus of most data storage is to make data easy to retrieve.

Relational databases accomplish both the manipulation and data retrieval objec-
tives with relative ease. However, because data storage needs come in all shapes
and sizes for a wide range of computing platforms, there are many different rela-
tional database products. The proliferation of different Database Management
Systems (DBMSs) using various data layouts is one of the main problems you
encounter with creating a comprehensive data set for analysis.

The one common denominator between many relational databases is that they all
rely on a form of the same language to perform data manipulation, which does
make the programmer’s job easier. The Structured Query Language (SQL) lets you
perform all sorts of management tasks in a relational database, retrieve data as
needed, and even shape it in a particular way so that the need to perform addi-
tional shaping is unnecessary.

Creating a connection to a database can be a complex undertaking. For one thing,
you need to know how to connect to that particular database. However, you can
divide the process into smaller pieces. The first step is to gain access to the data-
base engine. You use two lines of code similar to the following code (but the code
presented here is not meant to execute and perform a task):

from sqlalchemy import create_engine

engine = create_engine('sqlite:///:memory:')

After you have access to an engine, you can use the engine to perform tasks spe-
cific to that DBMS. The output of a read method is always a DataFrame object that
contains the requested data. To write data, you must create a DataFrame object
or use an existing DataFrame object. You normally use these methods to perform
most tasks:

 » read_sql_table():	Reads	data	from	a	SQL	table	to	a	DataFrame	object.

 » read_sql_query():	Reads	data	from	a	database	using	a	SQL	query	to	a	
DataFrame	object.

 » read_sql():	Reads	data	from	either	a	SQL	table	or	query	to	a	DataFrame
object.

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 401	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 401

 » DataFrame.to_sql():	Writes	the	content	of	a	DataFrame	object	to	the	
specified	tables	in	the	database.

The SQLAlchemy library provides support for a broad range of SQL databases. The
following list contains just a few of them:

 » SQLite

 » MySQL

 » PostgreSQL

 » SQL	Server

 » Other	relational	databases,	such	as	those	you	can	connect	to	using	Open	
Database	Connectivity	(ODBC)

You can discover more about working with databases at pandas.pydata.org/
pandas-docs/dev/io.html#sql-queries. The techniques that you discover in
this book using the toy databases also work with relational databases.

Interacting with Data from
NoSQL Databases

In addition to standard relational databases that rely on SQL, you find a wealth
of databases of all sorts that don’t have to rely on SQL. These “Not only SQL”
(NoSQL) databases are used in large data storage scenarios in which the relational
model can become overly complex or can break down in other ways. The data-
bases generally don’t use the relational model. Of course, you find fewer of these
DBMSs used in the corporate environment because they require special handling
and training. Still, some common DBMSs are used because they provide special
functionality or meet unique requirements. The process is essentially the same for
using NoSQL databases as it is for relational databases:

1. Import	required	database	engine	functionality.

2. Create	a	database	engine.

3. Make	any	required	queries	using	the	database	engine	and	the	functionality	
supported	by	the	DBMS.

The details vary quite a bit, and you need to know which library to use with
your particular database product. For example, when working with MongoDB

0003053994.INDD 402	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

402 BOOK 6 Selecting Data Analysis Tools

(www.mongodb.org), you must obtain a copy of the PyMongo library (https://api.
mongodb.org/python/current) and use the MongoClient class to create the
required engine. The MongoDB engine relies heavily on the find() function to
locate data. Here’s a pseudo-code example of a MongoDB session:

import pymongo

import pandas as pd

from pymongo import Connection

connection = Connection()

db = connection.database_name

input_data = db.collection_name

data = pd.DataFrame(list(input_data.find()))

Accessing Data from the Web
It would be incredibly difficult (perhaps impossible) to find an organization today
that doesn’t rely on some sort of web-based data. Most organizations use web ser-
vices of some type. A web service is a kind of web application that provides a means
to ask questions and receive answers. Web services usually host a number of input
types. In fact, a particular web service may host entire groups of query inputs.

APIs AND OTHER WEB ENTITIES
A	programmer	may	have	a	reason	to	rely	on	various	web	application	programming	
interfaces	(APIs)	to	access	and	manipulate	data.	Each	API	is	unique,	and	APIs	operate	
outside	the	normal	scope	of	what	a	programmer	might	do.	For	example,	you	might	
use	a	product	such	as	jQuery	(jquery.com)	to	access	data	and	manipulate	it	in	various	
ways	when	working	with	a	web	application.	However,	the	techniques	for	doing	so	are	
more	along	the	lines	of	writing	an	application	than	employing	a	data	analysis	technique.

It’s	important	to	realize	that	APIs	can	be	data	sources	and	that	you	might	need	to	use	
one	to	achieve	some	data	input	or	data-shaping	goals.	In	fact,	you	find	many	data	enti-
ties	that	resemble	APIs	but	don’t	appear	in	this	book.	Windows	developers	can	create	
Component	Object	Model	(COM)	applications	that	output	data	onto	the	web	that	you	
could	possibly	use	for	analysis	purposes.	In	fact,	the	number	of	potential	sources	is	
nearly	endless.	This	book	focuses	on	the	sources	that	you	use	most	often	and	in	the	
most	conventional	manner.	Keeping	your	eyes	open	for	other	possibilities,	though,	is	
always	a	good	idea.

W
or

ki
ng

 w
it

h
Re

al
 D

at
a

0003053994.INDD 403	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

CHAPTER 3 Working with Real Data 403

Another type of query system is the microservice. Unlike the web service,
 microservices have a specific focus and provide only one specific query input and
output. Using microservices has specific benefits that are outside the scope of this
book, but essentially they work like tiny web services, so that’s how this book
addresses them.

One of the most beneficial data access techniques to know when working with
web data is accessing XML or Extensible Markup Language, a popular web data
format. All sorts of content types rely on XML, even some web pages. Working
with web services and microservices means working with XML. With this in mind,
the example in this section works with XML data found in the XMLData.xml file,
shown in Figure 3-7. In this case, the file is simple and uses only a couple of levels.
XML is hierarchical and can become quite a few levels deep.

The technique for working with XML, even simple XML, can be a bit harder than
anything else you’ve worked with so far. Here’s the code for this example:

from lxml import objectify

import pandas as pd

xml = objectify.parse(open('XMLData.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

FIGURE 3-7:
XML	is	a	

	hierarchical	
format	that	
can	become	

quite complex.

0003053994.INDD 404	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:40	AM

404 BOOK 6 Selecting Data Analysis Tools

for i in range(0,4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'String', 'Boolean'],

 [obj[0].text, obj[1].text,

 obj[2].text]))

 row_s = pd.Series(row)

 row_s.name = i

 df = df.append(row_s)

print df

The example begins by importing libraries and parsing the data file using the
objectify.parse() method. Every XML document must contain a root node,
which is <MyDataset> in this case. The root node encapsulates the rest of the
content, and every node under it is a child. To do anything practical with the
document, you must obtain access to the root node using the getroot() method.

The next step is to create an empty DataFrame object that contains the correct col-
umn names for each record entry: Number, String, and Boolean. As with all other
pandas data handling, XML data handling relies on a DataFrame. The for loop fills
the DataFrame with the four records from the XML file (each in a <Record> node).

The process looks complex but follows a logical order. The obj variable contains
all the children for one <Record> node. These children are loaded into a dictionary
object in which the keys are Number, String, and Boolean to match the DataFrame
columns.

There is now a dictionary object that contains the row data. The code creates an
actual row for the DataFrame next. It gives the row the value of the current for
loop iteration. It then appends the row to the DataFrame. To see that everything
worked as expected, the code prints the result, which looks like this:

 Number String Boolean

0 1 First True

1 2 Second False

2 3 Third True

3 4 Fourth False

7
0003053968.INDD 405 Trim size: 7.375 in × 9.25 in March 30, 2017 11:17 PM

 Evaluating Data

0003053968.INDD 406 Trim size: 7.375 in × 9.25 in March 30, 2017 11:17 PM

Contents at a Glance
CHAPTER 1: Conditioning Your Data . 407

Juggling between NumPy and pandas . 408
Validating Your Data . 409
Manipulating Categorical Variables . 414
Dealing with Dates in Your Data . 419
Dealing with Missing Data . 421
Slicing and Dicing: Filtering and Selecting Data 424
Concatenating and Transforming . 426
Aggregating Data at Any Level . 430

CHAPTER 2: Shaping Data . 433
Working with HTML Pages . 434
Working with Raw Text . 436
Using the Bag of Words Model and Beyond 442
Working with Graph Data . 447

CHAPTER 3: Getting a Crash Course in MatPlotLib 451
Starting with a Graph . 452
Setting the Axis, Ticks, Grids . 455
Defining the Line Appearance . 458
Using Labels, Annotations, and Legends . 462

CHAPTER 4: Visualizing the Data . 467
Choosing the Right Graph . 468
Creating Advanced Scatterplots . 475
Plotting Time Series. 478
Plotting Geographical Data . 481
Visualizing Graphs . 483

CHAPTER 5: Exploring Data Analysis. 489
The EDA Approach. 490
Defining Descriptive Statistics for Numeric Data 491
Counting for Categorical Data . 495
Creating Applied Visualization for EDA. 498
Understanding Correlation . 504
Modifying Data Distributions . 508

CHAPTER 6:	 Exploring	Four	Simple	and	Effective	
Algorithms . 511
Guessing the Number: Linear Regression . 512
Moving to Logistic Regression . 515
Making Things as Simple as Naïve Bayes . 518
Learning Lazily with Nearest Neighbors . 522

CHAPTER 1 Conditioning Your Data 407

0003053995.INDD 407	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

 Conditioning Your Data
 “In God we trust. All others must bring data.”

 — W. EDWARDS DEMING

 T he characteristics, content, type, and other elements that defi ne your data
in its entirety is the data shape . The shape of your data determines the kinds
of tasks you can perform with it. In order to make your data amenable to

certain types of analysis, you must shape it into a diff erent form. Think of the data
as clay and you as the potter, because that’s the sort of relationship that exists.
However, instead of using your hands to shape the data, you rely on functions and
algorithms to perform the task. This chapter helps you understand the tools you
have available to shape data and the ramifi cations of shaping it.

 Also in this chapter, you consider the problems associated with shaping.
For example, you need to know what to do when data is missing from a data set.
It’s important to shape the data correctly or you end up with an analysis that
simply doesn’t make sense. Likewise, some data types, such as dates, can present
problems. Again, you need to tread carefully to ensure that you get the desired
result so that the data set becomes more useful and amenable to analysis of vari-
ous sorts.

Chapter 1

 IN THIS CHAPTER

 » Working with NumPy and pandas

 » Knowing your data

 » Working with symbolic variables

 » Fixing missing data

 » Creating data slices

 » Adding data elements and modifying
data type

0003053995.INDD 408	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

408 		BOOK	7	 Evaluating Data

The goal of some types of data shaping is to create a larger data set. In many cases,
the data you need to perform an analysis on doesn’t appear in a single database
or in a particular form. You need to shape the data and then combine it so that
you have a single data set in a known format before you can begin the analysis.
Combining data successfully can be an art form because data often defies simple
analysis or quick fixes.

You don’t have to type the source code for this chapter by hand. In fact, it’s a
lot easier if you use the downloadable source. The source code for this chapter
appears in the P4DS4D; 06; Getting Your Data in Shape.ipynb source code file
available at www.dummies.com/go/codingaiodownloads.

Juggling between NumPy and pandas
There is no question that you need NumPy at all times. The pandas library is
actually built on top of NumPy. However, you do need to make a choice between
NumPy and pandas when performing tasks. You need the low-level functionality
of NumPy to perform some tasks, but pandas makes things so much easier that
you want to use it as often as possible. The following sections describe when to
use each library in more detail.

Knowing when to use NumPy
It’s essential to realize that developers built pandas on top of NumPy. As a
result, every task you perform using pandas also goes through NumPy. To obtain
the benefits of pandas, you pay a performance penalty that some testers say is
100 times slower than NumPy for a similar task (see https://penandpants.
com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays). Given that
computer hardware can make up for a lot of performance differences today, the
speed issue may not be a concern at times, but when speed is essential, NumPy is
always the better choice.

Knowing when to use pandas
You use pandas to make writing code easier and faster. Because pandas does a
lot of the work for you, you could make a case for saying that using pandas also
reduces the potential for coding errors. The essential consideration, though, is that
the pandas library provides rich time-series functionality, data alignment, NA-
friendly statistics, groupby, merge, and join methods. Normally, you need to code
these features when using NumPy, which means you keep reinventing the wheel.

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 409	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 409

As the book progresses, you discover just how useful pandas can be perform-
ing such tasks as binning (a data preprocessing technique designed to reduce the
effect of observational errors) and working with a dataframe (a two-dimensional
labeled data structure with columns that can potentially contain different data
types) so that you can calculate statistics on it. Book 7, Chapter 5 shows actual
binning examples, such as obtaining a frequency for each categorical variable of
a data set. In fact, many of the examples in Book 7, Chapter 5 don’t work without
binning. In other words, don’t worry too much right now about knowing precisely
what binning is or why you need to use it — examples later in the book discuss
the topic in detail. All you really need to know is that pandas does make your work
considerably easier.

Validating Your Data
When it comes to data, no one really knows what a large database contains. Yes,
everyone has seen bits and pieces of it, but when you consider the size of some
databases, viewing it all would be physically impossible. Because you don’t know
what’s in there, you can’t be sure that your analysis will actually work as desired
and provide valid results. In short, you must validate your data before you use it

IT’S ALL IN THE PREPARATION
This	book	may	seem	to	spend	a	lot	of	time	massaging	data	and	little	time	on	actually	
analyzing	it.	However,	the	majority	of	a	data	scientist’s	time	is	actually	spent	preparing	
data	because	the	data	is	seldom	in	any	order	to	actually	perform	analysis.	To	prepare	
data	for	use,	a	data	scientist	must

• Get	the	data.
• Aggregate	the	data.
• Create	data	subsets.
• Clean	the	data.
• Develop	a	single	data	set	by	merging	various	data	sets	together.

Fortunately,	you	don’t	need	to	die	of	boredom	while	wading	your	way	through	these	
various	tasks.	Using	Python	and	the	various	libraries	it	provides	makes	the	task	a	lot	
simpler,	faster,	and	more	efficient.	The	better	you	know	how	to	use	Python	to	speed	
your	way	through	these	repetitive	tasks,	the	sooner	you	begin	having	fun	performing	
various	sorts	of	analysis	on	the	data.

0003053995.INDD 410	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

410 		BOOK	7	 Evaluating Data

to ensure that the data is at least close to what you expect it to be. This means
performing tasks such as removing duplicate records before you use the data for
any sort of analysis (duplicates would unfairly weight the results).

However, you do need to consider what validation actually does for you. It doesn’t
tell you that the data is correct or that there won’t be values outside the expected
range. What validation does is ensure that you can perform an analysis of the data
and reasonably expect that analysis to succeed. Later, you need to perform addi-
tional massaging of the data to obtain the sort of results that you need in order to
perform the task you set out to perform in the first place.

Figuring out what’s in your data
Figuring out what your data contains is important because checking data by hand
is sometimes simply impossible due to the number of observations and variables.
In addition, hand verifying the content is time consuming, error prone, and, most
important, really boring. Finding duplicates is important because you end up

 » Spending	more	computational	time	to	process	duplicates,	which	slows	your	
algorithms	down.

 » Obtaining	false	results	because	duplicates	implicitly	overweight	the	results.	
Because	some	entries	appear	more	than	once,	the	algorithm	considers	these	
entries	more	important.

As a data scientist, you want your data to enthrall you, so it’s time to get it to talk
to you — not figuratively, of course, but through the wonders of pandas, as shown
in the following example:

from lxml import objectify

import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'String', 'Boolean'],

 [obj[0].text, obj[1].text,

 obj[2].text]))

 row_s = pd.Series(row)

 row_s.name = i

 df = df.append(row_s)

search = pd.DataFrame.duplicated(df)

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 411	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 411

print df

print

print search[search == True]

This example shows how to find duplicate rows. It relies on a modified version of
the XMLData.xml file, XMLData2.xml, which contains a simple repeated row in it.
A real data file contains thousands (or more) of records and possibly hundreds of
repeats, but this simple example does the job. The example begins by reading the
data file into memory using the same technique you explore in Book 6, Chapter 2.
It then places the data into a DataFrame.

Place the data file XMLData2.xml in the same directory as your Python program.

At this point, your data is corrupted because it contains a duplicate row. However,
you can get rid of the duplicated row by searching for it. The first task is to cre-
ate a search object containing a list of duplicated rows by calling pd.DataFrame.
duplicated(). The duplicated rows contain a True next to their row number.

Of course, now you have an unordered list of rows that are and aren’t duplicated.
The easiest way to determine which rows are duplicated is to create an index in
which you use search == True as the expression. Following is the output you see
from this example. Notice that row 1 is duplicated in the DataFrame output and
that row 1 is also called out in the search results:

 Number String Boolean

0 1 First True

1 1 First True

2 2 Second False

3 3 Third True

1 True

dtype: bool

Removing duplicates
To get a clean data set, you want to remove the duplicates. Fortunately, you don’t
have to write any weird code to get the job done — pandas does it for you, as
shown in the following example:

from lxml import objectify

import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

0003053995.INDD 412	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

412 		BOOK	7	 Evaluating Data

for i in range(0,4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'String', 'Boolean'],

 [obj[0].text, obj[1].text,

 obj[2].text]))

 row_s = pd.Series(row)

 row_s.name = i

 df = df.append(row_s)

print df.drop_duplicates()

As with the previous example, you begin by creating a DataFrame that contains
the duplicate record. To remove the errant record, all you need to do is call drop_
duplicates(). Here’s the result you get:

 Number String Boolean

0 1 First True

2 2 Second False

3 3 Third True

Creating a data map and data plan
You need to know about your data set — that is, how it looks statically. A data map
is an overview of the data set. You use it to spot potential problems in your data,
such as

 » Redundant	variables

 » Possible	errors

 » Missing	values

 » Variable	transformations

Checking for these problems goes into a data plan, which is a list of tasks you have
to perform to ensure the integrity of your data. The following example shows a
data map, A, with two data sets, B and C:

import pandas as pd

df = pd.DataFrame({'A': [0,0,0,0,0,1,1],

 'B': [1,2,3,5,4,2,5],

 'C': [5,3,4,1,1,2,3]})

a_group_desc = df.groupby('A').describe()

print a_group_desc

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 413	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 413

In this case, the data map uses 0s for the first series and 1s for the second series.
The groupby() function places the data sets, B and C, into groups. To determine
whether the data map is viable, you obtain statistics using describe(). What you
end up with is a data set B, series 0 and 1, and data set C, series 0 and 1, as shown
in the following output:

 B C

A

0 count 5.000000 5.000000

 mean 3.000000 2.800000

 std 1.581139 1.788854

 min 1.000000 1.000000

 25% 2.000000 1.000000

 50% 3.000000 3.000000

 75% 4.000000 4.000000

 max 5.000000 5.000000

1 count 2.000000 2.000000

 mean 3.500000 2.500000

 std 2.121320 0.707107

 min 2.000000 2.000000

 25% 2.750000 2.250000

 50% 3.500000 2.500000

 75% 4.250000 2.750000

r max 5.000000 3.000000

These statistics tell you about the two data set series. The breakup of the two data
sets using specific cases is the data plan. As you can see, the statistics tell you that
this data plan may not be viable because some statistics are relatively far apart.

The output from describe() can be hard to read. The data is crammed together,
but you can break it apart, as shown here:

unstacked = a_group_desc.unstack()

print unstacked

Using unstack() creates a new presentation. Here’s the output formatted nicely
so that you can see it better:

 B

 count mean std min 25% 50% 75% max

A

0 5 3.0 1.581139 1 2.00 3.0 4.00 5

1 2 3.5 2.121320 2 2.75 3.5 4.25 5

0003053995.INDD 414	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

414 		BOOK	7	 Evaluating Data

 C

 count mean std min 25% 50% 75% max

A

0 5 2.8 1.788854 1 1.00 3.0 4.00 5

1 2 2.5 0.707107 2 2.25 2.5 2.75 3

Of course, you may not want all the data that describe() provides. Perhaps you
really just want to see the number of items in each series and their mean. Here’s
how you reduce the size of the information output:

print unstacked.loc[:,(slice(None),['count','mean']),]

Using loc lets you obtain specific columns. Here’s the final output from the
example showing just the information you absolutely need to make a decision:

 B C

 count mean count mean

A

0 5 3.0 5 2.8

1 2 3.5 2 2.5

Manipulating Categorical Variables
In data science, a categorical variable is one that has a specific value from a limited
selection of values. The number of values is usually fixed. Many developers will
know categorical variables by the moniker enumerations. Each of the potential val-
ues that a categorical variable can assume is a level.

To understand how categorical variables work, say that you have a variable
expressing the color of an object, such as a car, and that the user can select blue,
red, or green. To express the car’s color in a way that computers can represent and
effectively compute, an application assigns each color a numeric value, so blue is
1, red is 2, and green is 3. Normally when you print each color, you see the value
rather than the color.

If you use pandas.DataFrame (pandas-docs.github.io/pandas-docs-travis/
generated/pandas.DataFrame.html#pandas.DataFrame), you can still see the
symbolic value (blue, red, and green), even though the computer stores it as a
numeric value. Sometimes you need to rename and combine these named values
to create new symbols. Symbolic variables are just a convenient way of represent-
ing and storing qualitative data.

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 415	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 415

When using categorical variables for machine learning, it’s important to con-
sider the algorithm used to manipulate the variables. Some algorithms can work
directly with the numeric variables behind the symbols, while other algorithms
require that you encode the categorical values into binary variables. For example,
if you have three levels for a color variable (blue, red, and green), you have to cre-
ate three binary variables:

 » One	for	blue	(1	when	the	value	is	blue,	0	when	it	is	not)

 » One	for	red	(1	when	the	value	is	red,	0	when	it	is	not)

 » One	for	green	(1	when	the	value	is	green,	0	when	it	is	not)

Creating categorical variables
Categorical variables have a specific number of values, which makes them incred-
ibly valuable in performing a number of data science tasks. For example, imagine
trying to find values that are out of range in a huge data set. In this example,
you see one method for creating a categorical variable and then using it to check
whether some data falls within the specified limits.

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'], dtype='category')

car_data = pd.Series(

 pd.Categorical(['Yellow', 'Green', 'Red', 'Blue', 'Purple'],

 categories=car_colors, ordered=False))

CHECKING YOUR VERSION OF PANDAS
The	categorical	variable	examples	in	this	section	depend	on	your	having	a	minimum	
version	of	pandas	0.15.0	installed	on	your	system	(using	pandas	0.16.0	or	above	is	
actually	better	because	it	includes	a	large	number	of	bug	fixes).	To	check	your	version	
of	pandas,	type	import pandas as pd	and	press	Enter;	then,	type	print pd.version.
version	and	press	Enter.	You	see	the	version	number	of	pandas	you	have	installed.	The	
Anaconda	2.1.0	software	package	includes	pandas	0.14.1,	but	you	should	update	to	
pandas	0.16.0.	You	can	upgrade	to	this	version	after	installing	Anaconda	2.1.0	by	typing	
conda install pandas=0.16.0	in	the	command	line.

For	detailed	installation	instructions,	review	the	instructions	at	pandas.pydata.org/
pandas-docs/version/0.16.0/install.html#installing-pandas-with-
miniconda.

0003053995.INDD 416	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

416 		BOOK	7	 Evaluating Data

find_entries = pd.isnull(car_data)

print car_colors

print

print car_data

print

print find_entries[find_entries == True]

You must have at least pandas 0.15.0 for this code to work. If you are receiving an
error here, make sure to follow the preceding instructions on updating your ver-
sion of pandas.

The example begins by creating a categorical variable, car_colors. The variable
contains the values Blue, Red, and Green as colors that are acceptable for a car.
Notice that you must specify a dtype property value of category.

The next step is to create another series. This one uses a list of actual car colors,
named car_data, as input. Not all the car colors match the predefined acceptable
values. When this problem occurs, pandas outputs Not a Number (NaN) instead of
the car color.

Of course, you could search the list manually for the nonconforming cars, but the
easiest method is to have pandas do the work for you. In this case, you ask pandas
which entries are null using isnull() and place them in find_entries. You can
then output just those entries that are actually null. Here’s the output you see
from the example:

0 Blue

1 Red

2 Green

dtype: category

Categories (3, object): [Blue, Green, Red]

0 NaN

1 Green

2 Red

3 Blue

4 NaN

dtype: category

Categories (3, object): [Blue, Red, Green]

0 True

4 True

dtype: bool

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 417	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 417

Looking at the list of car_data outputs, you can see that entries 0 and 4 equal
NaN. The output from find_entries verifies this fact for you. If this were a large
data set, you could quickly locate and correct errant entries in the data set before
performing an analysis on it.

Renaming levels
There are times when the naming of the categories you use is inconvenient or
otherwise wrong for a particular need. Fortunately, you can rename the categories
as needed using the technique shown in the following example:

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],

 dtype='category')

car_data = pd.Series(

 pd.Categorical(

 ['Blue', 'Green', 'Red', 'Blue', 'Red'],

 categories=car_colors, ordered=False))

car_colors.cat.categories = ["Purple", "Yellow", "Mauve"]

car_data.cat.categories = car_colors

print car_data

All you really need to do is set the cat.categories property to a new value, as
shown. Here is the output from this example:

0 Purple

1 Yellow

2 Mauve

3 Purple

4 Mauve

dtype: category

Categories (3, object): [Purple, Mauve, Yellow]

Combining levels
A particular categorical level might be too small to offer significant data for analy-
sis. Perhaps there are only a few of the values, which may not be enough to create a

0003053995.INDD 418	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

418 		BOOK	7	 Evaluating Data

statistical difference. In this case, combining several small categories might offer
better analysis results. The following example shows how to combine categories:

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],

 dtype='category')

car_data = pd.Series(

 pd.Categorical(

 ['Blue', 'Green', 'Red', 'Green', 'Red', 'Green'],

 categories=car_colors, ordered=False))

car_data.cat.categories = ["Blue_Red", "Red", "Green"]

print car_data.ix[car_data.isin(['Red'])]

car_data.ix[car_data.isin(['Red'])] = 'Blue_Red'

print

print car_data

What this example shows you is that there is only one Blue item and only two Red
items, but there are three Green items, which places Green in the majority. Com-
bining Blue and Red together is a two-step process. First, you change the Blue
category to the Blue_Red category so that when you see the output, you know that
the two are combined. Then you change the Red entries to Blue_Red, which cre-
ates the combined category.

However, before you can change the Red entries to Blue_Red entries, you must
find them. This is where a combination of calls to isin(), which locates the Red
entries, and ix[], which obtains their index, provides precisely what you need.
The first print statement shows the result of using this combination. Here’s the
output from this example:

2 Red

4 Red

dtype: category

Categories (3, object): [Blue_Red, Red, Green]

0 Blue_Red

1 Green

2 Blue_Red

3 Green

4 Blue_Red

5 Green

dtype: category

Categories (3, object): [Blue_Red, Red, Green]

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 419	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 419

Notice that there are now three Blue_Red entries and three Green entries. The
Blue category no longer exists, and the Red category is no longer in use. The result
is that the levels are now combined as expected.

Dealing with Dates in Your Data
Dates can present problems in data. For one thing, dates are stored as numeric
values. However, the precise value of the number depends on the representation
for the particular platform and could even depend on the users’ preferences. For
example, Excel users can choose to start dates in 1900 or 1904 (https://support.
microsoft.com/en-us/kb/180162). The numeric encoding for each is different,
so the same date can have two numeric values depending on the starting date.

In addition to problems of representation, you also need to consider how to work
with time values. Creating a time value format that represents a value the user can
understand is hard. For example, you might need to use Greenwich Mean Time
(GMT) in some situations but a local time zone in others. Transforming between
various times is also problematic. With this in mind, the following sections pro-
vide you with details on dealing with time issues.

Formatting date and time values
Obtaining the correct date and time representation can make performing analysis
a lot easier. For example, you often have to change the representation to obtain
a correct sorting of values. Python provides two common methods of formatting
date and time. The first technique is to call str(), which simply turns a datetime
value into a string without any formatting. The strftime() function requires
more work because you must define how you want the datetime value to appear
after conversion. When using strftime(), you must provide a string containing
special directives that define the formatting. You can find a listing of these direc-
tives at strftime.org.

Now that you have some idea of how time and date conversions work, it’s time to
see an example. The following example creates a datetime object and then con-
verts it into a string using two different approaches:

import datetime as dt

now = dt.datetime.now()

print str(now)

print now.strftime('%a, %d %B %Y')

0003053995.INDD 420	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

420 		BOOK	7	 Evaluating Data

In this case, you can see that using str() is the easiest approach. However, as
shown by the following output, it may not provide the output you need. Using
strftime() is infinitely more flexible.

2017-01-16 17:26:45.986000

Mon, 16 January 2017

Using the right time transformation
Time zones and differences in local time can cause all sorts of problems when
performing analysis. For that matter, some types of calculations simply require
a time shift in order to get the right results. No matter what the reason, you may
need to transform one time into another time at some point. The following exam-
ples show some techniques you can employ to perform the task.

import datetime as dt

now = dt.datetime.now()

timevalue = now + dt.timedelta(hours=2)

print now.strftime('%H:%M:%S')

print timevalue.strftime('%H:%M:%S')

print timevalue - now

The timedelta() function makes the time transformation straightforward. You can
use any of these parameter names with timedelta() to change a time and date value:

 » days

 » seconds

 » microseconds

 » milliseconds

 » minutes

 » hours

 » weeks

You can also manipulate time by performing addition or subtraction on time val-
ues. You can even subtract two time values to determine the difference between
them. Here’s the output from this example:

17:44:40

19:44:40

2:00:00

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 421	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 421

Notice that now is the local time, timevalue is two time zones different from this
one, and there is a two-hour difference between the two times. You can perform
all sorts of transformations using these techniques to ensure that your analysis
always shows precisely the time-oriented values you need.

Dealing with Missing Data
Sometimes the data you receive is missing information in specific fields. For
example, a customer record might be missing an age. If enough records are miss-
ing entries, any analysis you perform will be skewed and the results of the analysis
weighted in an unpredictable manner. Having a strategy for dealing with missing
data is important. The following sections give you some ideas on how to work
through these issues and produce better results.

Finding the missing data
It’s essential to find missing data in your data set to avoid getting incorrect results
from your analysis. The following code shows how you could obtain a listing of
missing values without too much effort:

import pandas as pd

import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print s.isnull()

print

print s[s.isnull()]

A data set could represent missing data in several ways. In this example, you see
missing data represented as np.NaN (NumPy Not a Number) and the Python None
value.

Use the isnull() method to detect the missing values. The output shows True
when the value is missing. By adding an index into the data set, you obtain just the
entries that are missing. The example shows the following output:

0 False

1 False

2 False

3 True

4 False

0003053995.INDD 422	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

422 		BOOK	7	 Evaluating Data

5 False

6 True

dtype: bool

3 NaN

6 NaN

dtype: float64

Encoding missingness
After you figure out that your data set is missing information, you need to con-
sider what to do about it. The three possibilities are to ignore the issue, fill in the
missing items, or remove (drop) the missing entries from the data set. Ignoring
the problem could lead to all sorts of problems for your analysis, so it’s the option
you use least often. The following example shows one technique for filling in
missing data or dropping the errant entries from the data set:

import pandas as pd

import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print s.fillna(int(s.mean()))

print

print s.dropna()

The two methods of interest are fillna(), which fills in the missing entries,
and dropna(), which drops the missing entries. When using fillna(), you must
provide a value to use for the missing data. This example uses the mean of all the
values, but you could choose a number of other approaches. Here’s the output
from this example:

0 1

1 2

2 3

3 3

4 5

5 6

6 3

dtype: float64

0 1

1 2

2 3

4 5

5 6

dtype: float64

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 423	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 423

Working with a series is straightforward because the data set is so simple. When
working with a DataFrame, however, the problem becomes significantly more
complicated. You still have the option of dropping the entire row. When a column
is sparsely populated, you might drop the column instead. Filling in the data also
becomes more complex because you must consider the data set as a whole, in
addition to the needs of the individual feature.

Imputing missing data
The previous section hints at the process of imputing missing data (ascribing
characteristics based on how the data is used). The technique you use depends on
the sort of data you’re working with. The following example shows a technique
you can use to impute missing data values:

import pandas as pd

import numpy as np

from sklearn.preprocessing import Imputer

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

imp = Imputer(missing_values='NaN',

 strategy='mean', axis=0)

imp.fit([1, 2, 3, 4, 5, 6, 7])

x = pd.Series(imp.transform(s).tolist()[0])

print x

In this example, s is missing some values. The code creates an Imputer to
replace these missing values. The missing_values parameter defines what
to look for, which is NaN (Not a Number). You set the axis parameter to 0 to
impute along columns and 1 to impute along rows. The strategy para-
meter defines how to replace the missing values (you can discover more about
the Imputer parameters at scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.Imputer.html):

 » mean:	Replaces	the	values	by	using	the	mean	along	the	axis.

 » median:	Replaces	the	values	by	using	the	medium	along	the	axis.

 » most_frequent:	Replaces	the	values	by	using	the	most	frequent	value	along	
the	axis.

Before you can impute anything, you must provide statistics for the Imputer to
use by calling fit(). The code then calls transform() on s to fill in the missing

0003053995.INDD 424	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

424 		BOOK	7	 Evaluating Data

values. However, the output is no longer a series. To create a series, you must
convert the Imputer output to a list and use the resulting list as input to Series().
Here’s the result of the process with the missing values filled in:

0 1

1 2

2 3

3 4

4 5

5 6

6 7

dtype: float64

Slicing and Dicing: Filtering
and Selecting Data

You may not need to work with all the data in a data set. In fact, looking at just
one particular column might be beneficial, such as age, or a set of rows with a
significant amount of information. You perform two steps to obtain just the data
you need to perform a particular task:

1. Filter	rows	to	create	a	subject	of	the	data	that	meets	the	criterion	you	select	
(such	as	all	the	people	between	the	ages	of	5	and	10).

2. Select	data	columns	that	contain	the	data	you	need	to	analyze.	For	example,	
you	probably	don’t	need	the	individuals’	names	unless	you	want	to	perform	
some	analysis	based	on	name.

The act of slicing and dicing data gives you a subset of the data suitable for analy-
sis. The following sections describe various ways to obtain specific pieces of data
to meet particular needs.

Slicing rows
Slicing can occur in multiple ways when working with data, but the technique of
interest in this section is to slice data from a row of 2D or 3D data. A 2D array may
contain temperatures (x axis) over a specific timeframe (y axis). Slicing a row
would mean seeing the temperatures at a specific time. In some cases, you might
associate rows with cases in a data set.

A 3D array might include an axis for place (x axis), product (y axis), and time
(z axis) so that you can see sales for items over time. Perhaps you want to track

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 425	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 425

whether sales of an item are increasing, and specifically where they are increasing.
Slicing a row would mean seeing all the sales for one specific product for all loca-
tions at any time. The following example demonstrates how to perform this task:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],

 [[11,12,13], [14,15,16], [17,18,19],],

 [[21,22,23], [24,25,26], [27,28,29]]])

x[1]

In this case, the example builds a 3D array. It then slices row 1 of that array to
produce the following output:

array([[11, 12, 13],

 [14, 15, 16],

 [17, 18, 19]])

Slicing columns
Using the examples from the previous section, slicing columns would obtain data
at a 90-degree angle from rows. In other words, when working with the 2D array,
you would want to see the times at which specific temperatures occurred. Like-
wise, you might want to see the sales of all products for a specific location at any
time when working with the 3D array. In some cases, you might associate columns
with features in a data set. The following example demonstrates how to perform
this task using the same array as in the previous section:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],

 [[11,12,13], [14,15,16], [17,18,19],],

 [[21,22,23], [24,25,26], [27,28,29]]])

x[:,1]

Notice that the indexing now occurs at two levels. The first index refers to the row.
Using the colon (:) for the row means to use all the rows. The second index refers to
a column. In this case, the output will contain column 1. Here’s the output you see:

array([[4, 5, 6],

 [14, 15, 16],

 [24, 25, 26]])

This is a 3D array. Therefore each of the columns contains all the z axis elements.
What you see is every row — 0 through 2 for column 1 with every z axis element
0 through 2 for that column.

0003053995.INDD 426	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

426 		BOOK	7	 Evaluating Data

Dicing
The act of dicing a data set means to perform both row and column slicing such
that you end up with a data wedge. For example, when working with the 3D array,
you might want to see the sales of a specific product in a specific location at any
time. The following example demonstrates how to perform this task using the
same array as in the previous two sections:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],

 [[11,12,13], [14,15,16], [17,18,19],],

 [[21,22,23], [24,25,26], [27,28,29]]])

print x[1,1]

print x[:,1,1]

print x[1,:,1]

print

print x[1:3, 1:3]

This example dices the array in four different ways. First, you get row 1, column 1.
Of course, what you may actually want is column 1, z axis 1. If that’s not quite
right, you could always request row 1, z axis 1 instead. Then again, you may want
rows 1 and 2 of columns 1 and 2. Here’s the output of all four requests:

 [14 15 16]

[5 15 25]

[12 15 18]

[[[14 15 16]

 [17 18 19]]

 [[24 25 26]

 [27 28 29]]]

Concatenating and Transforming
Data used for data science purposes seldom comes in a neat package. You may
need to work with multiple databases in various locations — each of which has its
own data format. It’s impossible to perform analysis on such disparate sources of
information with any accuracy. To make the data useful, you must create a single
data set (by concatenating, or combining, the data from various sources).

Part of the process is to ensure that each field you create for the combined data
set has the same characteristics. For example, an age field in one database might

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 427	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 427

appear as a string, but another database could use an integer for the same field.
For the fields to work together, they must appear as the same type of information.

The following sections help you understand the process involved in concatenating
and transforming data from various sources to create a single data set. After you
have a single data set from these sources, you can begin to perform tasks such as
analysis on the data. Of course, the trick is to create a single data set that truly
represents the data in all those disparate data sets — modifying the data would
result in skewed results.

Adding new cases and variables
You often find a need to combine data sets in various ways or even to add new
information for the sake of analysis purposes. The result is a combined data set
that includes either new cases or variables. The following example shows tech-
niques for performing both tasks:

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],

 'B': [1,2,3],

 'C': [5,3,4]})

df1 = pd.DataFrame({'A': [4],

 'B': [4],

 'C': [4]})

df = df.append(df1)

df = df.reset_index(drop=True)

print df

df.loc[df.last_valid_index() + 1] = [5, 5, 5]
print

print df

df2 = pd.DataFrame({'D': [1, 2, 3, 4, 5]})

df = pd.DataFrame.join(df, df2)

print

print df

The easiest way to add more data to an existing DataFrame is to rely on the
append() method. You can also use the concat() method (a technique shown
in Book 7, Chapter 5). In this case, the three cases found in df are added to the
single case found in df1. To ensure that the data is appended as anticipated, the
 columns in df and df1 must match. When you append two DataFrame objects in

0003053995.INDD 428	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

428 		BOOK	7	 Evaluating Data

this manner, the new DataFrame contains the old index values. Use the reset_
index() method to create a new index to make accessing cases easier.

You can also add another case to an existing DataFrame by creating the new case
directly. Any time you add a new entry at a position that is one greater than the
last_valid_index(), you get a new case as a result.

Sometimes you need to add a new variable (column) to the DataFrame. In this
case, you rely on join() to perform the task. The resulting DataFrame will match
cases with the same index value, so indexing is important. In addition, unless you
want blank values, the number of cases in both DataFrame objects must match.
Here’s the output from this example:

 A B C

0 2 1 5

1 3 2 3

2 1 3 4

3 4 4 4

 A B C

0 2 1 5

1 3 2 3

2 1 3 4

3 4 4 4

4 5 5 5

 A B C D

0 2 1 5 1

1 3 2 3 2

2 1 3 4 3

3 4 4 4 4

4 5 5 5 5

Removing data
At some point, you may need to remove cases or variables from a data set because
they aren’t required for your analysis. In both cases, you rely on the drop()
method to perform the task. The difference in removing cases or variables is in
how you describe what to remove, as shown in the following example:

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],

 'B': [1,2,3],

 'C': [5,3,4]})

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 429	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 429

df = df.drop(df.index[[1]])

print df

df = df.drop('B', 1)

print

print df

The example begins by removing a case from df. Notice how the code relies on
an index to describe what to remove. You can remove just one case (as shown),
ranges of cases, or individual cases separated by commas. The main concern is to
ensure that you have the correct index numbers for the cases you want to remove.

Removing a column is different. This example shows how to remove a column
using a column name. You can also remove a column by using an index. In both
cases, you must specify an axis as part of the removal process (normally 1). Here’s
the output from this example:

 A B C

0 2 1 5

2 1 3 4

 A C

0 2 5

2 1 4

Sorting and shuffling
Sorting and shuffling are two ends of the same goal — to manage data order.
In the first case, you put the data into order, while in the second, you remove
any systematic patterning from the order. In general, you don’t sort data sets for
the purpose of analysis because doing so can cause you to get incorrect results.
However, you might want to sort data for presentation purposes. The following
example shows both sorting and shuffling:

import pandas as pd

import numpy as np

df = pd.DataFrame({'A': [2,1,2,3,3,5,4],

 'B': [1,2,3,5,4,2,5],

 'C': [5,3,4,1,1,2,3]})

df = df.sort_index(by=['A', 'B'], ascending=[True, True])

df = df.reset_index(drop=True)

print df

0003053995.INDD 430	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

430 		BOOK	7	 Evaluating Data

index = df.index.tolist()

np.random.shuffle(index)

df = df.ix[index]

df = df.reset_index(drop=True)

print

print df

It turns out that sorting the data is a bit easier than shuffling it. To sort the data,
you use the sort_index() method and define which columns to use for indexing
purposes. You can also determine whether the index is in ascending or descending
order. Make sure to always call reset_index() when you’re done so that the index
appears in order for analysis or other purposes.

To shuffle the data, you first acquire the current index using df.index.tolist()
and place it in index. A call to random.shuffle() creates a new order for the
index. You then apply the new order to df using ix[]. As always, you call reset_
index() to finalize the new order. Here’s the output from this example:

 A B C

0 1 2 3

1 2 1 5

2 2 3 4

3 3 4 1

4 3 5 1

5 4 5 3

6 5 2 2

 A B C

0 2 3 4

1 3 5 1

2 3 4 1

3 1 2 3

4 4 5 3

5 5 2 2

6 2 1 5

Aggregating Data at Any Level
Aggregation is the process of combining or grouping data together into a set, bag,
or list. The data may or may not be alike. However, in most cases, an aggregation
function combines several rows together statistically using algorithms such as
average, count, maximum, median, minimum, mode, or sum. There are several
reasons to aggregate data:

Co
nd

it
io

ni
ng

 Y
ou

r
D

at
a

0003053995.INDD 431	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 1 Conditioning Your Data 431

 » Make	it	easier	to	analyze.

 » Reduce	the	ability	of	anyone	to	deduce	the	data	of	an	individual	from	the	data	
set	for	privacy	or	other	reasons.

 » Create	a	combined	data	element	from	one	data	source	that	matches	a	
combined	data	element	in	another	source.

The most important use of data aggregation is to promote anonymity in order
to meet legal or other concerns. Sometimes even data that should be anonymous
turns out to provide identification of an individual using the proper analysis tech-
niques. For example, researchers have found that it’s possible to identify individ-
uals based on just three credit card purchases (see http://www.computerworld.
com/article/2877935/how-three-small-credit-card-transactions-could-
reveal-your-identity.html). Here’s an example that shows how to perform
aggregation tasks:

import pandas as pd

df = pd.DataFrame({'Map': [0,0,0,1,1,2,2],

 'Values': [1,2,3,5,4,2,5]})

df['S'] = df.groupby('Map')['Values'].transform(np.sum)

df['M'] = df.groupby('Map')['Values'].transform(np.mean)

df['V'] = df.groupby('Map')['Values'].transform(np.var)

print df

In this case, you have two initial features for this DataFrame. The values in Map
define which elements in Values belong together. For example, when calculating
a sum for Map index 0, you use the Values 1, 2, and 3.

To perform the aggregation, you must first call groupby() to group the Map val-
ues. You then index into Values and rely on transform() to create the aggregated
data using one of several algorithms found in NumPy, such as np.sum. Here are
the results of this calculation:

 Map Values S M V

0 0 1 6 2.0 1.0

1 0 2 6 2.0 1.0

2 0 3 6 2.0 1.0

3 1 5 9 4.5 0.5

4 1 4 9 4.5 0.5

5 2 2 7 3.5 4.5

6 2 5 7 3.5 4.5

0003053995.INDD 432	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:44	AM

CHAPTER 2 Shaping Data 433

0003053996.INDD 433 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

 Shaping Data
“It is a capital mistake to theorize before one has data.”

 — SHERLOCK HOLMES

 B ook 7, Chapter 1 demonstrates techniques for working with data as an
entity — as something you work with in Python. However, data doesn’t
exist in a vacuum. It doesn’t just suddenly appear within Python for abso-

lutely no reason at all. As demonstrated in Book 6, Chapter 3, you load the data.
However, loading may not be enough — you may have to shape the data as part
of loading it. That’s the purpose of this chapter. You discover how to work with
a variety of container types in a way that makes it possible to load data from a
number of complex container types, such as HTML pages. In fact, you even work
with graphics, images, and sounds.

As you progress through the book, you discover that data takes all kinds of forms
and shapes. As far as the computer is concerned, data consists of 0s and 1s. Humans
give the data meaning by formatting, storing, and interpreting it in a certain way.
The same group of 0s and 1s could be a number, date, or text, depending on the
interpretation. The data container provides clues as to how to interpret the data,
so that’s why this chapter is so important as you use Python to discover data pat-
terns. You will fi nd that you can discover patterns in places where you might have
thought patterns couldn’t exist.

 You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source available at www.dummies.com/go/
codingaiodownloads . The source code for this chapter appears in the P4DS4D; 07;
Shaping Data.ipynb source code fi le.

Chapter 2

 IN THIS CHAPTER

 » Manipulating HTML data

 » Manipulating raw text

 » Discovering the bag of words model
and other techniques

 » Manipulating graph data

0003053996.INDD 434 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

434 BOOK 7 Evaluating Data

Working with HTML Pages
HTML pages contain data in a hierarchical format. You often find HTML content
in a strict HTML form or as XML. The HTML form can present problems because
it doesn’t always necessarily follow strict formatting rules. XML does follow strict
formatting rules because of the standards used to define it, which makes it easier
to parse. However, in both cases, you use similar techniques to parse a page. The
first section that follows describes how to parse HTML pages in general.

Sometimes you don’t need all the data on a page. Instead you need specific data,
which is where XPath comes into play. You can use XPath to locate specific data
on the HTML page and extract it for your particular needs.

Parsing XML and HTML
Simply extracting data from an XML file as you do in Book 6, Chapter 3 may not be
enough. The data may not be in the correct format. Using the approach in Book 6,
Chapter 3, you end up with a DataFrame containing three columns of type str.
Obviously, you can’t perform much data manipulation with strings. The following
example shapes the XML data from Book 6, Chapter 3 to create a new DataFrame
containing just the <Number> and <Boolean> elements in the correct format.

from lxml import objectify

import pandas as pd

from distutils import util

xml = objectify.parse(open('XMLData.xml'))

root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'Boolean'))

for i in range(0,4):

 obj = root.getchildren()[i].getchildren()

 row = dict(zip(['Number', 'Boolean'],

 [obj[0].pyval,

 bool(util.strtobool(obj[2].text))]))

 row_s = pd.Series(row)

 row_s.name = obj[1].text

 df = df.append(row_s)

print type(df.ix['First']['Number'])

print type(df.ix['First']['Boolean'])

Obtaining a numeric value from the <Number> element consists of using the pyval
output, rather than the text output. The result isn’t an int, but it is numeric.

Sh
ap

in
g

D
at

a

0003053996.INDD 435 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 435

The conversion of the <Boolean> element is a little harder. You must convert the
string to a numeric value using the strtobool() function in distutils.util. The
output is a 0 for False values and a 1 for True values. However, that’s still not a
Boolean value. To create a Boolean value, you must convert the 0 or 1 using bool().

This example also shows how to access individual values in the DataFrame. Notice
that the name property now uses the <String> element value for easy access. You
provide an index value using ix and then access the individual feature using a
second index. The output from this example is

<type 'numpy.float64'>

<type 'bool'>

Using XPath for data extraction
Using XPath to extract data from your data set can greatly reduce the complexity
of your code and potentially make it faster as well. The following example shows
an XPath version of the example in the previous section. Notice that this version
is shorter and doesn’t require the use of a for loop.

from lxml import objectify

import pandas as pd

from distutils import util

xml = objectify.parse(open('XMLData.xml'))

root = xml.getroot()

data = zip(map(int, root.xpath('Record/Number')),

 map(bool, map(util.strtobool,

 map(str, root.xpath('Record/Boolean')))))

df = pd.DataFrame(data,

 columns=('Number', 'Boolean'),

 index=map(str,

 root.xpath('Record/String')))

print df

print type(df.ix['First']['Number'])

print type(df.ix['First']['Boolean'])

The example begins just like the previous example, with the importing of data and
obtaining of the root node. At this point, the example creates a data object that
contains record number and Boolean value pairs. Because the XML file entries are
all strings, you must use the map() function to convert the strings to the appro-
priate values. Working with the record number is straightforward — all you do is

0003053996.INDD 436 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

436 BOOK 7 Evaluating Data

map it to an int. The xpath() function accepts a path from the root node to the
data you need, which is 'Record/Number' in this case.

Mapping the Boolean value is a little more difficult. As in the previous section,
you must use the util.strtobool() function to convert the string Boolean val-
ues to a number that bool() can convert to a Boolean equivalent. However, if you
try to perform just a double mapping, you’ll encounter an error message saying
that lists don’t include a required function, tolower().To overcome this obstacle,
you perform a triple mapping and convert the data to a string using the str()
function first.

Creating the DataFrame is different, too. Instead of adding individual rows, you
add all the rows at one time by using data. Setting up the column names is the
same as before. However, now you need some way of adding the row names, as in
the previous example. This task is accomplished by setting the index parameter
to a mapped version of the xpath() output for the 'Record/String' path. Here’s
the output you can expect:

 Number Boolean

First 1 True

Second 2 False

Third 3 True

Fourth 4 False

<type 'numpy.int64'>

<type 'numpy.bool_'>

Working with Raw Text
Even though it might seem as if raw text wouldn’t present a problem in parsing
because it doesn’t contain any special formatting, you do have to consider how
the text is stored and whether it contains special words within it. The multiple
forms of Unicode can present interpretation problems that you need to consider as
you work through the text. Using regular expressions can help you locate specific
information within a raw-text file. You can use regular expressions for both data
cleaning and pattern matching. The following sections help you understand the
techniques used to shape raw-text files.

Dealing with Unicode
Text files are pure text — this much is certain. The way the text is encoded can
differ. For example, a character can use either seven or eight bits for encoding

Sh
ap

in
g

D
at

a

0003053996.INDD 437 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 437

purposes. The use of special characters can differ as well. In short, the interpreta-
tion of bits used to create characters differs from encoding to encoding. You can
see a host of encodings at www.i18nguy.com/unicode/codepages.html.

Sometimes you need to work with encodings other than the default encoding set
within the Python environment. When working with Python 3.x, you must rely
on Universal Transformation Format 8-bit (UTF-8) as the encoding used to read
and write files. This environment is always set for UTF-8, and trying to change
it causes an error message. However, when working with Python 2.x, you can
choose other encodings. In this case, the default encoding is the American Stan-
dard Code for Information Interchange (ASCII), but you can change it to some
other encoding.

You can use this technique in any IPython Notebook file, but you won’t actually
see output from it. In order to see output, you need to work with the IPython
prompt. The following steps help you see how to deal with Unicode characters, but
only when working with Python 2.x (these steps will cause errors in the Python
3.x environment).

1. Open a copy of the IPython command prompt.

You see the IPython window.

2. Type the following code, pressing Enter after each line.

import sys

sys.getdefaultencoding()

You see the default encoding for Python, which is ASCII in most cases.

3. Type reload(sys) and press Enter.

Python reloads the sys module and makes a special function available.

4. Type sys.setdefaultencoding(‘utf-8’) and press Enter.

Python does change the encoding, but you won’t know that for certain until
after the next step.

5. Type sys.getdefaultencoding() and press Enter.

You see that the default encoding has now changed to utf-8.

Changing the default encoding at the wrong time and in the incorrect way can
prevent you from performing tasks such as importing modules. Make sure to test
your code carefully and completely to ensure that any change in the default encod-
ing won’t affect your ability to run the application. Good additional articles to read
on this topic appear at http://blog.notdot.net/2010/07/Getting-unicode-
right-in-Python and http://web.archive.org/web/20120722170929/http://
boodebr.org/main/python/all-about-python-and-unicode.

0003053996.INDD 438 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

438 BOOK 7 Evaluating Data

Stemming and removing stop words
Stemming is the process of reducing words to their stem (or root) word. This task
isn’t the same as understanding that some words come from Latin or other roots,
but instead it makes like words equal to each other for the purpose of comparison
or sharing. For example, the words cats, catty, and catlike all have the stem cat. The
act of stemming helps you analyze sentences by tokenizing them.

Removing suffixes to create stem words and generally tokenizing sentences are
only two parts of the process, however, of creating something like a natural lan-
guage interface. Languages include a great number of glue words that don’t mean
much to a computer but have significant meaning to humans, such as a, as, the,
that, and so on in English. These short, less useful words are stop words. Sentences
don’t make sense without them to humans, but for your computer, they can act as
a means of stopping sentence analysis.

The act of stemming and removing stop words simplifies the text and reduces the
number of textual elements so that just the essential elements remain. In addi-
tion, you keep just the terms that are nearest to the true sense of the phrase. By
reducing phrases in such a fashion, a computational algorithm can work faster
and process the text more effectively.

This example requires the use of the Natural Language Toolkit (NLTK), which may
not be part of Anaconda’s default install. To use this example, you must download
and install NLTK using the instructions found at www.nltk.org/install.html for
your platform. If you have multiple versions of Python installed on your system,
make certain that you install the NLTK for whatever version of Python you’re
using for this book. After you install NLTK, you must also install the packages
associated with it. The instructions at www.nltk.org/data.html tell you how to
perform this task (install all the packages to ensure you have everything).

After the NLTK library is installed, you can install all the associated packages from
the Python interpreter by opening a terminal window and typing three lines:

python

import nltk
nltk.download(‘all’)

The following example demonstrates how to perform stemming and remove stop
words from a sentence. It begins by training an algorithm to perform the required
analysis using a test sentence. Afterward, the example checks a second sentence
for words that appear in the first.

import sklearn.feature_extraction.text as ext

from nltk import word_tokenize

from nltk.stem.porter import PorterStemmer

Sh
ap

in
g

D
at

a

0003053996.INDD 439 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 439

stemmer = PorterStemmer()

def stem_tokens(tokens, stemmer):

 stemmed = []

 for item in tokens:

 stemmed.append(stemmer.stem(item))

 return stemmed

def tokenize(text):

 tokens = word_tokenize(text)

 stems = stem_tokens(tokens, stemmer)

 return stems

vocab = ['Sam loves swimming so he swims all the time']

vect = ext.CountVectorizer(tokenizer=tokenize,

 stop_words='english')

vec = vect.fit(vocab)

sentence1 = vec.transform(['George loves swimming too!'])

print vec.get_feature_names()

print sentence1.toarray()

At the outset, the example creates a vocabulary using a test sentence and places
it in vocab. It then creates a CountVectorizer, vect, to hold a list of stemmed
words, but excludes the stop words. The tokenizer parameter defines the func-
tion used to stem the words. The stop_words parameter refers to a pickle file that
contains stop words for a specific language, which is English in this case. There
are also files for other languages, such as French and German. (You can see other
parameters for the CountVectorizer() at http://scikit-learn.org/stable/
modules/generated/sklearn.feature_extraction.text.CountVectorizer.
html.) The vocabulary is fitted into another CountVectorizer, vec, which is used
to perform the actual transformation on a test sentence using the transform()
function. Here’s the output from this example:

 [u'love', u'sam', u'swim', u'time']

[[1 0 1 0]]

The first output shows the stemmed words. Notice that the list contains only swim,
not swimming and swims. All the stop words are missing as well. For example, you
don’t see the words so, he, all, or the.

The second output shows how many times each stemmed word appears in the test
sentence. In this case, a love variant appears once and a swim variant appears once
as well. The words sam and time don’t appear in the second sentence, so those
values are set to 0.

0003053996.INDD 440 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

440 BOOK 7 Evaluating Data

Introducing regular expressions
Regular expressions present an interesting array of tools for parsing raw text. At
first, it may seem daunting to figure out precisely how regular expressions work.
However, sites such as regexr.com let you play with regular expressions so that
you can see how the use of various expressions performs specific types of pattern
matching. Of course, the first requirement is to discover pattern matching, which
is the use of special characters to tell a parsing engine what to find in the raw text
file. Table 2-1 provides a list of pattern-matching characters and tells you how to
use them.

TABLE 2-1	 Pattern-Matching Characters Used in Python
Character Interpretation

(re) Groups regular expressions and remembers the matched text.

(?: re) Groups regular expressions without remembering matched text.

(?#...) Indicates a comment, which isn’t processed.

re? Matches 0 or 1 occurrence of preceding expression (but no more than 0 or 1 occurrence).

re* Matches 0 or more occurrences of the preceding expression.

re+ Matches 1 or more occurrences of the preceding expression.

(?> re) Matches an independent pattern without backtracking.

. Matches any single character except the newline (\n) character (adding the m option
allows it to match the newline character as well).

[^...] Matches any single character or range of characters not found within the brackets.

[...] Matches any single character or range of characters that appears within the brackets.

re{ n, m} Matches at least n and at most m occurrences of the preceding expression.

\n, \t, etc. Matches control characters such as newlines (\n), carriage returns (\r), and tabs (\t).

\d Matches digits (which is equivalent to using [0-9]).

a|b Matches either a or b.

re{ n} Matches exactly the number of occurrences of preceding expression specified by n.

re{ n,} Matches n or more occurrences of the preceding expression.

Sh
ap

in
g

D
at

a

0003053996.INDD 441 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 441

Using regular expressions helps you manipulate complex text before using other
techniques described in this chapter. In the following example, you see how to
extract a telephone number from a sentence no matter where the telephone num-
ber appears. This sort of manipulation is helpful when you have to work with
text of various origins and in irregular format. You can see some additional

Character Interpretation

\D Matches nondigits.

\S Matches nonwhitespace.

\B Matches nonword boundaries.

\W Matches nonword characters.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already (otherwise the pattern refers
to the octal representation of a character code).

\A Matches the beginning of a string.

^ Matches the beginning of the line.

\z Matches the end of a string.

\Z Matches the end of string (when a newline exists, it matches just before newline).

$ Matches the end of the line.

\G Matches the point where the last match finished.

\s Matches whitespace (which is equivalent to using [\t\n\r\f]).

\b Matches word boundaries when outside the brackets; matches the backspace (0x08)
when inside the brackets.

\w Matches word characters.

(?= re) Specifies a position using a pattern (this pattern doesn’t have a range).

(?! re) Specifies a position using pattern negation (this pattern doesn’t have a range).

(?-imx) Toggles the i, m, or x options temporarily off within a regular expression (when this
pattern appears in parentheses, only the area within the parentheses is affected).

(?imx) Toggles the i, m, or x options temporarily on within a regular expression (when this
pattern appears in parentheses, only the area within the parentheses is affected).

(?-imx: re) Toggles the i, m, or x options within parentheses temporarily off.

(?imx: re) Toggles the i, m, or x options within parentheses temporarily on.

0003053996.INDD 442 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

442 BOOK 7 Evaluating Data

telephone number manipulation routines at www.diveintopython.net/regular_
expressions/phone_numbers.html. The big thing is that this example helps you
understand how to extract the text you need from the text you don’t.

import re

data1 = 'My phone number is: 800-555-1212.'

data2 = '800-555-1234 is my phone number.'

pattern = re.compile(r'(\d{3})-(\d{3})-(\d{4})')

dmatch1 = pattern.search(data1).groups()

dmatch2 = pattern.search(data2).groups()

print dmatch1

print dmatch2

The example begins with two telephone numbers placed in sentences in various
locations. Before you can do much, you need to create a pattern. Always read
a pattern from left to right. In this case, the pattern is looking for three dig-
its, followed by a dash, three more digits, followed by another dash, and finally
four digits.

To make the process faster and easier, the code calls the compile() function to
create a compiled version of the pattern so that Python doesn’t have to re-create
the pattern every time you need it. The compiled pattern appears in pattern.

The search() function looks for the pattern in each of the test sentences. It then
places any matched text that it finds into groups and outputs a tuple into one of
two variables. Here’s the output from this example:

('800', '555', '1212')

('800', '555', '1234')

Using the Bag of Words Model and Beyond
The goal of most data imports is to perform some type of analysis. Before you can
perform analysis on textual data, you must tokenize every word within the data
set. The act of tokenizing the words creates a bag of words. You can then use the
bag of words to train classifiers, a special kind of algorithm used to break words
down into categories. The following section provides additional insights into the
bag of words model and shows how to work with it.

Sh
ap

in
g

D
at

a

0003053996.INDD 443 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 443

Understanding the bag of words model
In order to perform textual analysis of various sorts, you need to first tokenize the
words and create a bag of words from them. The bag of words uses numbers to
represent words, word frequencies, and word locations that you can manipulate
mathematically to see patterns in the way that the words are structured and used.
The bag of words model ignores grammar and even word order — the focus is on
simplifying the text so that you can easily analyze it.

The creation of a bag of words revolves around Natural Language Processing
(NLP) and Information Retrieval (IR). Before you perform this sort of process-
ing, you normally remove any special characters (such as HTML formatting from
a web source), remove the stop words, and possibly perform stemming as well
(as described in the “Stemming and removing stop words” section, earlier this
chapter). For the purpose of this example, you use the 20 Newsgroups data set
directly. Here’s an example of how you can obtain textual input and create a bag
of words from it:

from sklearn.datasets import fetch_20newsgroups

import sklearn.feature_extraction.text as ext

categories = ['comp.graphics', 'misc.forsale',

 'rec.autos', 'sci.space']

GETTING THE 20 NEWSGROUPS DATA SET
The examples in the sections that follow rely on the 20 Newsgroups data set (qwone.
com/~jason/20Newsgroups) that’s part of the Scikit-learn installation. The host site
provides some additional information about the data set, but essentially it’s a good data
set to use to demonstrate various kinds of text analysis.

You don’t have to do anything special to work with the data set because Scikit-learn
already knows about it. However, when you run the first example, you see the message
“WARNING:sklearn.datasets.twenty_newsgroups:Downloading dataset from
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.
gz (14 MB).” All this message tells you is that you need to wait for the data download
to complete. There is nothing wrong with your system. Look at the left side of the code
cell in IPython Notebook and you see the familiar In [*]: entry. When this entry changes
to show a number, the download is complete. The message doesn’t go away until the
next time you run the cell.

0003053996.INDD 444 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

444 BOOK 7 Evaluating Data

twenty_train = fetch_20newsgroups(subset='train',

 categories=categories,

 shuffle=True,

 random_state=42)

count_vect = ext.CountVectorizer()

X_train_counts = count_vect.fit_transform(

 twenty_train.data)

print X_train_counts.shape

A number of the examples you see online are unclear as to where the list of categories
they use come from. The host site at http://qwone.com/~jason/20Newsgroups
provides you with a listing of the categories you can use. The category list doesn’t
come from a magic hat somewhere, but many examples online simply don’t
bother to document some information sources. Always refer to the host site when
you have questions about issues such as data set categories.

The call to fetch_20newsgroups() loads the data set into memory. You see the
resulting training object, twenty_train, described as a bunch. At this point, you
have an object that contains a listing of categories and associated data, but the
application hasn’t tokenized the data, and the algorithm used to work with the
data isn’t trained.

Now that you have a bunch of data to use, you can begin creating a bag of words
with it. The bag of words process begins by assigning an integer value (an index of
a sort) to each unique word in the training set. In addition, each document receives
an integer value. The next step is to count every occurrence of these words in each
document and create a list of document and count pairs so that you know which
words appear how often in each document.

Naturally, some words from the master list aren’t used in some documents,
thereby creating a high-dimensional sparse data set. The scipy.sparse matrix is a
data structure that lets you store only the nonzero elements of the list in order to
save memory. When the code makes the call to count_vect.fit_transform(), it
places the resulting bag of words into X_train_counts. You can see the resulting
number of entries by accessing the shape property. The result, using the catego-
ries defined for this example, is

 (2356, 34750)

Sh
ap

in
g

D
at

a

0003053996.INDD 445 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 445

Working with n-grams
An n-gram is a continuous sequence of items in the text you want to analyze.
The items are phonemes, syllables, letters, words, or base pairs. The n in n-gram
refers to a size. An n-gram that has a size of one, for example, is a unigram. The
example in this section uses a size of three, making a trigram. You use n-grams
in a probabilistic manner to perform tasks such as predicting the next sequence in
a series, which wouldn’t seem very useful until you start thinking about applica-
tions such as search engines that try to predict the word you want to type based on
the previous letters you’ve supplied. However, the technique has all sorts of appli-
cations, such as in DNA sequencing and data compression. The following example
shows how to create n-grams from the 20 Newsgroups data set.

from sklearn.datasets import fetch_20newsgroups

import sklearn.feature_extraction.text as ext

categories = ['sci.space']

twenty_train = fetch_20newsgroups(subset='train',

 categories=categories,

 remove=('headers', 'footers', 'quotes'),

 shuffle=True,

 random_state=42)

count_chars = ext.CountVectorizer(analyzer='char_wb',

 ngram_range=(3,3),

 max_features=10).fit(twenty_train['data'])

count_words = ext.CountVectorizer(analyzer='word',

 ngram_range=(2,2),

 max_features=10,

 stop_words='english').fit(twenty_train['data'])

X = count_chars.transform(twenty_train.data)

print count_words.get_feature_names()

print X[1].todense()

print count_words.get_feature_names()

The beginning code is the same as in the previous section. You still begin by fetch-
ing the data set and placing it into a bunch. However, in this case, the vectorization
process takes on new meaning. The arguments process the data in a special way.

In this case, the analyzer parameter determines how the application creates the
n-grams. You can choose words (word), characters (char), or characters within
word boundaries (char_wb). The ngram_range parameter requires two inputs in
the form of a tuple: The first determines the minimum n-gram size and the sec-
ond determines the maximum n-gram size. The third argument, max_features,

0003053996.INDD 446 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

446 BOOK 7 Evaluating Data

determines how many features the vectorizer returns. In the second vectorizer
call, the stop_words argument removes the terms contained in the English pickle
(see the “Stemming and removing stop words” section, earlier in the chapter, for
details). At this point, the application fits the data to the transformation algorithm.

The example provides three outputs. The first shows the top ten trigrams for
characters from the document. The second is the n-gram for the first document.
It shows the frequency of the top ten trigrams. The third is the top ten trigrams
for words. Here’s the output from this example:

[u'ax ax', u'ax max', u'distribution world', u'don know',

 u'edu organization', u'max ax', u'nntp posting',

 u'organization university', u'posting host',

 u'writes article']

[[0 0 5 1 0 0 4 2 5 1]]

[u'ax ax', u'ax max', u'distribution world', u'don know',

 u'edu organization', u'max ax', u'nntp posting',

 u'organization university', u'posting host',

 u'writes article']

Implementing TF-IDF transformations
The term frequency-inverse document frequency (TF-IDF) transformation is a tech-
nique used to help compensate for the lengths of different documents. A short
document and a long document might discuss the same topics, but the long docu-
ment will have higher bag of word counts because it contains more words. When
performing a comparison between the short and long document, the long docu-
ment will receive unfair weighting without this transformation. Search engines
often need to weigh documents equally, so you see this transformation used quite
often in search engine applications.

However, what this transformation is really telling you is the importance of a
particular word to a document. The greater the frequency of a word in a document,
the more important it is to that document. However, the measurement is offset by
the document size — the total number of words the document contains. The TF
part of the equation determines how frequently the term appears in the document,
while the IDF part of the equation determines the term’s importance. You can see
some actual calculations of this particular measure at www.tfidf.com. Here’s an
example of how you’d calculate TF-IDF using Python:

from sklearn.datasets import fetch_20newsgroups

import sklearn.feature_extraction.text as ext

categories = ['sci.space']

Sh
ap

in
g

D
at

a

0003053996.INDD 447 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 447

twenty_train = fetch_20newsgroups(subset='train',

 categories=categories,

 remove=('headers', 'footers', 'quotes'),

 shuffle=True,

 random_state=42)

count_vect = ext.CountVectorizer()

X_train_counts = count_vect.fit_transform(

 twenty_train.data)

tfidf = ext.TfidfTransformer().fit(X_train_counts)

X_train_tfidf = tfidf.transform(X_train_counts)

print X_train_tfidf.shape

This example begins much like the other examples in this section have, by fetch-
ing the 20 Newsgroups data set. It then creates a word bag, much like the example
in the “Understanding the bag of words model” section, earlier in this chapter.
However, now you see something you can do with the word bag.

In this case, the code calls upon TfidfTransformer() to convert the raw news-
group documents into a matrix of TF-IDF features. The use_idf controls the use
of inverse-document-frequency reweighting, which it turned on in this case. The
vectorized data is fitted to the transformation algorithm. The next step, call-
ing tfidf.transform(), performs the actual transformation process. Here’s the
result you get from this example:

(593, 13564)

TF-IDF helps you to locate the most important word or n-grams and exclude the
least important ones. It is also very helpful as an input for linear models, because
they work better with TF-IDF scores than word counts. At this point, you normally
train a classifier and perform various sorts of analysis. In Book 7, Chapter 6, you
begin working with classifiers in earnest.

Working with Graph Data
Imagine data points that are connected to other data points, such as how one web
page is connected to another web page through hyperlinks. Each of these data
points is a node. The nodes connect to each other using links. Not every node links
to every other node, so the node connections become important. By analyzing the
nodes and their links, you can perform all sorts of interesting tasks in data sci-
ence, such as defining the best way to get from work to your home using streets
and highways. The following sections describe how graphs work and how to per-
form basic tasks with them.

0003053996.INDD 448 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

448 BOOK 7 Evaluating Data

Understanding the adjacency matrix
An adjacency matrix represents the connections between nodes of a graph. When
there is a connection between one node and another, the matrix indicates it as
a value greater than 0. The precise representation of connections in the matrix
depends on whether the graph is directed (where the direction of the connection
matters) or undirected.

A problem with many online examples is that the authors keep them simple for
explanation purposes. However, real-world graphs are often immense and defy
easy analysis simply through visualization. Just think about the number of nodes
that even a small city would have when considering street intersections (with the
links being the streets themselves). Many other graphs are far larger, and simply
looking at them will never reveal any interesting patterns. Data scientists call the
problem in presenting any complex graph using an adjacency matrix a hairball.

One key to analyzing adjacency matrices is to sort them in specific ways. For
example, you might choose to sort the data according to properties other than
the actual connections. A graph of street connections might include the date the
street was last paved, making it possible for you to look for patterns that direct
someone based on the streets that are in the best repair. In short, making the
graph data useful becomes a matter of manipulating the organization of that data
in specific ways.

Using NetworkX basics
Working with graphs could become difficult if you had to write all the code from
scratch. Fortunately, the NetworkX package for Python makes it easy to create,
manipulate, and study the structure, dynamics, and functions of complex net-
works (or graphs). Even though this book covers only graphs, you can use the
package to work with digraphs and multigraphs as well.

The main emphasis of NetworkX is to avoid the whole issue of hairballs. The use of
simple calls hides much of the complexity of working with graphs and adjacency
matrices from view. The following example shows how to create a basic adjacency
matrix from one of the NetworkX-supplied graphs:

import networkx as nx

G = nx.cycle_graph(10)

A = nx.adjacency_matrix(G)

print(A.todense())

Sh
ap

in
g

D
at

a

0003053996.INDD 449 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

CHAPTER 2 Shaping Data 449

The example begins by importing the required package. It then creates a graph
using the cycle_graph() template. The graph contains ten nodes. Calling
adjacency_matrix() creates the adjacency matrix from the graph. The final step
is to print the output as a matrix, as shown here:

[[0 1 0 0 0 0 0 0 0 1]

 [1 0 1 0 0 0 0 0 0 0]

 [0 1 0 1 0 0 0 0 0 0]

 [0 0 1 0 1 0 0 0 0 0]

 [0 0 0 1 0 1 0 0 0 0]

 [0 0 0 0 1 0 1 0 0 0]

 [0 0 0 0 0 1 0 1 0 0]

 [0 0 0 0 0 0 1 0 1 0]

 [0 0 0 0 0 0 0 1 0 1]

 [1 0 0 0 0 0 0 0 1 0]]

You don’t have to build your own graph from scratch for testing purposes. The
NetworkX site documents a number of standard graph types that you can use,
all of which are available within IPython. The list appears at https://networkx.
github.io/documentation/development/reference/generators.html.

It’s interesting to see how the graph looks after you generate it. The following
code displays the graph for you. Figure 2-1 shows the result of the plot.

import matplotlib.pyplot as plt

nx.draw_networkx(G)

plt.show()

FIGURE 2-1:
Plotting the

 original graph.

0003053996.INDD 450 Trim size: 7.375 in × 9.25 in March 31, 2017 4:45 AM

450 BOOK 7 Evaluating Data

The plot shows that you can add an edge between nodes 1 and 5. Here’s the code
needed to perform this task using the add_edge() function. Figure 2-2 shows the
result.

G.add_edge(1,5)

nx.draw_networkx(G)

plt.show()

FIGURE 2-2:
Plotting the

graph addition.

CHAPTER 3 Getting a Crash Course in MatPlotLib 451

0003053997.INDD 451 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

 Getting a Crash Course
in MatPlotLib

 “If we have data, let’s look at data. If all we have are opinions, let’s go with
mine.”

 — JIM BARKSDALE

 M ost people visualize information better when they see it in graphic, ver-
sus textual, format. Graphics help people see relationships and make
comparisons with greater ease. Even if you can deal with the abstraction

of textual data with ease, performing data analysis is all about communication.
Unless you can communicate your ideas to other people, the act of obtaining,
shaping, and analyzing the data has little value beyond your own personal needs.
Fortunately, Python makes the task of converting your textual data into graphics
relatively easy using MatPlotLib, which is actually a simulation of the MATLAB
application. You can see a comparison of the two at www.pyzo.org/python_vs_
matlab.html .

If you already know how to use MATLAB, moving over to MatPlotLib is relatively
easy because they both use the same sort of state machine to perform tasks and
have a similar method of defi ning graphic elements. A number of people feel
that MatPlotLib is superior to MATLAB because you can do things like perform
tasks using less code when working with MatPlotLib than when using MATLAB

Chapter 3

 IN THIS CHAPTER

 » Creating a basic graph

 » Adding measurement lines to your
graph

 » Dressing your graph up with styles
and color

 » Documenting your graph with labels,
annotations, and legends

0003053997.INDD 452 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

452 BOOK 7 Evaluating Data

(see http://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.
html). Others have noted that the transition from MATLAB to MatPlotLib is relatively
straightforward (see https://vnoel.wordpress.com/2008/05/03/bye-matlab-
hello-python-thanks-sage). However, what matters most is what you think.
You may find that you like to experiment with data using MATLAB and then create
applications based on your findings using Python with MatPlotLib. It’s a matter of
personal taste rather than one of a strictly correct answer.

This chapter focuses on getting you up to speed quickly with MatPlotLib. You do
use MatPlotLib quite a few times later in the book, so this short overview of how
it works is important, even if you already know how to work with MATLAB. That
said, the MATLAB experience will be incredibly helpful as you progress through
the chapter, and you may find that you can simply skim through some sections.
Make sure to keep this chapter in mind as you start working with MatPlotLib in
more detail later in the book.

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source code available at www.dummies.com/
go/codingaiodownloads. The source code for this chapter appears in the P4DS4D;
09; Getting a Crash Course in MatPlotLib.ipynb source code.

Starting with a Graph
A graph or chart is simply a visual representation of numeric data. MatPlotLib
makes a large number of graph and chart types available to you. Of course, you
can choose any of the common graph and graph types such as bar charts, line
graphs, or pie charts. As with MATLAB, you also have access to a huge number
of statistical plot types, such as boxplots, error bar charts, and histograms. You
can see a gallery of the various graph types that MatPlotLib supports at http://
matplotlib.org/gallery.html. However, it’s important to remember that you
can combine graphic elements in an almost infinite number of ways to create your
own presentation of data no matter how complex that data might be. The follow-
ing sections describe how to create a basic graph, but remember that you have
access to a lot more functionality than these sections tell you about.

Defining the plot
Plots show graphically what you’ve defined numerically. To define a plot, you
need some values, the matplotlib.pyplot module, and an idea of what you want
to display, as shown in the following code.

0003053997.INDD 453 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 453

G
et

ti
ng

 a
 C

ra
sh

 C
ou

rs
e

in
 M

at
Pl

ot
Li

b

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

import matplotlib.pyplot as plt

plt.plot(range(1,11), values)

plt.show()

In this case, the code tells the plt.plot() function to create a plot using x-axis
values between 1 and 11 and y-axis values as they appear in values. Calling
plot.show() displays the plot in a separate dialog box, as shown in Figure 3-1.
Notice that the output is a line graph. Book 7, Chapter 4 shows you how to create
other chart and graph types.

Drawing multiple lines and plots
You encounter many situations in which you must use multiple plot lines, such
as when comparing two sets of values. To create such plots using MatPlotLib, you
simply call plt.plot() multiple times — once for each plot line, as shown in the
following example:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

import matplotlib.pyplot as plt

plt.plot(range(1,11), values)

plt.plot(range(1,11), values2)

plt.show()

FIGURE 3-1:
Creating a basic
plot that shows

just one line.

0003053997.INDD 454 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

454 BOOK 7 Evaluating Data

When you run this example, you see two plot lines, as shown in Figure 3-2. Even
though you can’t see it in the printed book, the line graphs are different colors so
that you can tell them apart.

Saving your work
Often you need to save a copy of your work to disk for later reference or to use as
part of a larger report. The easiest way to accomplish this task is to click Save the
Figure (the floppy disk icon in Figure 3-2). You see a dialog box that you can use
to save the figure to disk.

However, you sometimes need to save the graphic automatically rather than wait
for the user to do it. In this case, you can save it programmatically using the
plt.savefig() function, as shown in the following code:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

import matplotlib.pyplot as plt

plt.plot(range(1,11), values)

plt.savefig('MySamplePlot.png', format='png')

FIGURE 3-2:
Defining a plot

that contains
multiple lines.

0003053997.INDD 455 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 455

G
et

ti
ng

 a
 C

ra
sh

 C
ou

rs
e

in
 M

at
Pl

ot
Li

b

In this case, you must provide a minimum of two inputs. The first input is the
filename. You may optionally include a path for saving the file. The second input
is the file format. In this case, the example saves the file in Portable Network
Graphic (PNG) format, but you have other options: Portable Document Format
(PDF), Postscript (PS), Encapsulated Postscript (EPS), and Scalable Vector Graph-
ics (SVG).

Setting the Axis, Ticks, Grids
It’s hard to know what the data actually means unless you provide a unit of mea-
sure or at least some means of performing comparisons. The use of axes, ticks,
and grids make it possible to illustrate graphically the relative size of data ele-
ments so that the viewer gains an appreciation of comparative measure. You
won’t use these features with every graphic, and you may employ the features
differently based on viewer needs, but it’s important to know that these features
exist and how you can use them to help document your data within the graphic
environment.

Getting the axes
The axes define the x and y plane of the graphic. The x-axis runs horizontally, and
the y-axis runs vertically. In many cases, you can allow MatPlotLib to perform any
required formatting for you. However, sometimes you need to obtain access to the
axes and format them manually. The following code shows how to obtain access
to the axes for a plot:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]

import matplotlib.pyplot as plt

ax = plt.axes()

plt.plot(range(1,11), values)

plt.show()

The reason you place the axes in a variable, ax, instead of manipulating them
directly is to make writing the code simpler and more efficient. In this case, you
simply turn on the default axes by calling plt.axes(); then you place a handle to
the axes in ax. A handle is a sort of pointer to the axes. Think of it as you would
a frying pan. You wouldn’t lift the frying pan directly but would instead use its
handle when picking it up.

0003053997.INDD 456 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

456 BOOK 7 Evaluating Data

Formatting the axes
Simply displaying the axes won’t be enough in many cases. You want to change
the way MatPlotLib displays them. For example, you may not want the highest
value t to reach to the top of the graph. The following example shows just a small
number of tasks you can perform after you have access to the axes:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]

import matplotlib.pyplot as plt

ax = plt.axes()

ax.set_xlim([0, 11])

ax.set_ylim([-1, 11])

ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

plt.plot(range(1,11), values)

plt.show()

In this case, the set_xlim() and set_ylim() calls change the axes limits — the
length of each axis. The set_xticks() and set_yticks() calls change the ticks
used to display data. The ways in which you can change a graph using these calls
can become quite detailed. For example, you can choose to change individual tick
labels if you want. Figure 3-3 shows the output from this example. Notice how the
changes affect how the line graph displays.

FIGURE 3-3:
Specifying how

the axes should
appear to the

viewer.

0003053997.INDD 457 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 457

G
et

ti
ng

 a
 C

ra
sh

 C
ou

rs
e

in
 M

at
Pl

ot
Li

b

Adding grids
Grid lines make it possible to see the precise value of each element of a graph.
You can more quickly determine both the x- and y-coordinate, which allow you to
perform comparisons of individual points with greater ease. Of course, grids also
add noise and make seeing the actual flow of data harder. The point is that you can
use grids to good effect to create particular effects. The following code shows how
to add a grid to the graph in the previous section:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]

import matplotlib.pyplot as plt

ax = plt.axes()

ax.set_xlim([0, 11])

ax.set_ylim([-1, 11])

ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

ax.grid()

plt.plot(range(1,11), values)

plt.show()

All you really need to do is call the grid() function. As with many other MatPlot-
Lib functions, you can add parameters to create the grid precisely as you want to
see it. For example, you can choose whether to add the x grid lines, y grid lines, or
both. The output from this example appears in Figure 3-4.

FIGURE 3-4:
Adding grids

makes the values
easier to read.

0003053997.INDD 458 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

458 BOOK 7 Evaluating Data

Defining the Line Appearance
Just drawing lines on a page won’t do much for you if you need to help the viewer
understand the importance of your data. In most cases, you need to use differ-
ent line styles to ensure that the viewer can tell one data grouping from another.
However, to emphasize the importance or value of a particular data grouping,
you need to employ color. The use of color communicates all sorts of ideas to the
viewer. For example, green often denotes that something is safe, while red com-
municates danger. The following sections help you understand how to work with
line style and color to communicate ideas and concepts to the viewer without
using any text.

Working with line styles
Line styles help differentiate graphs by drawing the lines in various ways. Using a
unique presentation for each line helps you distinguish each line so that you can
call it out (even when the printout is in shades of gray). You could also call out a
particular line graph by using a different line style for it (and using the same style
for the other lines). Table 3-1 shows the various MatPlotLib line styles.

MAKING GRAPHICS ACCESSIBLE
Avoiding assumptions about someone’s ability to see your graphic presentation is
essential. For example, someone who is color blind may not be able to tell that one
line is green and the other red. Likewise, someone with low-vision problems may not
be able to distinguish between a line that is dashed and one that has a combination
of dashes and dots. Using multiple methods to distinguish each line helps ensure that
everyone can see your data in a manner that is comfortable to each person.

TABLE 3-1	 MatPlotLib Line Styles
Character Line Style

'-' Solid line

'--' Dashed line

'-.' Dash-dot line

':' Dotted line

0003053997.INDD 459 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 459

G
et

ti
ng

 a
 C

ra
sh

 C
ou

rs
e

in
 M

at
Pl

ot
Li

b

The line style appears as a third argument to the plot() function call. You simply
provide the desired string for the line type, as shown in the following example:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

import matplotlib.pyplot as plt

plt.plot(range(1,11), values, '--')

plt.plot(range(1,11), values2, ':')

plt.show()

In this case, the first line graph uses a dashed line style, while the second
line graph uses a dotted line style. You can see the results of the changes in
Figure 3-5.

Using colors
Color is another way in which to differentiate line graphs. Of course, this method
has certain problems. The most significant problem occurs when someone
makes a black-and-white copy of your colored graph — hiding the color differ-
ences as shades of gray. Another problem is that someone with color blindness
may not be able to tell one line from the other. All this said, color does make for a
brighter, eye-grabbing presentation. Table 3-2 shows the colors that MatPlotLib
supports.

FIGURE 3-5:
Line styles help

differentiate
between plots.

0003053997.INDD 460 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

460 BOOK 7 Evaluating Data

As with line styles, the color appears in a string as the third argument to the
plot() function call. In this case, the viewer sees two lines — one in red and the
other in magenta. The actual presentation looks like Figure 3-2, but with specific
colors, rather than the default colors used in that screenshot. If you’re reading the
printed version of the book, Figure 3-2 actually uses shades of gray.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

import matplotlib.pyplot as plt

plt.plot(range(1,11), values, 'r')

plt.plot(range(1,11), values2, 'm')

plt.show()

Adding markers
Markers add a special symbol to each data point in a line graph. Unlike line style
and color, markers tend to be a little less susceptible to accessibility and printing
issues. Even when the specific marker isn’t clear, people can usually differentiate
one marker from the other. Table 3-3 shows the list of markers that MatPlotLib
provides.

TABLE 3-2	 MatPlotLib Colors
Character Color

'b' Blue

'g' Green

'r' Red

'c' Cyan

'm' Magenta

'y' Yellow

'k' Black

'w' White

0003053997.INDD 461 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 461

G
et

ti
ng

 a
 C

ra
sh

 C
ou

rs
e

in
 M

at
Pl

ot
Li

b

TABLE 3-3	 MatPlotLib Markers
Character Marker Type

'.' Point

',' Pixel

'o' Circle

'v' Triangle 1 down

'^' Triangle 1 up

'<' Triangle 1 left

'>' Triangle 1 right

'1' Triangle 2 down

'2' Triangle 2 up

'3' Triangle 2 left

'4' Triangle 2 right

's' Square

'p' Pentagon

'*' Star

'h' Hexagon style 1

'H' Hexagon style 2

'+' Plus

'x' X

'D' Diamond

'd' Thin diamond

'|' Vertical line

'_' Horizontal line

0003053997.INDD 462 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

462 BOOK 7 Evaluating Data

As with line style and color, you add markers as the third argument to a plot()
call. In the following example, you see the effects of combining line style with a
marker to provide a unique line graph presentation:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

import matplotlib.pyplot as plt

plt.plot(range(1,11), values, 'o--')

plt.plot(range(1,11), values2, 'v:')

plt.show()

Notice how the combination of line style and marker makes each line stand out
in Figure 3-6. Even when printed in black and white, you can easily differenti-
ate one line from the other, which is why you may want to combine presentation
techniques.

Using Labels, Annotations, and Legends
To fully document your graph, you usually have to resort to labels, annotations,
and legends. Each of these elements has a different purpose, as follows:

FIGURE 3-6:
Markers help
to emphasize

 individual values.

0003053997.INDD 463 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 463

G
et

ti
ng

 a
 C

ra
sh

 C
ou

rs
e

in
 M

at
Pl

ot
Li

b

 » Label: Provides positive identification of a particular data element or group-
ing. The purpose is to make it easy for the viewer to know the name or kind of
data illustrated.

 » Annotation: Augments the information the viewer can immediately see
about the data with notes, sources, or other useful information. In contrast to
a label, the purpose of annotation is to help extend the viewer’s knowledge of
the data rather than simply identify it.

 » Legend: Presents a listing of the data groups within the graph and often
provides cues (such as line type or color) to make identification of the data
group easier. For example, all the red points may belong to group A, while all
the blue points may belong to group B.

The following sections help you understand the purpose and usage of various doc-
umentation aids provided with MatPlotLib. These documentation aids help you
create an environment in which the viewer is certain as to the source, purpose,
and usage of data elements. Some graphs work just fine without any documenta-
tion aids, but in other cases, you might find that you need to use all three in order
to communicate with your viewer fully.

Adding labels
Labels help people understand the significance of each axis of any graph you
 create. Without labels, the values portrayed don’t have any significance. In addi-
tion to a moniker, such as rainfall, you can also add units of measure, such as
inches or centimeters, so that your audience knows how to interpret the data
shown. The following example shows how to add labels to your graph:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

import matplotlib.pyplot as plt

plt.xlabel('Entries')

plt.ylabel('Values')

plt.plot(range(1,11), values)

plt.show()

The call to xlabel() documents the x-axis of your graph, while the call to
ylabel() documents the y-axis of your graph. Figure 3-7 shows the output of
this example.

0003053997.INDD 464 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

464 BOOK 7 Evaluating Data

Annotating the chart
You use annotation to draw special attention to points of interest on a graph. For
example, you may want to point out that a specific data point is outside the usual
range expected for a particular data set. The following example shows how to add
annotation to a graph.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

import matplotlib.pyplot as plt

plt.annotate(xy=[1,1], s='First Entry')

plt.plot(range(1,11), values)

plt.show()

The call to annotate() provides the labeling you need. You must provide a loca-
tion for the annotation by using the xy parameter, as well as provide text to place
at the location by using the s parameter. The annotate() function also provides
other parameters that you can use to create special formatting or placement
on-screen. Figure 3-8 shows the output from this example.

FIGURE 3-7:
Use labels to

identify the axes.

0003053997.INDD 465 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

CHAPTER 3 Getting a Crash Course in MatPlotLib 465

G
et

ti
ng

 a
 C

ra
sh

 C
ou

rs
e

in
 M

at
Pl

ot
Li

b

Creating a legend
A legend documents the individual elements of a plot. Each line is presented in
a table that contains a label for it so that people can differentiate between each
line. For example, one line may represent sales from the first store location and
another line may represent sales from a second store location, so you include an
entry in the legend for each line that is labeled first and second. The following
example shows how to add a legend to your plot:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]

values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]

import matplotlib.pyplot as plt

line1 = plt.plot(range(1,11), values)

line2 = plt.plot(range(1,11), values2)

plt.legend(['First', 'Second’], loc=4)

plt.show()

The call to legend() occurs after you create the plots, not before, as with some of
the other functions described in this chapter. You must provide a handle to each
of the plots. Notice how line1 is set equal to the first plot() call and line2 is set
equal to the second plot() call.

FIGURE 3-8:
Annotation can

identify points of
interest.

0003053997.INDD 466 Trim size: 7.375 in × 9.25 in April 3, 2017 7:19 PM

466 BOOK 7 Evaluating Data

The default location for the legend is the upper-right corner of the plot, which
proved inconvenient for this particular example. Adding the loc parameter lets
you place the legend in a different location. See the legend() function documen-
tation at http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.
legend for additional legend locations. Figure 3-9 shows the output from this
example.

FIGURE 3-9:
Use legends to

identify individual
lines.

CHAPTER 4 Visualizing the Data 467

0003053998.INDD 467	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

 Visualizing the Data
 “It is a capital mistake to theorize before one has data.”

 — SHERLOCK HOLMES

 B ook 7, Chapter 3 helped you understand the mechanics of working with
MatPlotLib, which is an important fi rst step toward using it. This chapter
takes the next step in helping you use MatPlotLib to perform useful work.

The main goal of this chapter is to help you visualize your data in various ways.
Creating a graphic presentation of your data is essential if you want to help other
people understand what you’re trying to say. Even though you can see what the
numbers mean in your mind, other people will likely need graphics to see what
point you’re trying to make by manipulating data in various ways.

 The chapter starts by looking at some basic graph types that MatPlotLib supports.
You don’t fi nd the full list of graphs and plots listed in this chapter — it would
take an entire book to explore them all in detail. However, you do fi nd the most
common types.

 In this chapter, you begin exploring specifi c sorts of plotting as it relates to data
science. Of course, no book on data science would be complete without exploring
scatterplots, which are used to help people see patterns in seemingly unrelated
data points. Because much of the data that you work with today is time-related
or geographic in nature, the chapter devotes two special sections to these topics.
You also get to work with both directed and undirected graphs, which is fi ne for
social media analysis.

Chapter 4

 IN THIS CHAPTER

 » Selecting the right graph for the job

 » Working with advanced scatterplots

 » Exploring time-related data

 » Exploring geographical data

 » Creating graphs

0003053998.INDD 468	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

468 		BOOK	7	 Evaluating Data

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source available at www.dummies.com/go/
codingaiodownloads. The source code for this chapter appears in the P4DS4D;
10; Visualizing the Data.ipynb source code.

Choosing the Right Graph
The kind of graph you choose determines how people view the associated data, so
choosing the right graph from the outset is important. For example, if you want
to show how various data elements contribute toward a whole, you really need
to use a pie chart. On the other hand, when you want people to form opinions on
how data elements compare, you use a bar chart. The idea is to choose a graph
that naturally leads people to draw the conclusion that you need them to draw
about the data that you’ve carefully massaged from various data sources. (You
also have the option of using line graphs — a technique demonstrated in Book 7,
Chapter 3.) The following sections describe the various graph types and provide
you with basic examples of how to use them.

Showing parts of a whole with pie charts
Pie charts focus on showing parts of a whole. The entire pie would be 100 percent.
The question is how much of that percentage each value occupies. The following
example shows how to create a pie chart with many of the special features in place:

import matplotlib.pyplot as plt

values = [5, 8, 9, 10, 4, 7]

colors = ['b', 'g', 'r', 'c', 'm', 'y']

labels = ['A', 'B', 'C', 'D', 'E', 'F']

explode = (0, 0.2, 0, 0, 0, 0)

plt.pie(values, colors=colors, labels=labels,

 explode=explode, autopct='%1.1f%%',

 counterclock=False, shadow=True)

plt.title('Values')

plt.show()

0003053998.INDD 469	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 469

Vi
su

al
iz

in
g

th
e

D
at

a

The essential part of a pie chart is the values. You could create a basic pie chart
using just the values as input.

The colors parameter lets you choose custom colors for each pie wedge. You use
the labels parameter to identify each wedge. In many cases, you need to make
one wedge stand out from the others, so you add the explode parameter with a list
of explode values. A value of 0 keeps the wedge in place — any other value moves
the wedge out from the center of the pie.

Each pie wedge can show various kinds of information. This example shows the
percentage occupied by each wedge with the autopct parameter. You must pro-
vide a format string to format the percentages.

Some parameters affect how the pie chart is drawn. Use the counterclock param-
eter to determine the direction of the wedges. The shadow parameter determines
whether the pie appears with a shadow beneath it (for a 3D effect). You can find
other parameters at http://matplotlib.org/api/pyplot_api.html.

In most cases, you also want to give your pie chart a title so that others know what
it represents. You do this using the title() function. Figure 4-1 shows the output
from this example.

FIGURE 4-1:
Pie	charts	show	a	
percentage	of	the	

whole.

0003053998.INDD 470	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

470 		BOOK	7	 Evaluating Data

Creating comparisons with bar charts
Bar charts make comparing values easy. The wide bars and segregated measure-
ments emphasize the differences between values, rather than the flow of one
value to another as a line graph would do. Fortunately, you have all sorts of meth-
ods at your disposal for emphasizing specific values and performing other tricks.
The following example shows just some of the things you can do with a vertical
bar chart:

import matplotlib.pyplot as plt

values = [5, 8, 9, 10, 4, 7]

widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]

colors = ['b', 'r', 'b', 'b', 'b', 'b']

plt.bar(range(0, 6), values, width=widths,

 color=colors, align='center')

plt.show()

To create even a basic bar chart, you must provide a series of x-coordinates and
the heights of the bars. The example uses the range() function to create the
x-coordinates, and the values variable contains the heights.

Of course, you may want more than a basic bar chart, and MatPlotLib provides
a number of ways to get the job done. In this case, the example uses the width
parameter to control the width of each bar, emphasizing the second bar by mak-
ing it slightly larger. The larger width would show up even in a black-and-white
printout. It also uses the color parameter to change the color of the target bar to
red (the rest are blue).

As with other chart types, the bar chart provides some special features that you
can use to make your presentation stand out. The example uses the align param-
eter to center the data on the x-coordinate (the standard position is to the left).
You can also use other parameters, such as hatch, to enhance the visual appear-
ance of your bar chart. Figure 4-2 shows the output of this example.

This chapter helps you get started using MatPlotLib to create a variety of chart and
graph types. Of course, more examples are better, so you can also find some more
advanced examples on the MatPlotLib site at http://matplotlib.org/1.2.1/
examples/index.html. Some of the examples, such as those that demonstrate
animation techniques, become quite advanced, but with practice you can use any
of them to improve your own charts and graphs.

0003053998.INDD 471	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 471

Vi
su

al
iz

in
g

th
e

D
at

a

Showing distributions using histograms
Histograms categorize data by breaking it into bins, where each bin contains a
subset of the data range. A histogram then displays the number of items in each
bin so that you can see the distribution of data and the progression of data from
bin to bin. In most cases, you see a curve of some type, such as a bell curve. The
following example shows how to create a histogram with randomized data:

import numpy as np

import matplotlib.pyplot as plt

x = 20 * np.random.randn(10000)

plt.hist(x, 25, range=(-50, 50), histtype='stepfilled',

 align='mid', color='g', label='Test Data')

plt.legend()

plt.title('Step Filled Histogram')

plt.show()

In this case, the input values are a series of random numbers. The distribution of
these numbers should show a type of bell curve. As a minimum, you must pro-
vide a series of values, x in this case, to plot. The second argument contains the
number of bins to use when creating the data intervals. The default value is 10.
Using the range parameter helps you focus the histogram on the relevant data and
exclude any outliers.

FIGURE 4-2:
Bar	charts	

make	it	easier	
to	perform	

comparisons.

0003053998.INDD 472	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

472 		BOOK	7	 Evaluating Data

You can create multiple histogram types. The default setting creates a bar chart.
You can also create a stacked bar chart, stepped graph, or filled stepped graph (the
type shown in the example). In addition, it’s possible to control the orientation of
the output, with vertical as the default.

As with most other charts and graphs in this chapter, you can add special fea-
tures to the output. For example, the align parameter determines the alignment
of each bar along the baseline. Use the color parameter to control the colors of
the bars. The label parameter doesn’t actually appear unless you also create a
legend (as shown in this example). Figure 4-3 shows typical output from this
example.

Data generated using the random function changes with every call. Every time
you run the example, you see slightly different results because the random-
generation process differs.

Depicting groups using boxplots
Boxplots provide a means of depicting groups of numbers through their quar-
tiles (three points dividing a group into four equal parts). A boxplot may also
have lines, called whiskers, indicating data outside the upper and lower quar-
tiles. The spacing shown within a boxplot helps indicate the skew and dispersion

FIGURE 4-3:
Histograms	
let	you	see	

	distributions	of	
numbers.

0003053998.INDD 473	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 473

Vi
su

al
iz

in
g

th
e

D
at

a

of the data. The following example shows how to create a boxplot with random-
ized data:

import numpy as np

import matplotlib.pyplot as plt

spread = 100 * np.random.rand(100)

center = np.ones(50) * 50

flier_high = 100 * np.random.rand(10) + 100
flier_low = -100 * np.random.rand(10)

data = np.concatenate((spread, center,

 flier_high, flier_low))

plt.boxplot(data, sym='gx', widths=.75, notch=True)

plt.show()

To create a usable data set, you need to combine several different number-
generation techniques, as shown at the beginning of the example. Here are how
these techniques work:

 » spread:	Contains	a	set	of	random	numbers	between	0	and	100.

 » center:	Provides	50	values	directly	in	the	center	of	the	range	of	50.

 » flier_high:	Simulates	outliers	between	100	and	200.

 » flier_low:	Simulates	outliers	between	0	and	–100.

The code combines all these values into a single data set using concatenate().
Being randomly generated with specific characteristics (such as a large number of
points in the middle), the output will show specific characteristics but will work
fine for the example.

The call to boxplot() requires only data as input. All other parameters have
default settings. In this case, the code sets the presentation of outliers to green Xs
by setting the sym parameter. You use widths to modify the size of the box (made
extra large in this case to make the box easier to see). Finally, you can create a
square box or a box with a notch using the notch parameter (which normally
defaults to False). Figure 4-4 shows typical output from this example.

The box shows the three data points as the box, with the line in the middle being
the median. The two black horizontal lines connected to the box by whiskers show
the upper and lower limits (for four quartiles). The outliers appear above and
below the upper and lower limit lines as Xs.

0003053998.INDD 474	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

474 		BOOK	7	 Evaluating Data

Seeing data patterns using scatterplots
Scatterplots show clusters of data rather than trends (as with line graphs) or dis-
crete values (as with bar charts). The purpose of a scatterplot is to help you see
data patterns. The following example shows how to create a scatterplot using
randomized data:

import numpy as np

import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(40)

x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)

x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(40)

y2 = 5 * np.random.rand(40) + 25
y3 = 25 * np.random.rand(20)

y = np.concatenate((y1, y2, y3))

plt.scatter(x, y, s=[100], marker='^', c='m')

plt.show()

FIGURE 4-4:
Use	boxplots	to	

present	groups	of	
numbers.

0003053998.INDD 475	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 475

Vi
su

al
iz

in
g

th
e

D
at

a

The example begins by generating random x- and y-coordinates. For each
x-coordinate, you must have a corresponding y-coordinate. It’s possible to create
a scatterplot using just the x- and y-coordinates.

It’s possible to dress up a scatterplot in a number of ways. In this case, the s
parameter determines the size of each data point. The marker parameter deter-
mines the data point shape. You use the c parameter to define the colors for all the
data points, or you can define a separate color for individual data points. Figure 4-5
shows the output from this example.

Creating Advanced Scatterplots
Scatterplots are especially important for data science because they can show data
patterns that aren’t obvious when viewed in other ways. You can see data group-
ings with relative ease and help the viewer understand when data belongs to a
particular group. You can also show overlaps between groups and even demon-
strate when certain data is outside the expected range. Showing these various
kinds of relationships in the data is an advanced technique that you need to know
in order to make the best use of MatPlotLib. The following sections demonstrate
how to perform these advanced techniques on the scatterplot you created earlier
in the chapter.

FIGURE 4-5:
Use	scatterplots	

to	show	groups	of	
data	points	and	
their	associated	

patterns.

0003053998.INDD 476	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

476 		BOOK	7	 Evaluating Data

Depicting groups
Color is the third axis when working with a scatterplot. Using color lets you high-
light groups so that others can see them with greater ease. The following example
shows how you can use color to show groups within a scatterplot:

import numpy as np

import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(50)

x2 = 5 * np.random.rand(50) + 25
x3 = 30 * np.random.rand(25)

x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(50)

y2 = 5 * np.random.rand(50) + 25
y3 = 30 * np.random.rand(25)

y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[50], marker='D', c=color_array)

plt.show()

The example works essentially the same as the scatterplot example in the previ-
ous section, except that this example uses an array for the colors. Unfortunately,
if you’re seeing this in the printed book, the differences between the shades of
gray in Figure 4-6 will be hard to see. However, the first group is blue, followed
by green for the second group. Any outliers appear in red.

FIGURE 4-6:
Color	arrays	

can	make	the	
	scatterplot	

groups	stand	
out better.

0003053998.INDD 477	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 477

Vi
su

al
iz

in
g

th
e

D
at

a

Showing correlations
In some cases, you need to know the general direction that your data is taking
when looking at a scatterplot. Even if you create a clear depiction of the groups,
the actual direction that the data is taking as a whole may not be clear. In this
case, you add a trend line to the output. Here’s an example of adding a trend line
to a scatterplot that includes groups but isn’t quite as clear as the scatterplot
shown previously in Figure 4-6.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.pylab as plb

x1 = 15 * np.random.rand(50)

x2 = 15 * np.random.rand(50) + 15
x3 = 30 * np.random.rand(30)

x = np.concatenate((x1, x2, x3))

y1 = 15 * np.random.rand(50)

y2 = 15 * np.random.rand(50) + 15
y3 = 30 * np.random.rand(30)

y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[90], marker='*', c=color_array)

z = np.polyfit(x, y, 1)

p = np.poly1d(z)

plb.plot(x, p(x), 'm-')

plt.show()

The code for creating the scatterplot is essentially the same as in the example
in the “Depicting groups” section, earlier in the chapter, but the plot doesn’t
define the groups as clearly. Adding a trend line means calling the NumPy
polyfit() function with the data, which returns a vector of coefficients, p, that
minimizes the least squares error. Least square regression is a method for find-
ing a line that summarizes the relationship between two variables, x and y in this
case, at least within the domain of the explanatory variable x. The third polyfit()
parameter expresses the degree of the polynomial fit.

The vector output of polyfit() is used as input to poly1d(), which calculates the
actual y-axis data points. The call to plot() creates the trend line on the scatter-
plot. You can see a typical result of this example in Figure 4-7.

0003053998.INDD 478	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

478 		BOOK	7	 Evaluating Data

Plotting Time Series
Nothing is truly static. When you view most data, you see an instant of time — a
snapshot of how the data appeared at one particular moment. Of course, such
views are both common and useful. However, sometimes you need to view data
as it moves through time — to see it as it changes. Only by viewing the data as
it changes can you expect to understand the underlying forces that shape it. The
following sections describe how to work with data on a time-related basis.

Representing time on axes
Many times, you need to present data over time. The data could come in many
forms, but generally you have some type of time tick (one unit of time), followed
by one or more features that describe what happens during that particular tick.
The following example shows a simple set of days and sales on those days for a
particular item in whole (integer) amounts:

import datetime as dt

import pandas as pd

import matplotlib.pyplot as plt

df = pd.DataFrame(columns=('Time', 'Sales'))

start_date = dt.datetime(2016, 7,1)

end_date = dt.datetime(2016, 7,10)

daterange = pd.date_range(start_date, end_date)

FIGURE 4-7:
Scatterplot	trend	
lines	can	show	
you	the	general	
data	direction.

0003053998.INDD 479	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 479

Vi
su

al
iz

in
g

th
e

D
at

a

for single_date in daterange:

 row = dict(zip(['Time', 'Sales'],

 [single_date,

 int(50*np.random.rand(1))]))

 row_s = pd.Series(row)

 row_s.name = single_date.strftime('%b %d')

 df = df.append(row_s)

df.ix['Jul 01':'Jul 07', ['Time', 'Sales']].plot()

plt.ylim(0, 50)

plt.xlabel('Sales Date')

plt.ylabel('Sale Value')

plt.title('Plotting Time')

plt.show()

The example begins by creating a DataFrame to hold the information. The source
of the information could be anything, but in this example, the data is generated
randomly. Notice that the example creates a date_range to hold the starting and
ending date time frame for easier processing using a for loop.

An essential part of this example is the creation of individual rows. Each row has
an actual time value so that you don’t lose information. However, notice that the
index (row_s.name property) is a string. This string should appear in the form
that you want the dates to appear when presented in the plot.

Using ix[] lets you select a range of dates from the total number of entries avail-
able. Notice that this example uses only some of the generated data for output. It
then adds some amplifying information about the plot and displays it on-screen.
Figure 4-8 shows typical output from the randomly generated data.

FIGURE 4-8:
Use	line	graphs	to	
show	the	flow	of	
data	over	time.

0003053998.INDD 480	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

480 		BOOK	7	 Evaluating Data

Plotting trends over time
As with any other data presentation, sometimes you really can’t see what direc-
tion the data is headed in without help. The following example starts with the plot
from the previous section and adds a trend line to it:

import datetime as dt

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.pylab as plb

df = pd.DataFrame(columns=('Time', 'Sales'))

start_date = dt.datetime(2016, 7,1)

end_date = dt.datetime(2016, 7,10)

daterange = pd.date_range(start_date, end_date)

for single_date in daterange:

 row = dict(zip(['Time', 'Sales'],

 [single_date,

 int(50*np.random.rand(1))]))

 row_s = pd.Series(row)

 row_s.name = single_date.strftime('%b %d')

 df = df.append(row_s)

df.ix['Jul 01':'Jul 10', ['Time', 'Sales']].plot()

z = np.polyfit(range(0, 10),

 df.as_matrix(['Sales']).flatten(), 1)

p = np.poly1d(z)

plb.plot(df.as_matrix(['Sales']),

 p(df.as_matrix(['Sales'])), 'm-')

plt.ylim(0, 50)

plt.xlabel('Sales Date')

plt.ylabel('Sale Value')

plt.title('Plotting Time')

plt.legend(['Sales', 'Trend'])

plt.show()

The technique for adding the trend line is the same as for the example in the
“Showing correlations” section, earlier in this chapter, with some interesting dif-
ferences. Because the data appears within a DataFrame, you must export it using

0003053998.INDD 481	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 481

Vi
su

al
iz

in
g

th
e

D
at

a

as_matrix() and then flatten the resulting array using flatten() before you can
use it as input to polyfit(). Likewise, you must export the data before you can
call plot() to display the trend line on-screen.

When you plot the initial data, the call to plot() automatically generates a leg-
end for you. MatPlotLib doesn’t automatically add the trend line, so you must
also create a new legend for the plot. Figure 4-9 shows typical output from this
example using randomly generated data.

Plotting Geographical Data
Knowing where data comes from or how it applies to a specific place can be impor-
tant. For example, if you want to know where food shortages have occurred and
plan how to deal with them, you need to match the data you have to geographical
locations. The same holds true for predicting where future sales will occur. You
may find that you need to use existing data to determine where to put new stores.
Otherwise, you could put a store in a location that won’t receive much in the way
of sales, and the effort will lose money rather than make it. The following example
shows how to draw a map and place pointers to specific locations.

If you are using Anaconda, you can install Basemap Toolkit by opening a terminal
window and typing conda install –c anaconda basemap.

FIGURE 4-9:
Add	a	trend	

line	to	show	the	
	average	direction	

of	change	in	a	
chart	or	graph.

0003053998.INDD 482	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

482 		BOOK	7	 Evaluating Data

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import Basemap

austin = (-97.75, 30.25)

hawaii = (-157.8, 21.3)

washington = (-77.01, 38.90)

chicago = (-87.68, 41.83)

losangeles = (-118.25, 34.05)

m = Basemap(projection='merc',llcrnrlat=10,urcrnrlat=50,

 llcrnrlon=-160,urcrnrlon=-60)

m.drawcoastlines()

m.fillcontinents(color='lightgray',lake_color='lightblue')

m.drawparallels(np.arange(-90.,91.,30.))

m.drawmeridians(np.arange(-180.,181.,60.))

m.drawmapboundary(fill_color='aqua')

m.drawcountries()

x, y = m(*zip(*[hawaii, austin, washington,

 chicago, losangeles]))

m.plot(x, y, marker='o', markersize=6,

 markerfacecolor='red', linewidth=0)

plt.title("Mercator Projection")

plt.show()

GETTING THE BASEMAP TOOLKIT
Before	you	can	work	with	mapping	data,	you	need	a	library	that	supports	the	required	
mapping	functionality.	A	number	of	such	packages	are	available,	but	the	easiest	to	
work	with	and	install	is	the	Basemap	Toolkit.	You	can	obtain	this	toolkit	from	http://
matplotlib.org/basemap/users/intro.html.	The	site	includes	supplementary	
information	about	the	toolkit	and	provides	download	instructions.	Unlike	some	other	
packages,	this	one	does	include	instructions	for	Mac,	Windows,	and	Linux	users.	In	addi-
tion,	you	can	obtain	a	Windows-specific	installer.	Make	sure	to	also	check	out	the	usage	
video	at	http://nbviewer.ipython.org/github/mqlaql/geospatial-data/
blob/master/Geospatial-Data-with-Python.ipynb.

0003053998.INDD 483	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 483

Vi
su

al
iz

in
g

th
e

D
at

a

The example begins by defining the longitude and latitude for various cities. It
then creates the basic map. The projection parameter defines the basic map
appearance. The next four parameters, llcrnrlat, urcrnrlat, llcrnrlon, and
urcrnrlon, define the sides of the map. You can define other parameters, but
these parameters generally create a useful map.

The next set of calls defines the map particulars. For example, drawcoastlines()
determines whether the coastlines are highlighted to make them easy to see. To
make landmasses easy to discern from water, you want to call fillcontinents()
with the colors of your choice. When working with specific locations, as the exam-
ple does, you want to call drawcountries() to ensure that the country boundaries
appear on the map. At this point, you have a map that’s ready to fill in with data.

In this case, the example creates x- and y-coordinates using the previously stored
longitude and latitude values. It then plots these locations on the map in a con-
trasting color so that you can easily see them. The final step is to display the map,
as shown in Figure 4-10.

Visualizing Graphs
A graph is a depiction of data showing the connections between data points using
lines. The purpose is to show that some data points relate to other data points,
but not all the data points that appear on the graph. Think about a map of a sub-
way system. Each of the stations connects to other stations, but no single station

FIGURE 4-10:
Maps	can	

illustrate	data	
in	ways	other	
graphics	can’t.

0003053998.INDD 484	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

484 		BOOK	7	 Evaluating Data

connects to all the stations in the subway system. Graphs are a popular data sci-
ence topic because of their use in social media analysis. When performing social
media analysis, you depict and analyze networks of relationships, such as friends
or business connections, from social hubs such as Facebook, Google+, Twitter, or
LinkedIn.

The two common depictions of graphs are undirected, where the graph simply
shows lines between data elements, and directed, where arrows added to the line
show that data flows in a particular direction. For example, consider a depiction
of a water system. The water would flow in just one direction in most cases, so
you could use a directed graph to depict not only the connections between sources
and targets for the water but also to show water direction by using arrows. The
following sections help you understand the two types of graphs better and show
you how to create them.

Developing undirected graphs
As previously stated, an undirected graph simply shows connections between
nodes. The output doesn’t provide a direction from one node to the next. For
example, when establishing connectivity between web pages, no direction is
implied. The following example shows how to create an undirected graph.

import networkx as nx

import matplotlib.pyplot as plt

G = nx.Graph()

H = nx.Graph()

G.add_node(1)

G.add_nodes_from([2, 3])

G.add_nodes_from(range(4, 7))

H.add_node(7)

G.add_nodes_from(H)

G.add_edge(1, 2)

G.add_edge(1, 1)

G.add_edges_from([(2,3), (3,6), (4,6), (5,6)])

H.add_edges_from([(4,7), (5,7), (6,7)])

G.add_edges_from(H.edges())

nx.draw_networkx(G)

plt.show()

In contrast to the canned example found in Book 7, Chapter 2, this example
builds the graph using a number of different techniques. It begins by importing
the NetworkX package you use in Book 7, Chapter 2. To create a new undirected

0003053998.INDD 485	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 485

Vi
su

al
iz

in
g

th
e

D
at

a

graph, the code calls the Graph() constructor, which can take a number of input
 arguments to use as attributes. However, you can build a perfectly usable graph
without using attributes, which is what this example does.

The easiest way to add a node is to call add_node() with a node number. You can
also add a list, dictionary, or range() of nodes using add_nodes_from(). In fact,
you can import nodes from other graphs if you want.

Even though the nodes used in the example rely on numbers, you don’t have to
use numbers for your nodes. A node can use a single letter, a string, or even a
date. Nodes do have some restrictions. For example, you can’t create a node using
a Boolean value.

Nodes don’t have any connectivity at the outset. You must define connections
(edges) between them. To add a single edge, you call add_edge() with the num-
bers of the nodes that you want to add. As with nodes, you can use add_edges_
from() to create more than one edge using a list, dictionary, or another graph as
input. Figure 4-11 shows the output from this example (your output may differ
slightly but should have the same connections).

Developing directed graphs
You use directed graphs when you need to show a direction, say from a start point
to an end point. When you get a map that shows you how to get from one specific
point to another, the starting node and ending node are marked as such, and the
lines between these nodes (and all the intermediate nodes) show direction.

FIGURE 4-11:
Undirected	

graphs	connect	
nodes	together	to	

form	patterns.

0003053998.INDD 486	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

486 		BOOK	7	 Evaluating Data

Your graphs need not be boring. You can dress them up in all sorts of ways so
that the viewer gains additional information. For example, you can create custom
labels, use specific colors for certain nodes, or rely on color to help people see the
meaning behind your graphs. You can also change edge line weight and use other
techniques to mark a specific path between nodes as the better one to choose. The
following example shows many (but not nearly all) the ways in which you can
dress up a directed graph and make it more interesting:

import networkx as nx

import matplotlib.pyplot as plt

G = nx.DiGraph()

G.add_node(1)

G.add_nodes_from([2, 3])

G.add_nodes_from(range(4, 6))

G.add_path([6, 7, 8])

G.add_edge(1, 2)

G.add_edges_from([(1,4), (4,5), (2,3), (3,6), (5,6)])

colors = ['r', 'g', 'g', 'g', 'g', 'm', 'm', 'r']

labels = {1:'Start', 2:'2', 3:'3', 4:'4',

 5:'5', 6:'6', 7:'7', 8:'End'}

sizes = [800, 300, 300, 300, 300, 600, 300, 800]

nx.draw_networkx(G, node_color=colors, node_shape='D',

 with_labels=True, labels=labels,

 node_size=sizes)

plt.show()

The example begins by creating a directional graph using the DiGraph() con-
structor. You should note that the NetworkX package also supports MultiGraph()
and MultiDiGraph() graph types. You can see a listing of all the graph types at
http://networkx.readthedocs.io/en/stable/reference/classes.html.

Adding nodes is much like working with an undirected graph. You can add single
nodes using add_node() and multiple nodes using add_nodes_from(). The add_
path() call lets you create nodes and edges at the same time. The order of nodes
in the call is important. The flow from one node to another is from left to right in
the list supplied to the call.

Adding edges is much the same as working with an undirected graph, too. You can
use add_edge() to add a single edge or add_edges_from() to add multiple edges
at one time. However, the order of the node numbers is important. The flow goes
from the left node to the right node in each pair.

0003053998.INDD 487	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 4 Visualizing the Data 487

Vi
su

al
iz

in
g

th
e

D
at

a

This example adds special node colors, labels, shape (only one shape is used), and
sizes to the output. You still call on draw_networkx() to perform the task. How-
ever, adding the parameters shown changes the appearance of the graph. Note
that you must set with_labels to True in order to see the labels provided by the
labels parameter. Figure 4-12 shows the output from this example.

FIGURE 4-12:
Use	directed	

graphs	to	show	
direction	between	

nodes.

0003053998.INDD 488	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:47	AM

CHAPTER 5 Exploring Data Analysis 489

0003053999.INDD 489 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

 Exploring Data Analysis
 “If you torture the data long enough, it will confess.”

 — RONALD COASE

 D ata science relies on complex algorithms for building predictions and
spotting important signals in data, and each algorithm presents diff erent
strong and weak points. In short, you select a range of algorithms, you

have them run on the data, you optimize their parameters as much as you can, and
fi nally you decide which one will best help you build your data product or generate
insight into your problem.

 It sounds a little bit automatic and, partially, it is, thanks to powerful analytical
software and scripting languages like Python. Learning algorithms are complex,
and their sophisticated procedures naturally seem automatic and a bit opaque to
you. However, even if some of these tools seem like black or even magic boxes,
keep this simple acronym in mind: GIGO. GIGO stands for “Garbage In/Garbage
Out.” It has been a well-known adage in statistics (and computer science) for a
long time. No matter how powerful the machine learning algorithms you use, you
won’t obtain good results if your data has something wrong in it.

Chapter 5

 IN THIS CHAPTER

 » Understanding the exploratory data
analysis (EDA) philosophy

 » Describing numeric and categorical
distributions

 » Estimating correlation and
association

 » Testing mean diff erences in groups

 » Visualizing distributions,
relationships, and groups

0003053999.INDD 490 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

490 BOOK 7 Evaluating Data

Exploratory data analysis (EDA) is a general approach to exploring data sets by
means of simple summary statistics and graphic visualizations in order to gain a
deeper understanding of data. EDA helps you become more effective in the subse-
quent data analysis and modeling. In this chapter, you discover all the necessary
and indispensable basic descriptions of the data and see how those descriptions
can help you decide how to proceed using the most appropriate data transforma-
tion and solutions.

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source available at www.dummies.com/go/
codingaiodownloads. The source code for this chapter appears in the P4DS4D; 13;
Exploring Data Analysis.ipynb source code file.

The EDA Approach
EDA was developed at Bell Labs by John Tukey, a mathematician and statistician
who wanted to promote more questions and actions on data based on the data
itself (the exploratory motif) in contrast to the dominant confirmatory approach
of the time. A confirmatory approach relies on the use of a theory or procedure —
the data is just there for testing and application. EDA emerged at the end of the
’70s, long before the big data flood appeared. Tukey could already see that certain
activities, such as testing and modeling, were easy to make automatic. In one of
his famous writings, Tukey said

The only way humans can do BETTER than computers is to take a chance of doing
WORSE than them.

This statement explains why your role and tools aren’t limited to automatic learn-
ing algorithms but also to manual and creative exploratory tasks. Computers are
unbeatable at optimizing, but humans are strong at discovery by taking unex-
pected routes and trying unlikely but very effective solutions.

EDA goes beyond the basic assumptions about data workability, which actually
comprises the Initial Data Analysis (IDA). Up to now, the book has shown how to

 » Complete observations or mark missing cases by appropriate features.

 » Transform text or categorical variables.

 » Create new features based on domain knowledge of the data problem.

 » Have at hand a numeric data set where rows are observations and columns
are variables.

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 491 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 491

EDA goes further than IDA. It’s moved by a different attitude: going beyond basic
assumptions. With EDA, you

 » Describe of your data.

 » Closely explore data distributions.

 » Understand the relations between variables.

 » Notice unusual or unexpected situations.

 » Place the data into groups.

 » Notice unexpected patterns within groups.

 » Take note of group differences.

Defining Descriptive Statistics
for Numeric Data

The first actions that you can take with the data are to produce some synthetic
measures to help figure out what is going in it. You acquire knowledge of mea-
sures such as maximum and minimum values, and you define which intervals are
the best place to start.

During your exploration, you use a simple but useful data set called the Fisher’s
Iris data set, which contains flower measurements of a sample of 150 irises. You
can load it from the Scikit-learn package by using the following code:

from sklearn.datasets import load_iris

iris = load_iris()

Having loaded the Iris data set into a variable of a custom Scikit-learn class, you
can derive a NumPy nparray and a pandas DataFrame from it:

import pandas as pd

import numpy as np

print 'Your pandas version is: %s' % pd.__version__

print 'Your NumPy version is %s' % np.__version__

iris_nparray = iris.data

iris_dataframe = pd.DataFrame(iris.data, columns=iris.feature_names)

0003053999.INDD 492 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

492 BOOK 7 Evaluating Data

iris_dataframe['group'] = pd.Series([iris.target_names[k] for k in iris.target],

 dtype="category")

Your pandas version is: 0.16.0

Your NumPy version is 1.9.0

NumPy, Scikit-learn, and especially pandas are packages under constant develop-
ment, so before you start working with EDA, it’s a good idea to check the product
version numbers. Using an old version could cause your output to differ from that
shown in the book or cause some commands to fail.

This chapter presents a series of pandas and NumPy commands that help you
explore the structure of data. Even though applying single explorative com-
mands grants you more freedom in your analysis, it’s nice to know that you can
obtain most of these statistics using the describe method applied to your pandas
DataFrame, such as print iris_dataframe.describe(), when you’re in a hurry.

Measuring central tendency
Mean and median are the first measures to calculate for numeric variables when
starting EDA. The output from these functions provides an estimate of when the
variables are centered and somehow symmetric.

Using pandas, you can quickly compute both means and medians. Here is the
command for getting the mean from the Iris DataFrame:

print iris_dataframe.mean(numeric_only=True)

sepal length (cm) 5.843333

sepal width (cm) 3.054000

petal length (cm) 3.758667

petal width (cm) 1.198667

Similarly, here is the command that will output the median:

print iris_dataframe.median(numeric_only=True)

sepal length (cm) 5.80

sepal width (cm) 3.00

petal length (cm) 4.35

petal width (cm) 1.30

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 493 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 493

The median provides the central position in the series of values. When creating a
variable, the median unlike the mean is a measure less influenced by anomalous
cases or by an asymmetric distribution of values. What you should notice here is
that the means are not centered (no variable is zero mean) and that the median of
petal length is quite different from the mean, requiring further inspection.

When checking for central tendency measures, you should

 » Verify whether means are zero.

 » Check whether they are different from each other.

 » Notice whether the median is different from the mean.

Measuring variance and range
As a next step, you should check the variance by squaring the value of its standard
deviation. The variance is a good indicator of whether a mean is a suitable indica-
tor of the variable distribution.

print iris_dataframe.std()

sepal length (cm) 0.828066

sepal width (cm) 0.433594

petal length (cm) 1.764420

petal width (cm) 0.763161

In addition, the range, which is the difference between the maximum and mini-
mum value for each quantitative variable, is quite informative.

print iris_dataframe.max(numeric_only=True)-iris_dataframe.min

(numeric_only=True)

sepal length (cm) 3.6

sepal width (cm) 2.4

petal length (cm) 5.9

petal width (cm) 2.4

Take notice of the standard deviation and the range with respect to the mean
and median. A standard deviation or range that is too high with respect to the
measures of centrality (mean and median) may point to a possible problem, with
extremely unusual values affecting the calculation.

0003053999.INDD 494 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

494 BOOK 7 Evaluating Data

Working with percentiles
Because the median is the value in the central position of your distribution of val-
ues, you may need to consider other notable positions. Apart from the minimum
and maximum, the position at 25 percent of your values (the lower quartile) and
the position at 75 percent (the upper quartile) are useful for figuring how the data
distribution works, and they are the basis of an illustrative graph called a boxplot,
which is one of the topics covered in this chapter.

print iris_dataframe.quantile(np.array([0,.25,.50,.75,1]))

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

0.00 4.3 2.0 1.00 0.1

0.25 5.1 2.8 1.60 0.3

0.50 5.8 3.0 4.35 1.3

0.75 6.4 3.3 5.10 1.8

1.00 7.9 4.4 6.90 2.5

The difference between the upper and lower percentile constitutes the interquar-
tile range (IQR), which is a measure of the scale of variables that are of highest
interest. You don’t need to calculate it, but you will find it in the boxplot because
it helps to determinate the plausible limits of your distribution. What lies between
the lower quartile and the minimum, and the upper quartile and the maximum,
are exceptionally rare values that can negatively affect the results of your analysis.
Such rare cases are outliers.

Defining measures of normality
The last indicative measures of how the numeric variables used for these exam-
ples are structured are skewness and kurtosis:

 » Skewness defines the asymmetry of data with respect to the mean. If the skew
is negative, the left tail is too long and the mass of the observations are on the
right side of the distribution. If the skew is positive, the mass of the observa-
tions are on the left side of the distribution.

 » Kurtosis shows whether the data distribution, especially the peak and the tails,
are of the right shape. If the kurtosis is above zero, the distribution has a
marked peak. If it is below zero, the distribution is too flat.

Although reading the numbers can help you determine the shape of the data, tak-
ing notice of such measures presents a formal test to select the variables that may
need some adjustment or transformation in order to become more similar to the
Gaussian distribution. Remember that you also visualize the data later, so this is
a first step in a longer process.

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 495 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 495

As an example, the output shown in the “Measuring central tendency” section
earlier in this chapter shows that the petal length feature presents differences
between the mean and the median. In this section, you test the same example
for kurtosis and skewness in order to determine whether the variable requires
intervention.

When performing the kurtosis and skewness tests, you determine whether the
p-value is less than or equal 0.05. If so, you have to reject normality, which
implies that you could obtain better results if you try to transform the variable
into a normal one. The following code shows how to perform the required test:

from scipy.stats import kurtosis, kurtosistest

k = kurtosis(iris_dataframe['petal length (cm)'])

zscore, pvalue = kurtosistest(iris_dataframe['petal length (cm)'])

print 'Kurtosis %0.3f z-score %0.3f p-value %0.3f' % (k, zscore, pvalue)

Kurtosis -1.395 z-score -14.811 p-value 0.000

from scipy.stats import skew, skewtest

s = skew(iris_dataframe['petal length (cm)'])

zscore, pvalue = skewtest(iris_dataframe['petal length (cm)'])

print 'Skewness %0.3f z-score %0.3f p-value %0.3f' % (s, zscore, pvalue)

Skewness -0.272 z-score -1.398 p-value 0.162

The test results tell you that the data is slightly skewed to the left, but not enough
to make it unusable. The real problem is that the curve is much too flat to be bell-
shaped, so you should investigate the matter further.

It’s a good practice to test all variables for kurtosis and skewness automatically.
You should then proceed to inspect those whose values are the highest visually.
Non-normality of a distribution may also conceal different issues, such as outliers
to groups that you can perceive only by a graphical visualization.

Counting for Categorical Data
The Iris data set is made of four metric variables and a qualitative target outcome.
Just as you use means and variance as descriptive measures for metric variables,
so do frequencies strictly relate to qualitative ones.

Because the data set is made up of metric measurements (width and lengths in
centimeters), you must render it qualitative by dividing it into bins according

0003053999.INDD 496 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

496 BOOK 7 Evaluating Data

to specific intervals. The pandas package features two useful functions, cut and
qcut, that can transform a metric variable into a qualitative one:

 » cut expects a series of edge values used to cut the measurements or an
integer number of groups used to cut the variables into equal-width bins.

 » qcut expects a series of percentiles used to cut the variable.

You can obtain a new categorical DataFrame using the following command, which
concatenates a binning for each variable:

iris_binned = pd.concat([

pd.qcut(iris_dataframe.ix[:,0], [0, .25, .5, .75, 1]),

pd.qcut(iris_dataframe.ix[:,1], [0, .25, .5, .75, 1]),

pd.qcut(iris_dataframe.ix[:,2], [0, .25, .5, .75, 1]),

pd.qcut(iris_dataframe.ix[:,3], [0, .25, .5, .75, 1]),

], join='outer', axis = 1)

This example relies on binning. However, it could also help to explore when the
variable is above or below a singular hurdle value, usually the mean or the median.
In this case, you set pd.qcut to the 0.5 percentile or pd.cut to the mean value of
the variable.

Binning transforms numerical variables into categorical ones. This transforma-
tion can improve your understanding of data and the machine learning phase
that follows by reducing the noise (outliers) or nonlinearity of the transformed
variable.

Understanding frequencies
You can obtain a frequency for each categorical variable of the data set, both for
the predictive variable and for the outcome, by using the following code:

print iris_dataframe['group'].value_counts()

virginica 50

versicolor 50

setosa 50

print iris_binned['petal length (cm)'].value_counts()

[1, 1.6] 44

(4.35, 5.1] 41

(5.1, 6.9] 34

(1.6, 4.35] 31

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 497 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 497

This example provides you with some basic frequency information as well, such as
the number of unique values in each variable and the mode of the frequency (top
and freq rows in the output).

print iris_binned.describe()

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

count 150 150 150 150

unique 4 4 4 4

top [4.3, 5.1] [2, 2.8] [1, 1.6] [0.1, 0.3]

freq 41 47 44 41

Frequencies can signal a number of interesting characteristics of qualitative
features:

 » The mode of the frequency distribution that is the most frequent category

 » The other most frequent categories, especially when they are comparable
with the mode (bimodal distribution) or if there is a large difference
between them

 » The distribution of frequencies among categories, if rapidly decreasing or
equally distributed

 » Rare categories that gather together

Creating contingency tables
By matching different categorical frequency distributions, you can display the
relationship between qualitative variables. The pandas.crosstab function can
match variables or groups of variables, helping to locate possible data structures
or relationships.

In the following example, you check how the outcome variable is related to petal
length and observe how certain outcomes and petal binned classes never appear
together:

print pd.crosstab(iris_dataframe['group'], iris_binned['petal length (cm)'])

petal length (cm) (1.6, 4.35] (4.35, 5.1] (5.1, 6.9] [1, 1.6]

group

setosa 6 0 0 44

versicolor 25 25 0 0

virginica 0 16 34 0

0003053999.INDD 498 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

498 BOOK 7 Evaluating Data

The pandas.crosstab function ignores categorical variable ordering and always
displays the row and column categories according to their alphabetical order. This
nuisance is still present in the pandas version used for this book, 0.16.0, but it may
be resolved in the future.

Creating Applied Visualization for EDA
Up to now, the chapter has explored variables by looking at each one separately.
Technically, if you’ve followed along with the examples, you have created a uni-
variate (that is, you’ve paid attention to stand-alone variations of the data only)
description of the data. The data is rich in information because it offers a perspec-
tive that goes beyond the single variable, presenting more variables with their
reciprocal variations. The way to use more of the data is to create a bivariate (see-
ing how couples of variables relate to each other) exploration. This is also the
basis for complex data analysis based on a multivariate (simultaneously consider-
ing all the existent relations between variables) approach.

If the univariate approach inspected a limited number of descriptive statistics,
then matching different variables or groups of variables increases the number of
possibilities. The different tests and bivariate analysis can be overwhelming, and
using visualization is a rapid way to limit test and analysis to only interesting
traces and hints. Visualizations, using a few informative graphics, can convey the
variety of statistical characteristics of the variables and their reciprocal relation-
ships with greater ease.

Inspecting boxplots
Boxplots provide a way to represent distributions and their extreme ranges,
 signaling whether some observations are too far from the core of the data — a
problematic situation for some learning algorithms. The following code shows
how to create a basic boxplot using the Iris data set:

boxplots = iris_dataframe.boxplot(return_type='axes')

In Figure 5-1, you see the structure of each variable’s distribution at its core,
represented by the 25° and 75° percentile (the sides of the box) and the median
(at the center of the box). The lines, the so-called whiskers, represent 1.5 times
the IQR (difference between upper and lower quartile) from the box sides (or by
the distance to the most extreme value, if within 1.5 times the IQR). The boxplot
marks every observation outside the whisker, which is deemed an unusual value.

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 499 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 499

Boxplots are also extremely useful for visually checking group differences. Note
in Figure 5-2 how a boxplot can hint that the three groups, setosa, versicolor, and
virginica, have different petal lengths, with only partially overlapping values at
the fringes of the last two of them.

Performing t-tests after boxplots
After you have spotted a possible group difference relative to a variable, a t-test
(you use a t-test in situations in which the sampled population has an exact

FIGURE 5-1:
A boxplot

arranged by
variables.

FIGURE 5-2:
A boxplot

arranged by
groups.

0003053999.INDD 500 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

500 BOOK 7 Evaluating Data

normal distribution) or a one-way analysis of variance (ANOVA) can provide you
with a statistical verification of the significance of the difference between the
groups’ means.

from scipy.stats import ttest_ind

group0 = iris_dataframe['group'] == 'setosa'

group1 = iris_dataframe['group'] == 'versicolor'

group2 = iris_dataframe['group'] == 'virginica'

print 'var1 %0.3f var2 %03f' % (iris_dataframe['petal length (cm)']

[group1].var(),

 iris_dataframe['petal length (cm)'][group2].var())

var1 0.221 var2 0.304588

The t-test compares two groups at a time, and it requires that you define whether
the groups have similar variance or not. So it is necessary to calculate the variance
beforehand, like this:

t, pvalue = ttest_ind(iris_dataframe[sepal width (cm)'][group1],

 iris_dataframe['sepal width (cm)'][group2], axis=0, equal_var=False)

print 't statistic %0.3f p-value %0.3f' % (t, pvalue)

t statistic -3.206 p-value 0.002

You interpret the pvalue as the probability that the calculated t statistic differ-
ence is just due to chance. Usually, when it is below 0.05, you can confirm that the
groups’ means are significantly different.

You can simultaneously check more than two groups using the one-way ANOVA
test. In this case, the pvalue has an interpretation similar to the t-test:

from scipy.stats import f_oneway

f, pvalue = f_oneway(iris_dataframe['sepal width (cm)'][group0],

 iris_dataframe['sepal width (cm)'][group1],

 iris_dataframe['sepal width (cm)'][group2])

print "One-way ANOVA F-value %0.3f p-value %0.3f" % (f,pvalue)

One-way ANOVA F-value 47.364 p-value 0.000

Observing parallel coordinates
Parallel coordinates can help spot which groups in the outcome variable you could
easily separate from the other. It is a truly multivariate plot, because at a glance

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 501 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 501

it represents all your data at the same time. The following example shows how to
use parallel coordinates.

from pandas.tools.plotting import parallel_coordinates

iris_dataframe['labels'] = [iris.target_names[k] for k in

iris_dataframe['group']]

pll = parallel_coordinates(iris_dataframe,'labels')

As shown in Figure 5-3, on the x-axis, you find all the quantitative variables
aligned. On the y-axis, you find all the observations, carefully represented as par-
allel lines, each one of a different color given its ownership to a different group.

If the parallel lines of each group stream together along the visualization in a
separate part of the graph far from other groups, the group is easily separable. The
visualization also provides the means to assert the capability of certain features
to separate the groups.

Graphing distributions
You usually render the information that boxplot and descriptive statistics provide
into a curve or a histogram, which shows an overview of the complete distribution
of values. The output shown in Figure 5-4 represents all the distributions in the
data set. Different variable scales and shapes are immediately visible, such as the
fact that petals’ features display two peaks.

densityplot = iris_dataframe[iris_dataframe.columns[:4]].plot(kind='density')

FIGURE 5-3:
Parallel

 coordinates
 anticipate

whether groups
are easily

 separable.

0003053999.INDD 502 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

502 BOOK 7 Evaluating Data

Histograms present another, more detailed, view over distributions:

single_distribution = iris_dataframe['petal length (cm)'].plot(kind='hist')

Figure 5-5 shows the histogram of petal length. It reveals a gap in the distribu-
tion that could be a promising discovery if you can relate it to a certain group of
Iris flowers.

Plotting scatterplots
In scatterplots, the two compared variables provide the coordinates for plotting
the observations as points on a plane. The result is usually a cloud of points. When
the cloud is elongated and resembles a line, you can perceive the variables as cor-
related. The following example demonstrates this principle.

FIGURE 5-4:
Features’

 distribution
and density.

FIGURE 5-5:
Histograms can

detail better
distributions.

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 503 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 503

colors_palette = {0: 'red', 1: 'yellow', 2:'blue'}

colors = [colors_palette[c] for c in iris_dataframe['group']]

simple_scatterplot = iris_dataframe.plot(kind='scatter',

 x='petal length (cm)', y='petal width (cm)', c=colors)

This simple scatterplot, represented in Figure 5-6, compares length and width
of petals. The scatterplot highlights different groups using different colors. The
elongated shape described by the points hints at a strong correlation between the
two observed variables, and the division of the cloud into groups suggests a pos-
sible separability of the groups.

Because the number of variables isn’t too large, you can also generate all the scat-
terplots automatically from the combination of the variables. This representation
is a matrix of scatterplots. The following example demonstrates how to create one:

from pandas.tools.plotting import scatter_matrix

colors_palette = {0: "red", 1: "yellow", 2: "blue"}

colors = [colors_palette[c] for c in iris_dataframe['group']]

matrix_of_scatterplots = scatter_matrix(iris_dataframe,

 figsize=(6, 6), color=colors, diagonal='kde')

In Figure 5-7, you can see the resulting visualization for the Iris data set. The
diagonal representing the density estimation can be replaced by a histogram using
the parameter diagonal='hist'.

FIGURE 5-6:
A scatterplot

reveals how two
variables relate to

each other.

0003053999.INDD 504 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

504 BOOK 7 Evaluating Data

Understanding Correlation
Just as the relationship between variables is graphically representable, it is also
measurable by a statistical estimate. When working with numeric variables, the
estimate is a correlation, and the Pearson correlation is the most famous. The
Pearson correlation is the foundation for complex linear estimation models.
When you work with categorical variables, the estimate is an association, and the
chi-square statistic is the most frequently used tool for measuring association
between features.

Using covariance and correlation
Covariance is the first measure of the relationship of two variables. It determines
whether both variables have similar behavior with respect to their mean. If the
single values of two variables are usually above or below their respective averages,
the two variables have a positive association. It means that they tend to agree, and
you can figure out the behavior of one of the two by looking at the other. In such
a case, their covariance will be a positive number, and the higher the number, the
higher the agreement.

FIGURE 5-7:
A matrix of

 scatterplots
displays more
information at

one time.

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 505 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 505

If, instead, one variable is usually above and the other variable usually below their
respective averages, the two variables are negatively associated. Even though
the two disagree, it’s an interesting situation for making predictions, because by
observing the state of one of them, you can figure out the likely state of the other
(albeit they’re opposite). In this case, their covariance will be a negative number.

A third state is that the two variables don’t systematically agree or disagree with
each other. In this case, the covariance will tend to be zero, a sign that the vari-
ables don’t share much and have independent behaviors.

Ideally, when you have a numeric target variable, you want the target variable to
have a high positive or negative covariance with the predictive variables. Having
a high positive or negative covariance among the predictive variables is a sign of
information redundancy. Information redundancy signals that the variables point
to the same data — that is, the variables are telling us the same thing in slightly
different ways.

Computing a covariance matrix is straightforward using pandas. You can immedi-
ately apply it to the DataFrame of the Iris data set as shown here:

print iris_dataframe.cov()

 sepal length (cm) sepal width (cm) petal length (cm) \

sepal length (cm) 0.685694 -0.039268 1.273682

sepal width (cm) -0.039268 0.188004 -0.321713

petal length (cm) 1.273682 -0.321713 3.113179

petal width (cm) 0.516904 -0.117981 1.296387

 petal width (cm)

sepal length (cm) 0.516904

sepal width (cm) -0.117981

petal length (cm) 1.296387

petal width (cm) 0.582414

This matrix output shows variables present on both rows and columns. By observ-
ing different row and column combinations, you can determine the value of
covariance between the variables chosen. After observing these results, you can
immediately understand that little relationship exists between sepal length and
sepal width, meaning that they’re different informative values. However, there
could be a special relationship between petal width and petal length, but the
example doesn’t tell what this relationship is because the measure is not easily
interpretable.

0003053999.INDD 506 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

506 BOOK 7 Evaluating Data

The scale of the variables you observe influences covariance, so you should use a
different, but standard, measure. The solution is to use correlation, which is the
covariance estimation after having standardized the variables. Here is an example
of obtaining a correlation using a simple pandas method:

print iris_dataframe.corr()

 sepal length (cm) sepal width (cm) petal length (cm) \

sepal length (cm) 1.000000 -0.109369 0.871754

sepal width (cm) -0.109369 1.000000 -0.420516

petal length (cm) 0.871754 -0.420516 1.000000

petal width (cm) 0.817954 -0.356544 0.962757

 petal width (cm)

sepal length (cm) 0.817954

sepal width (cm) -0.356544

petal length (cm) 0.962757

petal width (cm) 1.000000

Now that’s even more interesting, because correlation values are bound between
values of –1 and +1, so the relationship between petal width and length is positive
and, with a 0.96, it is almost the maximum possible.

You can compute covariance and correlation matrices also by means of NumPy
commands, as shown here:

covariance_matrix = np.cov(iris_nparray, rowvar=0, bias=1)

correlation_matrix= np.corrcoef(iris_nparray, rowvar=0, bias=1)

In statistics, this kind of correlation is a Pearson correlation, and its coefficient is
a Pearson’s r.

Another nice trick is to square the correlation. By squaring it, you lose the sign
of the relationship. The new number tells you the percentage of the informa-
tion shared by two variables. In this example, a correlation of 0.96 implies that
96 percent of the information is shared. You can obtain a squared correlation
matrix using this command: print iris_dataframe.corr()**2.

Something important to remember is that covariance and correlation are based on
means, so they tend to represent relationships that you can express using linear
formulations. Variables in real-life data sets usually don’t have nice linear formu-
lations. Instead they are highly nonlinear, with curves and bends. You can rely on
mathematical transformations to make the relationships linear between variables
anyway. A good rule to remember is to use correlations only to assert relationships
between variables, not to exclude them.

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 507 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 507

Using nonparametric correlation
Correlations can work fine when your variables are numeric and their relationship
is strictly linear. Sometimes, your feature could be ordinal (a numeric variable
but with orderings) or you may suspect some nonlinearity due to non-normal
distributions in your data. A possible solution is to test the doubtful correlations
with a nonparametric correlation, such as a Spearman correlation (which means
that it has fewer requirements in terms of distribution of considered variables). A
Spearman correlation transforms your numeric values into rankings and then cor-
relates the rankings, thus minimizing the influence of any nonlinear relationship
between the two variables under scrutiny.

As an example, you verify the relationship between sepals’ length and width
whose Pearson correlation was quite weak:

from scipy.stats import spearmanr

from scipy.stats.stats import pearsonr

spearmanr_coef, spearmanr_p = spearmanr(iris_dataframe['sepal length (cm)'],

 iris_dataframe['sepal width (cm)'])

pearsonr_coef, pearsonr_p = pearsonr(iris_dataframe['sepal length (cm)'],

 iris_dataframe['sepal width (cm)'])

print 'Pearson correlation %0.3f | Spearman correlation %0.3f' % (pearsonr_coef,

 spearmanr_coef)

Pearson correlation -0.109 | Spearman correlation -0.159

In this case, the code confirms the weak association between the two variables
using the nonparametric test.

Considering chi-square for tables
You can apply another nonparametric test for relationship when working with
cross tables. This test is applicable to both categorical and numeric data (after it
has been discretized into bins). The chi-square statistic tells you when the table
distribution of two variables is statistically comparable to a table in which the two
variables are hypothesized as not related to each other (the so-called indepen-
dence hypothesis). Here is an example of how you use this technique:

from scipy.stats import chi2_contingency

table = pd.crosstab(iris_dataframe['group'], iris_binned['petal length (cm)'])

chi2, p, dof, expected = chi2_contingency(table.values)

print 'Chi-square %0.2f p-value %0.3f' % (chi2, p)

Chi-square 212.43 p-value 0.000

0003053999.INDD 508 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

508 BOOK 7 Evaluating Data

As seen before, the p-value is the chance that the chi-square difference is just by
chance.

The chi-square measure value depends on how many cells the table has. Do not
use the chi-square measure to compare different chi-square tests unless you
know for sure that the tables in comparison share the same structure.

The chi-square is particularly interesting for assessing the relationships between
binned numeric variables, even in the presence of strong nonlinearity that can
fool Person’s r. Contrary to correlation measures, it can inform you of a pos-
sible association, but it won’t provide clear details of its direction or absolute
magnitude.

Modifying Data Distributions
As a by-product of data exploration, in an EDA phase, you can do the following:

 » Obtain new feature creations from the combination of different but related
variables.

 » Spot hidden groups or strange values lurking in your data.

 » Try some useful modifications of your data distributions by binning (or other
discretizations such as binary variables).

When performing EDA, you need to consider the importance of data transfor-
mation in preparation for the learning phase, which also means using certain
mathematical formulas. The following sections present an overview of the most
common mathematical formulas used for EDA (such as linear regression). The
data transformation you choose depends on the distribution of your data, with
a normal distribution being the most common. In addition, these sections high-
light the need to match the transformation process to the mathematical formula
you use.

Using the normal distribution
The normal, or Gaussian, distribution is the most useful distribution in statis-
tics thanks to its frequent recurrence and particular mathematical properties.
It’s essentially the foundation of many statistical tests and models, with some of
them, such as the linear regression, widely used in data science.

Ex
pl

or
in

g
D

at
a

A
na

ly
si

s

0003053999.INDD 509 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

CHAPTER 5 Exploring Data Analysis 509

During data science practice, you’ll meet with a wide range of different
 distributions — with some of them named by probabilistic theory, others not.
For some distributions, the assumption that they should behave as a normal
 distribution may hold, but for others, it may not, and that could be a problem
depending on what algorithms you use for the learning process. As a general rule,
if your model is a linear regression or part of the linear model family because it
boils down to a summation of coefficients, then both variable standardization and
 distribution transformation should be considered.

Creating a z-score standardization
In your EDA process, you may have realized that your variables have different
scales and are heterogeneous in their distributions. As a consequence of your
analysis, you need to transform the variables in a way that makes them easily
comparable:

from sklearn.preprocessing import scale

stand_sepal_width = scale(iris_dataframe['sepal width (cm)'])

Transforming other notable distributions
When you check variables with high skewness and kurtosis for their correlation,
the results may disappoint you. As you find out earlier in this chapter, using a
nonparametric measure of correlation, such as Spearman’s, may tell you more
about two variables than Pearson’s r may tell you. In this case, you should trans-
form your insight into a new, transformed feature:

tranformations = {'x': lambda x: x, '1/x': lambda x: 1/x, 'x**2': lambda x: x**2,

 'x**3': lambda x: x**3, 'log(x)': lambda x: np.log(x)}

for transformation in tranformations:

 pearsonr_coef, pearsonr_p = pearsonr(iris_dataframe['sepal length (cm)'],

 tranformations[transformation](iris_dataframe['sepal width (cm)']))

 print 'Transformation: %s \t Pearson\'s r: %0.3f' % (transformation,

pearsonr_coef)

Transformation: x Pearson's r: -0.109

Transformation: x**2 Pearson's r: -0.122

Transformation: x**3 Pearson's r: -0.131

Transformation: log(x) Pearson's r: -0.093

Transformation: 1/x Pearson's r: 0.073

0003053999.INDD 510 Trim size: 7.375 in × 9.25 in March 31, 2017 4:49 AM

510 BOOK 7 Evaluating Data

In exploring various possible transformations, using a for loop may tell you that
a power transformation will increase the correlation between the two variables,
thus increasing the performance of a linear machine learning algorithm. You may
also try other, further transformations such as square root np.sqrt(x), exponen-
tial np.exp(x), and various combinations of all the transformations, such as log
inverse np.log(1/x).

CHAPTER 6 Exploring Four Simple and Eff ective Algorithms 511

0003054000.INDD 511 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

 Exploring Four Simple
and Eff ective Algorithms

 “The goal is to turn data into information, and information into insight.”
 — CARLY FIORINA

 I n this chapter, you start to explore all the algorithms and tools necessary for
learning from data (the training phase) and being capable of predicting a numeric
estimate (for example, house pricing) or a class (for instance, the species of an

Iris fl ower) given a new example that you didn’t have before. In this chapter, you
start with the simplest algorithms and work toward more complex ones.

Simple and complex aren’t absolute values in machine learning — they’re relative
to the algorithm’s construction. Some algorithms are simple summations while
others require complex calculations (and Python deals with both the simple and
complex algorithms for you). It’s the data that makes the diff erence: For some
problems, simple algorithms are better; other problems may instead require com-
plex algorithms.

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source available at www.dummies.com/
go/codingaiodownloads . The source code for this chapter appears in the
P4DS4D; 17; Exploring Four Simple and Effective Algorithms.ipynb source
code fi le.

Chapter 6

 IN THIS CHAPTER

 » Using linear and logistic regression

 » Understanding Bayes theorem and
using it for naïve classifi cation

 » Predicting on the basis of cases being
similar with kNN

0003054000.INDD 512 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

512 BOOK 7 Evaluating Data

Guessing the Number: Linear Regression
Regression has a long history in statistics, from building simple but effective
linear models of economic, psychological, social, or political data, to hypothesis
testing for understanding group differences, to modeling more complex prob-
lems with ordinal values, binary and multiple classes, count data, and hierarchical
relationships.

Regression is also a common tool in data science. Stripped of most of its statistical
properties, data science practitioners see linear regression as a simple, under-
standable, yet effective algorithm for estimations, and, in its logistic regression
version, for classification as well.

Defining the family of linear models
Linear regression is a statistical model that defines the relationship between a
target variable and a set of predictive features. It does so using a formula of the
following type:

y = a + bx

You can translate this formula into something readable and useful for many prob-
lems. For instance, if you’re trying to guess your sales based on historical results
and available data about advertising expenditures, the preceding formula becomes

sales = a + b * (advertising expenditure)

You may already have encountered this formula during high school because it’s
also the formula of a line in a bidimensional plane, which is made of an x-axis
(the abscissa) and a y-axis (the ordinate).

You can demystify the formula by explaining its components: a is the value of the
intercept (the value of y when x is zero), and b is a coefficient that expresses the
slope of the line (the relationship between x and y). If b is positive, y increases
and decreases as x increases and decreases — when b is negative, y behaves in
the opposite manner. You can understand b as the unit change in y given a unit
change in x. When the value of b is near zero, the effect of x on y is slight, but if
the value of b is high, either positive or negative, the effect of changes in x on y
is great.

Linear regression, therefore, can find the best y = a + bx and represent the rela-
tionship between your target variable, y, with respect to your predictive feature, x.
Both a (alpha) and b (beta coefficient) are estimated on the basis of the data, and

Ex
pl

or
in

g
Fo

ur
 S

im
pl

e
an

d
Eff

ec
ti

ve
 A

lg
or

it
hm

s

0003054000.INDD 513 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

CHAPTER 6 Exploring Four Simple and Effective Algorithms 513

they are found using the linear regression algorithm so that the difference between
all the real y target values and all the y values derived from the linear regression
formula are the minimum possible.

You can express this relationship graphically as the sum of the square of all the
vertical distances between all the data points and the regression line. Such a sum
is always the minimum possible when you calculate the regression line correctly
using an estimation called ordinary least squares, which is derived from statistics
or the equivalent gradient descent, a machine learning method. The differences
between the real y values and the regression line (the predicted y values) are
defined as residuals (because they are what are left after a regression: the errors).

Using more variables
When using a single variable for predicting y, you use simple linear regression,
but when working with many variables, you use multiple linear regression. When
you have many variables, their scale isn’t important in creating precise linear
regression predictions. But a good habit is to standardize x values because the
scale of the variables is quite important for some variants of regression (that you
see later on), and it is insightful for your understanding of data to compare coef-
ficients according to their impact on y.

The following example relies on the Boston data set from scikit-learn. It tries to
guess Boston housing prices using a linear regression. The example also tries to
determine which variables influence the result more, so the example standardizes
the predictors.

from sklearn.datasets import load_boston

from sklearn.preprocessing import scale

boston = load_boston()

X, y = scale(boston.data), boston.target

The regression class in scikit-learn is part of the linear_model module. Having
previously scaled the x variable, you have no other preparations or special param-
eters to decide when using this algorithm.

from sklearn.linear_model import LinearRegression

regression = LinearRegression()

regression.fit(X,y)

Now that the algorithm is fitted, you can use the score method to report the R2
measure, which is a measure that ranges from 0 to 1 and points out how using
a particular regression model is better in predicting y than using a simple mean
would be. You can also see R2 as being the quantity of target information explained

0003054000.INDD 514 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

514 BOOK 7 Evaluating Data

by the model (the same as the squared correlation), so getting near 1 means being
able to explain most of the y variable using the model.

print regression.score(X,y)

0.740607742865

In this case, R2 on the previously fitted data is 0.74, a good result for a simple
model.

Calculating R2 on the same set of data used for the training is common in sta-
tistics. In data science and machine learning, it’s always better to test scores on
data that has not been used for training. Algorithms of greater complexity can
memorize the data better than they learn from it, but this statement can be also
true sometimes for simpler models, such as linear regression.

To understand what drives the estimates in the multiple regression model, you
have to look at the coefficients_ attribute, which is an array containing the
regression beta coefficients. Printing the variable names at the same time as the
coefficients using the boston.DESCR attribute helps you understand which vari-
able the coefficients reference. The zip function will generate an iterable of both
attributes, and you can print it for reporting.

print [a+':'+str(round(b,1)) for a, b in zip(
 boston.feature_names, regression.coef_,)]

['CRIM:-0.9', 'ZN:1.1', 'INDUS:0.1', 'CHAS:0.7',

 'NOX:-2.1', 'RM:2.7', 'AGE:0.0', 'DIS:-3.1',

 'RAD:2.7', 'TAX:-2.1', 'PTRATIO:-2.1', 'B:0.9',

 'LSTAT:-3.7']

DIS is the weighted distances to five employment centers. It shows the major
absolute unit change. For example, in real estate, a house that’s too far from peo-
ple’s interests (such as work) lowers the value. As a contrast, AGE and INDUS, with
both proportions describing building age and showing whether nonretail activities
are available in the area, don’t influence the result as much because the absolute
value of their beta coefficients is lower than DIS.

Understanding limitations and problems
Although linear regression is a simple yet effective estimation tool, it has quite
a few problems. The problems can reduce the benefit of using linear regressions
in some cases, but it really depends on the data. You determine whether any
problems exist by employing the method and testing its efficacy. Still, you may
encounter these limitations:

Ex
pl

or
in

g
Fo

ur
 S

im
pl

e
an

d
Eff

ec
ti

ve
 A

lg
or

it
hm

s

0003054000.INDD 515 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

CHAPTER 6 Exploring Four Simple and Effective Algorithms 515

 » Linear regression can model only quantitative data. When modeling catego-
ries as response, you need to modify the data into a logistic regression.

 » If data is missing and you don’t deal with it properly, the model stops working.
It’s important to impute the missing values or, using the value of zero for the
variable, to create an additional binary variable pointing out that a value is
missing.

 » Also, outliers are quite disruptive for a linear regression because linear
regression tries to minimize the square value of the residuals, and outliers
have big residuals, forcing the algorithm to focus more on them than on the
mass of regular points.

 » The relation between the target and each predictor variable is based on a
single coefficient — there isn’t an automatic way to represent complex
relations like a parabola (there is a unique value of x maximizing y) or
exponential growth. The only way you can manage to model such relations is
to use mathematical transformations of x (and sometimes y) or add new
variables.

 » The greatest limitation is that linear regression provides a summation of
terms, which can vary independently of each other. It’s hard to figure out how
to represent the effect of certain variables that affect the result in very
different ways according to their value. In short, you can’t represent complex
situations with your data, just simple ones.

Moving to Logistic Regression
Linear regression is well suited for estimating values, but it isn’t the best tool for
predicting the class of an observation. In spite of the statistical theory that advises
against it, you can actually try to classify a binary class by scoring one class as 1
and the other as 0. The results are disappointing most of the time, so the statisti-
cal theory wasn’t wrong!

The fact is that linear regression works on a continuum of numeric estimates. In
order to classify correctly, you need a more suitable measure, such as the prob-
ability of class ownership. Thanks to the following formula, you can transform a
linear regression numeric estimate into a probability that is more apt to describe
how a class fits an observation:

probability of a class = exp(r) / (1+exp(r))

0003054000.INDD 516 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

516 BOOK 7 Evaluating Data

r is the regression result (the sum of the variables weighted by the coefficients),
and exp is the exponential function. exp(r) corresponds to Euler’s number e ele-
vated to the power of r. A linear regression using such a formula (also called a link
function) for transforming its results into probabilities is a logistic regression.

Applying logistic regression
Logistic regression is similar to linear regression, with the only difference being
the y data, which should contain integer values indicating the class relative to
the observation. Using the Iris data set from the Scikit-learn datasets module,
you can use the values 0, 1, and 2 to denote three classes that correspond to three
species:

from sklearn.datasets import load_iris

iris = load_iris()

X, y = iris.data[:-1,:], iris.target[:-1]

To make the example easier to work with, leave a single value out so that later you
can use this value to test the efficacy of the logistic regression model on it.

from sklearn.linear_model import LogisticRegression

logistic = LogisticRegression()

logistic.fit(X,y)

print 'Predicted class %s, real class %s' % (

 logistic.predict(iris.data[-1,:]),iris.target[-1])

print 'Probabilities for each class from 0 to 2: %s'

 % logistic.predict_proba(iris.data[-1,:])

Predicted class [2], real class 2

Probabilities for each class from 0 to 2:

 [[0.00168787 0.28720074 0.71111138]]

Contrary to linear regression, logistic regression doesn’t just output the result-
ing class (in this case, the class 2), but it also estimates the probability of the
 observation’s being part of all three classes. Based on the observation used for
prediction, logistic regression estimates a probability of 71 percent of its being
from class 2 — a high probability, but not a perfect score, therefore leaving a
margin of uncertainty.

Using probabilities lets you guess the most probable class, but you can also order
the predictions with respect to being part of that class. This is especially useful
for medical purposes: Ranking a prediction in terms of likelihood with respect to
others can reveal which patients are at most risk of getting or already having a
disease.

Ex
pl

or
in

g
Fo

ur
 S

im
pl

e
an

d
Eff

ec
ti

ve
 A

lg
or

it
hm

s

0003054000.INDD 517 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

CHAPTER 6 Exploring Four Simple and Effective Algorithms 517

Considering when classes are more
The previous problem, logistic regression, automatically handles a multiple class
problem (it started with three Iris species to guess). Most algorithms provided by
scikit-learn that predict probabilities or a score for class can automatically handle
multiclass problems using two different strategies:

 » One versus rest: The algorithm compares every class with all the remaining
classes, building a model for every class. If you have ten classes to guess, you
have ten models. This approach relies on the OneVsRestClassifier class
from scikit-learn.

 » One versus one: The algorithm compares every class against every individual
remaining class, building a number of models equivalent to n * (n-1) / 2,
where n is the number of classes. If you have ten classes, you have 45 models.
This approach relies on the OneVsOneClassifier class from Scikit-learn.

In the case of logistic regression, the default multiclass strategy is the one versus
rest. The example in this section shows how to use both the strategies with the
handwritten digit data set, containing a class for numbers from 0 to 9. The fol-
lowing code loads the data and places it into variables.

from sklearn.datasets import load_digits

digits = load_digits()

X, y = digits.data[:1700,:], digits.target[:1700]

tX, ty = digits.data[1700:,:], digits.target[1700:]

The observations are actually a grid of pixel values. The grid’s dimensions are
8 pixels by 8 pixels. To make the data easier to learn by machine learning algo-
rithms, the code aligns them into a list of 64 elements. The example reserves a
part of the available examples for a test.

from sklearn.multiclass import OneVsRestClassifier

from sklearn.multiclass import OneVsOneClassifier

OVR = OneVsRestClassifier(LogisticRegression()).fit(X,y)

OVO = OneVsOneClassifier(LogisticRegression()).fit(X,y)

print 'One vs rest accuracy: %.3f' % OVR.score(tX,ty)

print 'One vs one accuracy: %.3f' % OVO.score(tX,ty)

One vs rest accuracy: 0.938

One vs one accuracy: 0.969

The two multiclass classes OneVsRestClassifier and OneVsOneClassifier
operate by incorporating the estimator (in this case, LogisticRegression) when
building the model. Interestingly, the one-versus-one strategy obtained the best
accuracy thanks to its high number of models in competition.

0003054000.INDD 518 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

518 BOOK 7 Evaluating Data

When working with Anaconda and Python version 3.4, you may receive a
 deprecation warning when working with this example. You’re safe to ignore the
deprecation warning — the example should work as normal. All the deprecation
warning tells you is that one of the features used in the example is due for an
update or will become unavailable in a future version of Python.

Making Things as Simple as Naïve Bayes
You might wonder why anyone would name an algorithm Naïve Bayes. The naïve
part comes from its formulation — it makes some extreme simplifications to
standard probability calculations. The reference to Bayes in its name relates to the
Reverend Bayes and his theorem on probability.

Reverend Thomas Bayes was a statistician and a philosopher who formulated his
theorem during the first half of the eighteenth century. The theorem was never
published while he was alive. It has deeply revolutionized the theory of probability
by introducing the idea of conditional probability — that is, probability condi-
tioned by evidence.

Of course, it helps to start from the beginning — probability itself. Probability
tells you the likelihood of an event and is expressed in a numeric form. The prob-
ability of an event is measured in the range from 0 to 1 (from 0 percent to 100
percent), and it’s empirically derived from counting the number of times the spe-
cific event happened with respect to all the events. You can calculate it from data!

When you observe events (for example, when a feature has a certain characteris-
tic), and you want to estimate the probability associated with the event, you count
the number of times the characteristic appears in the data and divide that figure
by the total number of observations available. The result is a number ranging from
0 to 1, which expresses the probability.

When you estimate the probability of an event, you tend to believe that you can
apply the probability in each situation. The term for this belief is a priori because
it constitutes the first estimate of probability with regard to an event (the one
that comes to mind first). For example, if you estimate the probability of a person
being a female, you might say, after some counting, that it’s 50 percent, which is
the prior, the first probability you will stick with.

The prior probability can change in the face of evidence, that is, something that
can radically modify your expectations. For example, the evidence of whether a
person is male or female could be that the person’s hair is long or short. You can
estimate having long hair as an event with 35 percent probability for the general

Ex
pl

or
in

g
Fo

ur
 S

im
pl

e
an

d
Eff

ec
ti

ve
 A

lg
or

it
hm

s

0003054000.INDD 519 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

CHAPTER 6 Exploring Four Simple and Effective Algorithms 519

population, but within the female population, it’s 60 percent. If the percentage
is so high in the female population, contrary to the general probability (the prior
for having long hair), there should be some useful information that you can use!

Imagine that you have to guess whether a person is male or female and the evi-
dence is that the person has long hair. This sounds like a predictive problem, and
in the end, this situation is really similar to predicting a categorical variable from
data: We have a target variable with different categories, and you have to guess
the probability of each category on the basis of evidence, the data. Reverend Bayes
provided a useful formula:

P(A|B) = P(B|A)*P(A) / P(B)

The formula looks like statistical jargon and is a bit counterintuitive, so it needs
to be explained in depth. Reading the formula using the previous example as input
makes the meaning behind the formula quite a bit clearer:

 » P(A|B) is the probability of being a female (event A) given long hair (evidence
B). This part of the formula defines what you want to predict. In short, it says
to predict y given x where y is an outcome (male or female) and x is the
evidence (long or short hair).

 » P(B|A) is the probability of having long hair when the person is a female. In
this case, you already know that it’s 60 percent. In every data problem, you
can obtain this figure easily by simple cross-tabulation of the features against
the target outcome.

 » P(A) is the probability of being a female, a 50 percent general chance (a prior).

 » P(B) is the probability of having long hair, which is 35 percent (another prior).

When reading parts of the formula such as P(A|B), you should read them as fol-
lows: probability of A given B. The | symbol translates as given. A probability
expressed in this way is a conditional probability, because it’s the probability of A
conditioned by the evidence presented by B. In this example, plugging the num-
bers into the formula translates into: 60% * 50% / 35% = 85.7%.

Therefore, even if being a female is a 50 percent probability, just knowing evidence
like long hair takes it up to 85.7 percent, which is a more favorable chance for the
guess. You can be more confident in guessing that the person with long hair is a
female because you have a bit less than a 15 percent chance of being wrong.

Finding out that Naïve Bayes isn’t so naïve
Naive Bayes, leveraging the simple Bayes’ rule, takes advantage of all the evi-
dence available in order to modify the prior base probability of your predictions.

0003054000.INDD 520 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

520 BOOK 7 Evaluating Data

Because your data contains so much evidence — that is, it has many features —
the data makes a big sum of all the probabilities derived from a simplified Naïve
Bayes formula.

As discussed in the “Guessing the Number: Linear Regression” section, earlier in
this chapter, summing variables implies that the model takes them as separate and
unique pieces of information. But this isn’t true in reality, because applications
exist in a world of interconnections, with every piece of information connecting to
many other pieces. Using one piece of information more than once means giving
more emphasis to that particular piece.

Because you don’t know (or simply ignore) the relationships between each piece
of evidence, you probably just plug all of them into Naïve Bayes. The simple and
naïve move of throwing everything that you know at the formula works well
indeed, and many studies report good performance despite the fact that you make
a naïve assumption. It’s okay to use everything for prediction, even though it
seems as though it shouldn’t be okay given the strong association between vari-
ables. Here are some of the ways in which you commonly see Naïve Bayes used:

 » Building spam detectors (catching all annoying emails in your inbox)

 » Sentiment analysis (guessing whether a text contains positive or negative
attitudes with respect to a topic, and detecting the mood of the speaker)

 » Text-processing tasks such as spell correction, or guessing the language used
to write or classify the text into a larger category

Naïve Bayes is also popular because it doesn’t need as much data to work. It can
naturally handle multiple classes. With some slight variable modifications (trans-
forming them into classes), it can also handle numeric variables. Scikit-learn
provides three Naïve Bayes classes in the sklearn.naive_bayes module:

 » MultinomialNB: Uses the probabilities derived from a feature’s presence.
When a feature is present, it assigns a certain probability to the outcome,
which the textual data indicates for the prediction.

 » BernoulliNB: Provides the multinomial functionality of Naïve Bayes, but it
penalizes the absence of a feature. It assigns a different probability when the
feature is present than when it’s absent. In fact, it treats all features as
dichotomous variables (the distribution of a dichotomous variable is a
Bernoulli distribution). You can also use it with textual data.

 » GaussianNB: Defines a version of Naïve Bayes that expects a normal distribu-
tion of all the features. Hence this class is suboptimal for textual data in which
words are sparse (use the multinomial or Bernoulli distributions instead). If
your variables have positive and negative values, this is the best choice.

Ex
pl

or
in

g
Fo

ur
 S

im
pl

e
an

d
Eff

ec
ti

ve
 A

lg
or

it
hm

s

0003054000.INDD 521 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

CHAPTER 6 Exploring Four Simple and Effective Algorithms 521

Predicting text classifications
Naïve Bayes is particularly popular for document classification. In textual
 problems, you often have millions of features involved, one for each word spelled
correctly or incorrectly. Sometimes the text is associated with other nearby words
in n-grams, that is, sequences of consecutive words. Naïve Bayes can learn the
textual features quickly and provide fast predictions based on the input.

This section tests text classifications using the binomial and multinomial Naïve
Bayes models offered by scikit-learn. The examples rely on the 20newsgroups
data set, which contains a large number of posts from 20 kinds of newsgroups.
The data set is divided into a training set, for building your textual models, and
a test set, which comprises posts that temporally follow the training set. You use
the test set to test the accuracy of your predictions.

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train',

 remove=('headers', 'footers', 'quotes'))

newsgroups_test = fetch_20newsgroups(subset='test',

 remove=('headers', 'footers', 'quotes'))

After loading the two sets into memory, you import the two Naïve Bayes and
instantiate them. At this point, you set alpha values, which are useful for avoid-
ing a zero probability for rare features (a zero probability would exclude these
features from the analysis). You typically use a small value for alpha, as shown in
the following code:

from sklearn.naive_bayes import BernoulliNB, MultinomialNB

Bernoulli = BernoulliNB(alpha=0.01)

Multinomial = MultinomialNB(alpha=0.01)

You can use two different hashing tricks, one counting the words (for the multi-
nomial approach) and one recording whether a word appeared in a binary variable
(the binomial approach). You can also remove stop words, that is, common words
found in the English language, such as “a,” “the,” “in,” and so on.

import sklearn.feature_extraction.text as txt

multinomial_hashing_trick = txt.HashingVectorizer(

 stop_words='english', binary=False, norm=None,

 non_negative=True)

binary_hashing_trick = txt.HashingVectorizer(

 stop_words='english', binary=True, norm=None,

 non_negative=True)

0003054000.INDD 522 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

522 BOOK 7 Evaluating Data

At this point, you can train the two classifiers and test them on the test set, which
is a set of posts that temporally appears after the training set. The test measure
is accuracy, which is the percentage of right guesses that the algorithm makes.

Multinomial.fit(multinomial_hashing_trick.transform(

 newsgroups_train.data), newsgroups_train.target)

Bernoulli.fit(binary_hashing_trick.transform(

 newsgroups_train.data), newsgroups_train.target)

from sklearn.metrics import accuracy_score

for m, h in [(Bernoulli, binary_hashing_trick),

 (Multinomial, multinomial_hashing_trick)]:

 print 'Accuracy for %s: %.3f' % (m,

 accuracy_score(y_true=newsgroups_test.target,

 y_pred=m.predict(h.transform(

 newsgroups_test.data))))

Accuracy for BernoulliNB(alpha=0.01, binarize=0.0,

 class_prior=None, fit_prior=True): 0.570

Accuracy for MultinomialNB(alpha=0.01, class_prior=None,

 fit_prior=True): 0.651

You might notice that it won’t take long for both models to train and report their
predictions on the test set. Consider that the training set is made up of more
than 11,000 posts containing 300,000 words, and the test set contains about 7,500
other posts.

print 'number of posts in training: %i' % len(

 newsgroups_train.data)

D={word:True for post in newsgroups_train.data for word

 in post.split(' ')}

print 'number of distinct words in training: %i' % len(D)

print 'number of posts in test: %i' % len(

 newsgroups_test.data)

number of posts in training: 11314

number of distinct words in training: 300972

number of posts in test: 7532

Learning Lazily with Nearest Neighbors
k-Nearest Neighbors (kNN) is not about building rules from data based on
co efficients or probability. kNN works on the basis of similarities. When you have
to predict something like a class, it may be best to find the observations most
similar to the one you want to classify or estimate. You can then derive the answer
you need from the similar cases.

Ex
pl

or
in

g
Fo

ur
 S

im
pl

e
an

d
Eff

ec
ti

ve
 A

lg
or

it
hm

s

0003054000.INDD 523 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

CHAPTER 6 Exploring Four Simple and Effective Algorithms 523

Observing how many observations are similar doesn’t imply learning something,
but rather measuring. Because kNN isn’t learning anything, it’s considered lazy,
and you’ll hear it referenced as a lazy learner or an instance-based learner. The
idea is that similar premises usually provide similar results, and it’s important
not to forget to get such low-hanging fruit before trying to climb the tree!

The algorithm is fast during training because it only has to memorize data about
the observations. It actually calculates more during predictions. When there are
too many observations, the algorithm can become slow and memory-consuming.
You’re best advised not to use it with big data, or it may take almost forever
to predict anything! Moreover, this simple and effective algorithm works better
when you have distinct data groups without too many variables involved because
the algorithm is also sensitive to the dimensionality curse.

The curse of dimensionality happens as the number of variables increases. Con-
sider a situation in which you’re measuring the distance between observations
and, as the space becomes larger and larger, it becomes difficult to find real
neighbors — a problem for kNN, which sometimes mistakes a far observation for
a near one. Rendering the idea is just like playing chess on a multidimensional
chessboard. When playing on the classic 2D board, most pieces are near, and you
can more easily spot opportunities and menaces for your pawns when you have
32 pieces and 64 positions. However, when you start playing on a 3D board, such
as those found in some sci-fi films, your 32 pieces can become lost in 512 possible
positions. Now just imagine playing with a 12D chessboard. You can easily misun-
derstand what is near and what is far, which is what happens with kNN.

You can still make kNN smart in detecting similarities between observations by
removing redundant information.

Predicting after observing neighbors
For an example showing how to use kNN, you can start with the digit data set
again. kNN is particularly useful, just like Naïve Bayes, when you have to predict
many classes, or in situations that would require you to build too many models or
rely on a complex model.

from sklearn.datasets import load_digits

from sklearn.decomposition import PCA

digits = load_digits()

pca = PCA(n_components=25)

pca.fit(digits.data[:1700,:])

X, y = pca.transform(digits.data[:1700,:]),

 digits.target[:1700]

tX, ty = pca.transform(digits.data[1700:,:]),

 digits.target[1700:]

0003054000.INDD 524 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

524 BOOK 7 Evaluating Data

kNN is an algorithm that’s quite sensitive to outliers. Moreover, you have to
 rescale your variables and remove some redundant information. In this example,
you use PCA. Rescaling is not necessary because the data represents pixels, which
means that it’s already scaled.

You can avoid the problem with outliers by keeping the neighborhood small, that
is, by not looking too far for similar examples.

Knowing the data type can save you a lot of time and many mistakes. For exam-
ple, in this case, you know that the data represents pixel values. Doing EDA
(as described in Book 7, Chapter 5) is always the first step and can provide you
with useful insights, but getting additional information about how the data was
obtained and what the data represents is also a good practice and can be just as
useful. To see this task in action, you reserve cases in tX and try a few cases that
kNN won’t look up when looking for neighbors.

from sklearn.neighbors import KNeighborsClassifier

kNN = KNeighborsClassifier(n_neighbors=5)

kNN.fit(X,y)

kNN uses a distance measure in order to determine which observations to consider
as possible neighbors for the target case. You can easily change the predefined
distance using the p parameter:

 » When p is 2, use the Euclidean distance.

 » When p is 1, use the Manhattan distance metric, which is the absolute
distance between observations. In a 2D square, when you go from one corner
to the opposite one, the Manhattan distance is the same as walking the
perimeter, whereas Euclidean is like walking on the diagonal. Although the
Manhattan distance isn’t the shortest route, it’s a more realistic measure than
Euclidean distance, and it’s less sensitive to noise and high dimensionality.

Usually, the Euclidean distance is the right measure, but sometimes it can give
you worse results, especially when the analysis involves many correlated vari-
ables. The following code shows that the analysis seems fine with it.

print 'Accuracy: %.3f' % kNN.score(tX,ty)

print 'Prediction: %s actual: %s' %

 (kNN.predict(tX[:10,:]),ty[:10])

Accuracy: 0.990

Prediction: [5 6 5 0 9 8 9 8 4 1]

 actual: [5 6 5 0 9 8 9 8 4 1]

Ex
pl

or
in

g
Fo

ur
 S

im
pl

e
an

d
Eff

ec
ti

ve
 A

lg
or

it
hm

s

0003054000.INDD 525 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

CHAPTER 6 Exploring Four Simple and Effective Algorithms 525

Choosing your k parameter wisely
A critical parameter that you have to define in kNN is k. As k increases, kNN con-
siders more points for its predictions, and the decisions are less influenced by
noisy instances that could exercise an undue influence. Your decisions are based
on an average of more observations, and they become more solid. When the k
value you use is too large, you start considering neighbors that are too far, sharing
less and less with the case you have to predict.

It’s an important trade-off. When the value of k is less, you consider a more
homogeneous pool of neighbors but can more easily make an error by taking the
few similar cases for granted. When the value of k is more, you consider more
cases at a higher risk of observing neighbors that are too far or that are outliers.
Getting back to the previous example with handwritten digit data, you can experi-
ment with changing the k value, as shown in the following code:

for k in [1, 5, 10, 100, 200]:

 kNN = KNeighborsClassifier(n_neighbors=k).fit(X,y)

 print 'for k= %3i accuracy is %.3f' %

 (k, kNN.score(tX,ty))

for k= 1 accuracy is 0.979

for k= 5 accuracy is 0.990

for k= 10 accuracy is 0.969

for k= 100 accuracy is 0.959

for k= 200 accuracy is 0.907

Through experimentation, you find that setting n_neighbors (the parameter rep-
resenting k) to 5 is the optimum choice, resulting in the highest accuracy. Using
just the nearest neighbor (n_neighbors =1) isn’t a bad choice, but setting the
value above 5 instead brings decreasing results in the classification task.

As a rule of thumb, when your data set doesn’t have many observations, set k as a
number near the squared number of available observations. However, there is no
general rule, and trying different k values is always a good way to optimize your
kNN performance. Always start from low values and work toward higher values.

0003054000.INDD 526 Trim size: 7.375 in × 9.25 in March 31, 2017 4:51 AM

8
0003053969.INDD 527	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	11:18	PM

 Essentials
of Machine
Learning

0003053969.INDD 528	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	11:18	PM

Contents at a Glance
CHAPTER 1: Introducing How Machines Learn 529

Getting	the	Real	Story	about	AI . 530
Learning	in	the	Age	of	Big	Data . 541

CHAPTER 2: Demystifying the Math behind
Machine Learning . 553
Working	with	Data . 554
Exploring	the	World	of	Probabilities . 563
Describing	the	Use	of	Statistics . 568

CHAPTER 3: Descending the Right Curve . 571
Interpreting	Learning	as	Optimization . 572
Exploring	Cost	Functions . 576
Descending	the	Error	Curve . 578
Updating	by	Mini-Batch	and	Online . 581

CHAPTER 4: Validating Machine Learning . 585
Checking	Out-of-Sample	Errors . 586
Getting	to	Know	the	Limits	of	Bias . 589
Keeping	Model	Complexity	in	Mind . 591
Keeping	Solutions	Balanced . 592
Training,	Validating,	and	Testing . 595
Resorting	to	Cross-Validation . 596
Looking	for	Alternatives	in	Validation . 597
Optimizing	Cross-Validation	Choices . 598
Avoiding	Sample	Bias	and	Leakage	Traps . 601

CHAPTER 1 Introducing How Machines Learn 529

0003054001.INDD 529 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

 Introducing How
Machines Learn

 “A breakthrough in machine learning would be worth ten Microsofts.”
 — BILL GATES

 A rtifi cial Intelligence (AI) is a huge topic today, and it’s getting bigger all
the time thanks to the success of technologies such as Siri (www.apple.
com/ios/siri). Talking to your smartphone is both fun and helpful to

fi nd out things like the location of the best sushi restaurant in town or to dis-
cover how to get to the concert hall. As you talk to your smartphone, it learns
more about the way you talk and makes fewer mistakes in understanding your
requests. The capability of your smartphone to learn and interpret your particular
way of speaking is an example of an AI, and part of the technology used to make
it happen is machine learning. You likely make use of machine learning and AI all
over the place today without really thinking about it. For example, the capability
to speak to devices and have them actually do what you intend is an example of
machine learning at work. Likewise, recommender systems, such as those found

Chapter 1

 IN THIS CHAPTER

 » Defi ning the dream of AI, and
comparing AI to machine learning

 » Understanding the engineering
portion of AI and machine learning

 » Considering how statistics and big
data work together in machine
learning

 » Defi ning the role of algorithms in
machine learning

 » Determining how training works with
algorithms in machine learning

0003054001.INDD 530 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

530 BOOK 8 Essentials of Machine Learning

on Amazon, help you make purchases based on criteria such as previous product
purchases or products that complement a current choice. The use of both AI and
machine learning will only increase with time.

In this chapter, you delve into AI and discover what it means from several per-
spectives, including how it affects you as a consumer and as a scientist or engi-
neer. You also discover that AI doesn’t equal machine learning, even though the
media often confuse the two. Machine learning is definitely different from AI,
even though the two are related.

You will also understand the fuel that powers both AI and machine learning — big
data. Algorithms, lines of computer code based on statistics, turn big data into
information and eventually insight. Through this process, you will be amazed by
how AI and machine learning help computers excel at tasks that used to be done
only by humans.

Getting the Real Story about AI
For many years, people understood AI based on Hollywood. Robots enhanced
human abilities in TV shows like The Jetsons or Knight Rider, and in movies like
Star Wars and Star Trek. Recent developments like powerful computers that can fit
in your pocket and cheap storage to collect massive amounts of data have moved
real-life reality closer to the on-screen fiction.

This section separates hype from reality, and explores a few actual applications in
machine learning and AI.

Moving beyond the hype
As any technology becomes bigger, so does the hype, and AI certainly has a lot of
hype surrounding it. For one thing, some people have decided to engage in fear
mongering rather than science. Killer robots, such as those found in the film The
Terminator, really aren’t going to be the next big thing. Your first real experi-
ence with an android AI is more likely to be in the form a health-care assistant
(www.good.is/articles/robots-elder-care-pepper-exoskeletons-japan) or
possibly as a coworker (www.computerworld.com/article/2990849/robotics/
meet-the-virtual-woman-who-may-take-your-job.html). The reality is that
you already interact with AI and machine learning in far more mundane ways.
Part of the reason you need to read this chapter is to get past the hype and discover
what AI can do for you today.

0003054001.INDD 531 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 531

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

You may also have heard machine learning and AI used interchangeably. AI
includes machine learning, but machine learning doesn’t fully define AI.
This chapter helps you understand the relationship between machine learning
and AI.

Machine learning and AI both have strong engineering components. That is, you
can quantify both technologies precisely based on theory (substantiated and tested
explanations) rather than simply hypothesis (a suggested explanation for a phe-
nomenon). In addition, both have strong science components, through which
people test concepts and create new ideas of how expressing the thought process
might be possible. Finally, machine learning also has an artistic component, and
this is where a talented scientist can excel. In some cases, AI and machine learn-
ing both seemingly defy logic, and only the true artist can make them work as
expected.

YES, FULLY AUTONOMOUS WEAPONS EXIST
It’s true — some people are working on autonomous weapon technologies. You’ll
find some discussions of the ethics of AI in this book, but for the most part, the book
focuses on positive, helpful uses of AI to aid humans, rather than kill them, because
most AI research reflects these uses. You can find articles on the pros and cons of AI
online, such as the Guardian article at www.theguardian.com/technology/2015/
jul/27/musk-wozniak-hawking-ban-ai-autonomous-weapons. However, remem-
ber that these people are guessing — they don’t actually know what the future of AI
holds.

If you really must scare yourself, you can find all sorts of sites, such as www.reaching
criticalwill.org/resources/fact-sheets/critical-issues/7972-fully-
autonomous-weapons, that discuss the issue of fully autonomous weapons in some
depth. Sites such as Campaign to Stop Killer Robots (www.stopkillerrobots.org)
can also fill in some details for you. We do encourage you to sign the letter banning
autonomous weapons at https://futureoflife.org/open-letter-autonomous-
weapons — there truly is no need for them.

However, it’s important to remember that bans against space-based, chemical, and
certain laser weapons all exist. Countries recognize that these weapons don’t solve
anything. Countries will also likely ban fully autonomous weapons simply because the
citizenry won’t stand for killer robots. The bottom line is that the focus of this book is on
helping you understand machine learning in a positive light.

0003054001.INDD 532 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

532 BOOK 8 Essentials of Machine Learning

Dreaming of electric sheep
Androids (a specialized kind of robot that looks and acts like a human, such as Data
in Star Trek) and some types of humanoid robots (a kind of robot that has human
characteristics but is easily distinguished from a human, such as C-3PO in Star
Wars) have become the poster children for AI. They present computers in a form
that people can anthropomorphize (for example, make human). In fact, it’s entirely
possible that one day you won’t be able to distinguish between human and artifi-
cial life with ease. Science fiction authors, such as Philip K. Dick, have long pre-
dicted such an occurrence, and it seems all too possible today. The story Do Androids
Dream of Electric Sheep? discusses the whole concept of more real than real. The
idea appears as part of the plot in the movie Blade Runner (www.warnerbros.com/
blade-runner). The sections that follow help you understand how close technology
currently gets to the ideals presented by science fiction authors and the movies.

The current state of the art is lifelike, but you can easily tell that you’re talking
to an android. Viewing videos online can help you understand that androids that
are indistinguishable from humans are nowhere near any sort of reality today.
Check out the Japanese robots at www.youtube.com/watch?v=MaTfzYDZG8c and
www.nbcnews.com/tech/innovation/humanoid-robot-starts-work-japanese-
department-store-n345526. One of the more lifelike examples is Ame-
lia (https://vimeo.com/166359613). Her story appears in Computerworld at
www.computerworld.com/article/2990849/robotics/meet-the-virtual-
woman-who-may-take-your-job.html. The point is, technology is just starting to
get to the point where people may eventually be able to create lifelike robots and
androids, but they don’t exist today.

Understanding the history of
AI and machine learning
There is a reason, other than anthropomorphization, that humans see the ulti-
mate AI as one that is contained within some type of android. Ever since the
ancient Greeks, humans have discussed the possibility of placing a mind inside
a mechanical body. One such myth is that of a mechanical man called Talos
(www.ancient-wisdom.com/greekautomata.htm). The fact that the ancient
Greeks had complex mechanical devices, only one of which still exists (read
about the Antikythera mechanism at www.ancient-wisdom.com/antikythera.
htm), makes it quite likely that their dreams were built on more than just fantasy.
Throughout the centuries, people have discussed mechanical persons capable of
thought (such as Rabbi Judah Loew’s Golem, www.nytimes.com/2009/05/11/
world/europe/11golem.html).

AI is built on the hypothesis that mechanizing thought is possible. During the
first millennium, Greek, Indian, and Chinese philosophers all worked on ways to

0003054001.INDD 533 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 533

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

perform this task. As early as the seventeenth century, Gottfried Leibniz, Thomas
Hobbes, and René Descartes discussed the potential for rationalizing all thought
as simply math symbols. Of course, the complexity of the problem eluded them,
and still eludes us today. The point is that the vision for AI has been around for an
incredibly long time, but the implementation of AI is relatively new.

The true birth of AI as we know it today began with Alan Turing’s publication of
“Computing Machinery and Intelligence” in 1950. In this paper, Turing explored
the idea of how to determine whether machines can think. Of course, this paper
led to the Imitation Game involving three players. Player A is a computer and
Player B is a human. Each must convince Player C (a human who can’t see either
Player A or Player B) that they are human. If Player C can’t determine who is
human and who isn’t on a consistent basis, the computer wins.

A continuing problem with AI is too much optimism. The problem that scientists
are trying to solve with AI is incredibly complex. However, the early optimism of
the 1950s and 1960s led scientists to believe that the world would produce intel-
ligent machines in as little as 20 years. After all, machines were doing all sorts
of amazing things, such as playing complex games. AI currently has its greatest
success in areas such as logistics, data mining, and medical diagnosis.

Exploring what machine learning can do for AI
Machine learning relies on algorithms to analyze huge data sets. Currently,
machine learning can’t provide the sort of AI that the movies present. Even the
best algorithms can’t think, feel, present any form of self-awareness, or exer-
cise free will. What machine learning can do is perform predictive analytics far
faster than any human can. As a result, machine learning can help humans work
more efficiently. The current state of AI, then, is one of performing analysis,
but humans must still consider the implications of that analysis — making the
required moral and ethical decisions. The “Considering the relationship between
AI and machine learning” section later in this chapter delves more deeply into
precisely how machine learning contributes to AI as a whole. The essence of the
matter is that machine learning provides just the learning part of AI, and that part
is nowhere near ready to create an AI of the sort you see in films.

The main point of confusion between learning and intelligence is that people
assume that simply because a machine gets better at its job (learning) it’s also
aware (intelligence). Nothing supports this view of machine learning. The same
phenomenon occurs when people assume that a computer is purposely causing
problems for them. The computer can’t (currently) assign emotions and therefore
acts only upon the input provided and the instruction contained within an appli-
cation to process that input. A true AI will eventually occur when computers can
finally emulate the clever combination used by nature:

0003054001.INDD 534 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

534 BOOK 8 Essentials of Machine Learning

 » Genetics: Slow learning from one generation to the next

 » Teaching: Fast learning from organized sources

 » Exploration: Spontaneous learning through media and interactions with
others

Considering the goals of machine learning
At present, AI is based on machine learning, and machine learning is essentially
different from statistics. Yes, machine learning has a statistical basis, but it makes
some different assumptions than statistics do because the goals are different.
Table 1-1 lists some features to consider when comparing AI and machine learn-
ing to statistics.

Defining machine learning limits
based on hardware
Huge data sets require huge amounts of memory. Unfortunately, the requirements
don’t end there. When you have huge amounts of data and memory, you must also
have processors with multiple cores and high speeds. One of the problems that
scientists are striving to solve is how to use existing hardware more efficiently.
In some cases, waiting for days to obtain a result to a machine learning problem

TABLE 1-1	 Comparing Machine Learning to Statistics
Technique Machine Learning Statistics

Data handling Works with big data in the form of networks and graphs;
raw data from sensors or the web text is split into
training and test data.

Models are used to create
predictive power on small
samples.

Data input The data is sampled, randomized, and transformed to
maximize accuracy scoring in the prediction of out-of-
sample (or completely new) examples.

Parameters interpret real-world
phenomena and provide a
stress on magnitude.

Result Probability is taken into account for comparing what
could be the best guess or decision.

The output captures the
variability and uncertainty of
parameters.

Assumptions The scientist learns from the data. The scientist assumes a certain
output and tries to prove it.

Distribution The distribution is unknown or ignored before learning
from data.

The scientist assumes a well-
defined distribution.

Fitting The scientist creates a best fit, but generalizable, model. The result is fit to the present
data distribution.

0003054001.INDD 535 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 535

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

simply isn’t possible. The scientists who want to know the answer need it quickly,
even if the result isn’t quite right. With this in mind, investments in better hard-
ware also require investments in better science. This book considers some of the
following issues as part of making your machine learning experience better:

 » Obtaining a useful result: As you work through the book, you discover that
you need to obtain a useful result first, before you can refine it. In addition,
sometimes tuning an algorithm goes too far, and the result becomes quite
fragile (and possibly useless outside a specific data set).

 » Asking the right question: Many people get frustrated in trying to obtain an
answer from machine learning because they keep tuning their algorithm
without asking a different question. To use hardware efficiently, sometimes
you must step back and review the question you’re asking. The question
might be wrong, which means that even the best hardware will never find the
answer.

 » Relying on intuition too heavily: All machine learning questions begin as a
hypothesis. A scientist uses intuition to create a starting point for discovering
the answer to a question. Failure is more common than success when
working through a machine learning experience. Your intuition adds the art to
the machine learning experience, but sometimes intuition is wrong and you
have to revisit your assumptions.

When you begin to realize the importance of environment to machine learn-
ing, you can also begin to understand the need for the right hardware and in
the right balance to obtain a desired result. The current state-of-the-art systems
actually rely on graphical processing units (GPUs) to perform machine learning
tasks. Relying on GPUs does speed the machine learning process considerably.
A full discussion of using GPUs is outside the scope of this book, but you can
read more about the topic at https://devblogs.nvidia.com/parallelforall/
bidmach-machine-learning-limit-gpus.

Overcoming AI fantasies
As with many other technologies, AI and machine learning both have their fan-
tasy or fad uses. For example, some people are using machine learning to create
Picasso-like art from photos. You can read all about it at www.washingtonpost.
com/news/innovations/wp/2015/08/31/this-algorithm-can-create-a-new-
van-gogh-or-picasso-in-just-an-hour. As the article points out, the computer
can copy only an existing style at this stage — not create an entirely new style
of its own. The following sections discuss AI and machine learning fantasies of
various sorts.

0003054001.INDD 536 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

536 BOOK 8 Essentials of Machine Learning

Discovering the fad uses of
AI and machine learning
AI is entering an era of innovation that you used to read about only in science
fiction. It can be hard to determine whether a particular AI use is real or simply
the dream child of a determined scientist. For example, The Six Million Dollar Man
(https://en.wikipedia.org/wiki/The_Six_Million_Dollar_Man) is a television
series that looked fanciful at one time. When it was introduced, no one actually
thought that we’d have real-world bionics at some point. However, Hugh Herr
has other ideas — bionic legs really are possible now (www.smithsonianmag.com/
innovation/future-robotic-legs-180953040). Of course, they aren’t available
for everyone yet; the technology is only now becoming useful. Muddying the waters
is another television series, The Six Billion Dollar Man (www.cinemablend.com/
new/Mark-Wahlberg-Six-Billion-Dollar-Man-Just-Made-Big-Change-91947.
html). The fact is that AI and machine learning will both present opportunities
to create some amazing technologies and that we’re already at the stage of creat-
ing those technologies, but you still need to take what you hear with a huge grain
of salt.

To make the future uses of AI and machine learning match the concepts that
science fiction has presented over the years, real-world programmers, data sci-
entists, and other stakeholders need to create tools. Most of these tools are still
rudimentary. Nothing happens by magic, even though it may look like magic
when you don’t know what’s happening behind the scenes. In order for the fad
uses for AI and machine learning to become real-world uses, developers, data
scientists, and others need to continue building real-world tools that may be hard
to imagine at this point.

Considering the true uses of
AI and machine learning
You find AI and machine learning used in a great many applications today. The
only problem is that the technology works so well that you don’t know that it even
exists. In fact, you might be surprised to find that many devices in your home
already make use of both technologies. Both technologies definitely appear in your
car and most especially in the workplace. In fact, the uses for both AI and machine
learning number in the millions — all safely out of sight even when they’re quite
dramatic in nature.

Here are just a few of the ways in which you might see AI used:

 » Fraud detection: You get a call from your credit card company asking
whether you made a particular purchase. The credit card company isn’t being
nosy; it’s simply alerting you to the fact that someone else could be making a

0003054001.INDD 537 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 537

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

purchase using your card. The AI embedded within the credit card company’s
code detected an unfamiliar spending pattern and alerted someone to it.

 » Resource scheduling: Many organizations need to schedule the use of
resources efficiently. For example, a hospital may have to determine where to
put a patient based on the patient’s needs, availability of skilled experts, and
the amount of time the doctor expects the patient to be in the hospital.

 » Complex analysis: Humans often need help with complex analysis because
there are literally too many factors to consider. For example, the same set of
symptoms could indicate more than one problem. A doctor or other expert
might need help making a diagnosis in a timely manner to save a patient’s life.

 » Automation: Any form of automation can benefit from the addition of AI
to handle unexpected changes or events. A problem with some types of
automation today is that an unexpected event, such as an object in the wrong
place, can actually cause the automation to stop. Adding AI to the automation
can allow the automation to handle unexpected events and continue as if
nothing happened.

 » Customer service: The customer service line you call today may not even
have a human behind it. The automation is good enough to follow scripts and
use various resources to handle the vast majority of your questions. With
good voice inflection (provided by AI as well), you may not even be able to tell
that you’re talking with a computer.

 » Safety systems: Many of the safety systems found in machines of various
sorts today rely on AI to take over the vehicle in a time of crisis. For example,
many automatic braking systems rely on AI to stop the car based on all the
inputs that a vehicle can provide, such as the direction of a skid.

 » Machine efficiency: AI can help control a machine in such a manner as to
obtain maximum efficiency. The AI controls the use of resources so that the
system doesn’t overshoot speed or other goals. Every ounce of power is used
precisely as needed to provide the desired services.

This list doesn’t even begin to scratch the surface. You can find AI used in many
other ways. However, it’s also useful to view uses of machine learning outside
the normal realm that many consider the domain of AI. Here are a few uses for
machine learning that you might not associate with an AI:

 » Access control: In many cases, access control is a yes or no proposition. An
employee smart card grants access to a resource much in the same way that
people have used keys for centuries. Some locks do offer the capability to set
times and dates that access is allowed, but the coarse-grained control doesn’t
really answer every need. By using machine learning, you can determine
whether an employee should gain access to a resource based on role and

0003054001.INDD 538 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

538 BOOK 8 Essentials of Machine Learning

need. For example, an employee can gain access to a training room when the
training reflects an employee role.

 » Animal protection: The ocean might seem large enough to allow animals
and ships to cohabitate without problem. Unfortunately, many animals get hit
by ships each year. A machine learning algorithm could allow ships to avoid
animals by learning the sounds and characteristics of both the animal and
the ship.

 » Predicting wait times: Most people don’t like waiting when they have no idea
of how long the wait will be. Machine learning allows an application to
determine waiting times based on staffing levels, staffing load, complexity of
the problems the staff is trying to solve, availability of resources, and so on.

Being useful; being mundane
Even though the movies make it sound like AI is going to make a huge splash, and
you do sometimes see some incredible uses for AI in real life, the fact of the matter
is that most uses for AI are mundane, even boring. For example, a recent article
details how Verizon uses AI to analyze security breach data (www.computerworld.
com/article/3001832/data-analytics/how-verizon-analyzes-security-
breach-data-with-r.html). The act of performing this analysis is dull when
compared to other sorts of AI activities, but the benefits are that Verizon saves
money performing the analysis, and the results are better as well.

In addition, Python developers have a huge array of libraries available to make
machine learning easy. In fact, Kaggle (www.kaggle.com/competitions) provides
competitions to allow developers to hone their machine learning skills in creating
practical applications. The results of these competitions often appear later as part
of products that people actually use. Additionally, the developer community is
particularly busy creating new libraries to make complex data science and machine
learning applications easier to program (see www.kdnuggets.com/2015/06/
top-20-python-machine-learning-open-source-projects.html for the top
20 Python libraries in use today).

Considering the relationship between
AI and machine learning
Machine learning is only part of what a system requires to become an AI. The
machine learning portion of the picture enables an AI to perform these tasks:

 » Adapt to new circumstances that the original developer didn’t envision.

 » Detect patterns in all sorts of data sources.

0003054001.INDD 539 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 539

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

 » Create new behaviors based on the recognized patterns.

 » Make decisions based on the success or failure of these behaviors.

The use of algorithms to manipulate data is the centerpiece of machine learning.
To prove successful, a machine learning session must use an appropriate algo-
rithm to achieve a desired result. In addition, the data must lend itself to analysis
using the desired algorithm, or it requires a careful preparation by scientists.

AI encompasses many other disciplines to simulate the thought process success-
fully. In addition to machine learning, AI normally includes

 » Natural language processing: The act of allowing language input and putting
it into a form that a computer can use

 » Natural language understanding: The act of deciphering the language in
order to act upon the meaning it provides

 » Knowledge representation: The ability to store information in a form that
makes fast access possible

 » Planning (in the form of goal seeking): The ability to use stored information
to draw conclusions in near real time (almost at the moment it happens, but
with a slight delay, sometimes so short that a human won’t notice, but the
computer can)

 » Robotics: The ability to act upon requests from a user in some physical form

In fact, you might be surprised to find that the number of disciplines required to
create an AI is huge. Consequently, this book exposes you to only a portion of what
an AI contains. However, even the machine learning portion of the picture can
become complex because understanding the world through the data inputs that
a computer receives is a complex task. Just think about all the decisions that you
constantly make without thinking about them. For example, just the concept of
seeing something and knowing whether you can interact successfully with it can
become a complex task.

Considering AI and machine
learning specifications
As scientists continue to work with a technology and turn hypotheses into the-
ories, the technology becomes related more to engineering (where theories are
implemented) than science (where theories are created). As the rules governing a
technology become clearer, groups of experts work together to define these rules

0003054001.INDD 540 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

540 BOOK 8 Essentials of Machine Learning

in written form. The result is specifications (a group of rules that everyone agrees
upon).

Eventually, implementations of the specifications become standards that a gov-
erning body, such as the IEEE (Institute of Electrical and Electronics Engineers)
or a combination of the ISO/IEC (International Organization for Standardization/
International Electrotechnical Commission), manages. AI and machine learning
have both been around long enough to create specifications, but you currently
won’t find any standards for either technology.

The basis for machine learning is math. Algorithms determine how to interpret
big data in specific ways. The math basics for machine learning appear in Book 8,
Chapter 2. You discover that algorithms process input data in specific ways and
create predictable outputs based on the data patterns. What isn’t predictable is the
data itself. The reason you need AI and machine learning is to decipher the data in
such a manner to be able to see the patterns in it and make sense of them.

You see the specifications detailed in Book 8, Chapter 4 in the form of algorithms
used to perform specific tasks. When you get to Book 9, you begin to see the rea-
son that everyone agrees to specific sets of rules governing the use of algorithms
to perform tasks. The point is to use an algorithm that will best suit the data you
have in hand to achieve the specific goals you’ve created. Professionals implement
algorithms using languages that work best for the task. Machine learning relies on
Python and R, and to some extent MATLAB, Java, Julia, and C++. (See the discus-
sion at www.quora.com/What-is-the-best-language-to-use-while-learning-
machine-learning-for-the-first-time for details.)

Defining the divide between
art and engineering
The reason that AI and machine learning are both sciences and not engineer-
ing disciplines is that both require some level of art to achieve good results. The
artistic element of machine learning takes many forms. For example, you must
consider how the data is used. Some data acts as a baseline that trains an algo-
rithm to achieve specific results. The remaining data provides the output used to
understand the underlying patterns. No specific rules governing the balancing of
data exist; the scientists working with the data must discover whether a specific
balance produces optimal output.

Cleaning the data also lends a certain amount of artistic quality to the result. The
manner in which a scientist prepares the data for use is important. Some tasks,
such as removing duplicate records, occur regularly. However, a scientist may also
choose to filter the data in some ways or look at only a subset of the data. As a

0003054001.INDD 541 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 541

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

result, the cleaned data set used by one scientist for machine learning tasks may
not precisely match the cleaned data set used by another.

You can also tune the algorithms in certain ways or refine how the algorithm
works. Again, the idea is to create output that truly exposes the desired patterns
so that you can make sense of the data. For example, when viewing a picture, a
robot may have to determine which elements of the picture it can interact with
and which elements it can’t. The answer to that question is important if the robot
must avoid some elements to keep on track or to achieve specific goals.

When working in a machine learning environment, you also have the problem
of input data to consider. For example, the microphone found in one smart-
phone won’t produce precisely the same input data that a microphone in another
smartphone will. The characteristics of the microphones differ, yet the result of
interpreting the vocal commands provided by the user must remain the same.
Likewise, environmental noise changes the input quality of the vocal command,
and the smartphone can experience certain forms of electromagnetic interfer-
ence. Clearly, the variables that a designer faces when creating a machine learning
environment are both large and complex.

The art behind the engineering is an essential part of machine learning. The expe-
rience that a scientist gains in working through data problems is essential because
it provides the means for the scientist to add values that make the algorithm work
better. A finely tuned algorithm can make the difference between a robot success-
fully threading a path through obstacles and hitting every one of them.

Learning in the Age of Big Data
Computers manage data through applications that perform tasks using algorithms
of various sorts. A simple definition of an algorithm is a systematic set of opera-
tions to perform on a given data set — essentially a procedure. The four basic data
operations are create, read, update, and delete (CRUD). This set of operations may
not seem complex, but performing these essential tasks is the basis of everything
you do with a computer. As the data set becomes larger, the computer can use the
algorithms found in an application to perform more work. The use of immense
data sets, known as big data, enables a computer to perform work based on pattern
recognition in a nondeterministic manner. In short, to create a computer setup
that can learn, you need a data set large enough for the algorithms to manage in
a manner that allows for pattern recognition, and this pattern recognition needs
to use a simple subset to make predictions (statistical analysis) of the data set as
a whole.

0003054001.INDD 542 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

542 BOOK 8 Essentials of Machine Learning

Big data exists in many places today. Obvious sources are online databases, such
as those created by vendors to track consumer purchases. However, you find many
non-obvious data sources, too, and often these non-obvious sources provide the
greatest resources for doing something interesting. Finding appropriate sources
of big data lets you create machine learning scenarios in which a machine can
learn in a specified manner and produce a desired result.

Statistics, one of the methods of machine learning that you consider in this book,
is a method of describing problems using math. By combining big data with sta-
tistics, you can create a machine learning environment in which the machine con-
siders the probability of any given event. However, saying that statistics is the
only machine learning method is incorrect. This chapter also introduces you to the
other forms of machine learning currently in place.

Algorithms determine how a machine interprets big data. The algorithm used to
perform machine learning affects the outcome of the learning process and, there-
fore, the results you get. This chapter helps you understand the five main tech-
niques for using algorithms in machine learning.

Before an algorithm can do much in the way of machine learning, you must train
it. The training process modifies how the algorithm views big data. The final sec-
tion of this chapter helps you understand that training is actually using a subset
of the data as a method for creating the patterns that the algorithm needs to rec-
ognize specific cases from the more general cases that you provide as part of the
training.

Defining big data
Big data is substantially different from being just a large database. Yes, big data
implies lots of data, but it also includes the idea of complexity and depth. A big
data source describes something in enough detail that you can begin working with
that data to solve problems for which general programming proves inadequate.
For example, consider Google’s self-driving cars. The car must consider not only
the mechanics of the car’s hardware and position with space but also the effects of
human decisions, road conditions, environmental conditions, and other vehicles
on the road. The data source contains many variables — all of which affect the
vehicle in some way. Traditional programming might be able to crunch all the
numbers, but not in real time. You don’t want the car to crash into a wall and have
the computer finally decide five minutes later that the car is going to crash into a
wall. The processing must prove timely so that the car can avoid the wall.

0003054001.INDD 543 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 543

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

The acquisition of big data can also prove daunting. The sheer bulk of the data set
isn’t the only problem to consider — also essential is to consider how the data set
is stored and transferred so that the system can process it. In most cases, develop-
ers try to store the data set in memory to allow fast processing. Using a hard drive
to store the data would prove too costly, time-wise.

When thinking about big data, you also consider anonymity. Big data presents
privacy concerns. However, because of the way machine learning works, knowing
specifics about individuals isn’t particularly helpful anyway. Machine learning is
all about determining patterns — analyzing training data in such a manner that
the trained algorithm can perform tasks that the developer didn’t originally pro-
gram it to do. Personal data has no place in such an environment.

Finally, big data is so large that humans can’t reasonably visualize it without help.
Part of what defined big data as big is the fact that a human can learn something
from it, but the sheer magnitude of the data set makes recognition of the patterns
impossible (or would take a really long time to accomplish). Machine learning
helps humans make sense and use of big data.

Considering the sources of big data
Before you can use big data for a machine learning application, you need a source
for big data. Of course, the first thing that most developers think about is the
huge, corporate-owned database, which could contain interesting information,
but it’s just one source. The fact of the matter is that your corporate databases
might not even contain particularly useful data for a specific need. The following
sections describe locations you can use to obtain additional big data.

JUST HOW BIG IS BIG?
Big data can really become quite big. For example, suppose that your Google self-driving
car has a few HD cameras and a couple hundred sensors that provide information at a
rate of 100 times/s. What you might end up with is a raw data set with input that exceeds
100 Mbps. Processing that much data is incredibly hard.

Part of the problem right now is determining how to control big data. Currently, the
attempt is to log everything, which produces a massive, detailed data set. However, this
data set isn’t well formatted, again making it quite hard to use. As this book progresses,
you discover techniques that help control both the size and the organization of big data
so that the data becomes useful in making predictions.

0003054001.INDD 544 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

544 BOOK 8 Essentials of Machine Learning

Building a new data source
To create viable sources of big data for specific needs, you might find that you
actually need to create a new data source. Developers built existing data sources
around the needs of the client-server architecture in many cases, and these sources
may not work well for machine learning scenarios because they lack the required
depth (being optimized to save space on hard drives does have disadvantages). In
addition, as you become more adept in using machine learning, you find that you
ask questions that standard corporate databases can’t answer. With this in mind,
the following sections describe some interesting new sources for big data.

OBTAINING DATA FROM PUBLIC SOURCES

Governments, universities, nonprofit organizations, and other entities often
maintain publicly available databases that you can use alone or combined with
other databases to create big data for machine learning. For example, you can
combine several geographic information systems (GIS) to help create the big
data required to make decisions such as where to put new stores or factories.
The machine learning algorithm can take all sorts of information into account —
everything from the amount of taxes you have to pay to the elevation of the land
(which can contribute to making your store easier to see).

The best part about using public data is that it’s usually free, even for commercial
use (or you pay a nominal fee for it). In addition, many of the organizations that
created them maintain these sources in nearly perfect condition because the orga-
nization has a mandate, uses the data to attract income, or uses the data inter-
nally. When obtaining public source data, you need to consider a number of issues
to ensure that you actually get something useful. Here are some of the criteria you
should think about when making a decision:

 » The cost, if any, of using the data source

 » The formatting of the data source

 » Access to the data source (which means having the proper infrastructure in
place, such as an Internet connection when using Twitter data)

 » Permission to use the data source (some data sources are copyrighted)

 » Potential issues in cleaning the data to make it useful for machine learning

OBTAINING DATA FROM PRIVATE SOURCES

You can obtain data from private organizations such as Amazon and Google, both
of which maintain immense databases that contain all sorts of useful information.
In this case, you should expect to pay for access to the data, especially when used
in a commercial setting. You may not be allowed to download the data to your

0003054001.INDD 545 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 545

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

personal servers, so that restriction may affect how you use the data in a machine
learning environment. For example, some algorithms work slower with data that
they must access in small pieces.

The biggest advantage of using data from a private source is that you can expect
better consistency. The data is likely cleaner than from a public source. In addi-
tion, you usually have access to a larger database with a greater variety of data
types. Of course, it all depends on where you get the data.

CREATING NEW DATA FROM EXISTING DATA

Your existing data may not work well for machine learning scenarios, but that
doesn’t keep you from creating a new data source using the old data as a start-
ing point. For example, you might find that you have a customer database that
contains all the customer orders, but the data isn’t useful for machine learn-
ing because it lacks tags required to group the data into specific types. One of
the new job types that you can expect to create is people who massage data to
make it better suited for machine learning — including the addition of specific
 information types such as tags.

Machine learning will have a significant effect on your business. The article at
www.computerworld.com/article/3007053/big-data/how-machine-learning-
will-affect-your-business.html describes some of the ways in which you can
expect machine learning to change how you do business. One of the points in
this article is that machine learning typically works on 80 percent of the data. In
20 percent of the cases, you still need humans to take over the job of deciding just
how to react to the data and then act upon it. The point is that machine learning
saves money by taking over repetitious tasks that humans don’t really want to do
in the first place (making them inefficient). However, machine learning doesn’t
get rid of the need for humans completely, and it creates the need for new types
of jobs that are a bit more interesting than the ones that machine learning has
taken over. Also important to consider is that you need more humans at the outset
until the modifications they make train the algorithm to understand what sorts of
changes to make to the data.

Using existing data sources
Your organization has data hidden in all sorts of places. The problem is in recog-
nizing the data as data. For example, you may have sensors on an assembly line
that track how products move through the assembly process and ensure that the
assembly line remains efficient. Those same sensors can potentially feed infor-
mation into a machine learning scenario because they could provide inputs on
how product movement affects customer satisfaction or the price you pay for
postage. The idea is to discover how to create mashups that present existing data
as a new kind of data that lets you do more to make your organization work well.

0003054001.INDD 546 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

546 BOOK 8 Essentials of Machine Learning

Big data can come from any source, even your email. A recent article discusses
how Google uses your email to create a list of potential responses for new emails.
(See the article at www.semrush.com/blog/deep-learning-an-upcoming-gmail-
feature-that-will-answer-your-emails-for-you.) Instead of having to respond
to every email individually, you can simply select a canned response at the bottom
of the page. This sort of automation isn’t possible without the original email data
source. Looking for big data in specific locations will blind you to the big data sit-
ting in common places that most people don’t think about as data sources. Tomor-
row’s applications will rely on these alternative data sources, but to create these
applications, you must begin seeing the data hidden in plain view today.

Some of these applications already exist, and you’re completely unaware of them.
The video at www.research.microsoft.com/apps/video/default.aspx?id=256288
makes the presence of these kinds of applications more apparent. By the time you
complete the video, you begin to understand that many uses of machine learning
are already in place and users already take them for granted (or have no idea that
the application is even present).

Locating test data sources
As you progress through Book 8, you discover the need to teach whichever algo-
rithm you’re using (don’t worry about specific algorithms; you see a number of
them in Book 9) how to recognize various kinds of data and then to do something
interesting with it. This training process ensures that the algorithm reacts cor-
rectly to the data it receives after the training is over. Of course, you also need to
test the algorithm to determine whether the training is a success. In many cases,
Book 8 helps you discover ways to break a data source into training and testing
data components in order to achieve the desired result. Then, after training and
testing, the algorithm can work with new data in real time to perform the tasks
that you verified it can perform.

In some cases, you might not have enough data at the outset for both training (the
essential initial test) and testing. When this happens, you might need to create a
test setup to generate more data, rely on data generated in real time, or create the
test data source artificially. You can also use similar data from existing sources,
such as a public or private database. The point is that you need both training and
testing data that will produce a known result before you unleash your algorithm
into the real world of working with uncertain data.

Specifying the role of statistics
in machine learning
Some sites online would have you believe that statistics and machine learning are
two completely different technologies. For example, when you read Statistics vs.

0003054001.INDD 547 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 547

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

Machine Learning, fight! (http://brenocon.com/blog/2008/12/statistics-vs-
machine-learning-fight/), you get the idea that the two technologies are not
only different, but downright hostile toward each other. The fact is that statistics
and machine learning have a lot in common and that statistics represents one of
the five tribes (schools of thought) that make machine learning feasible. The five
tribes are

 » Symbolists: The origin of this tribe is in logic and philosophy. This group relies
on inverse deduction to solve problems.

 » Connectionists: The origin of this tribe is in neuroscience. This group relies
on backpropagation to solve problems.

 » Evolutionaries: The origin of this tribe is in evolutionary biology. This group
relies on genetic programming to solve problems.

 » Bayesians: This origin of this tribe is in statistics. This group relies on probabi-
listic inference to solve problems.

 » Analogizers: The origin of this tribe is in psychology. This group relies on
kernel machines to solve problems.

The ultimate goal of machine learning is to combine the technologies and strate-
gies embraced by the five tribes to create a single algorithm (the master algorithm)
that can learn anything. Of course, achieving that goal is a long way off. Even so,
scientists such as Pedro Domingos (homes.cs.washington.edu/~pedrod/) are
currently working toward that goal.

Book 9 follows the Bayesian tribe strategy, for the most part, in that you solve
most problems using some form of statistical analysis. You do see strategies
embraced by other tribes described, but the main reason you begin with statis-
tics is that the technology is already well established and understood. In fact,
many elements of statistics qualify more as engineering (in which theories are
implemented) than science (in which theories are created). The next section of the
chapter delves deeper into the five tribes by viewing the kinds of algorithms each
tribe uses. Understanding the role of algorithms in machine learning is essential
to defining how machine learning works.

Understanding the role of algorithms
Everything in machine learning revolves around algorithms. An algorithm is a
procedure or formula used to solve a problem. The problem domain affects the
kind of algorithm needed, but the basic premise is always the same — to solve
some sort of problem, such as driving a car or playing dominoes. In the first case,
the problems are complex and many, but the ultimate problem is one of getting a

0003054001.INDD 548 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

548 BOOK 8 Essentials of Machine Learning

passenger from one place to another without crashing the car. Likewise, the goal
of playing dominoes is to win. The following sections discuss algorithms in more
detail.

Defining what algorithms do
An algorithm is a kind of container. It provides a box for storing a method to solve
a particular kind of a problem. Algorithms process data through a series of well-
defined states. The states need not be deterministic, but the states are defined
nonetheless. The goal is to create an output that solves a problem. In some cases,
the algorithm receives inputs that help define the output, but the focus is always
on the output.

Algorithms must express the transitions between states using a well-defined
and formal language that the computer can understand. In processing the data
and solving the problem, the algorithm defines, refines, and executes a function.
The function is always specific to the kind of problem being addressed by the
algorithm.

Considering the five main techniques
As described in the previous section, each of the five tribes has a different tech-
nique and strategy for solving problems that result in unique algorithms. Com-
bining these algorithms should lead eventually to the master algorithm that will
be able to solve any given problem. The following sections provide an overview of
the five main algorithmic techniques.

SYMBOLIC REASONING

The term inverse deduction commonly appears as induction. In symbolic reason-
ing, deduction expands the realm of human knowledge, while induction raises the
level of human knowledge. Induction commonly opens new fields of exploration,
while deduction explores those fields. However, the most important consideration
is that induction is the science portion of this type of reasoning, while deduction is
the engineering. The two strategies work hand in hand to solve problems by first
opening a field of potential exploration to solve the problem and then exploring
that field to determine whether it does, in fact, solve it.

As an example of this strategy, deduction would say that if a tree is green and that
green trees are alive, the tree must be alive. When thinking about induction, you
would say that the tree is green and that the tree is also alive; therefore, green
trees are alive. Induction provides the answer to what knowledge is missing given
a known input and output.

0003054001.INDD 549 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 549

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

CONNECTIONS MODELLED ON THE BRAIN’S NEURONS

The connectionists are perhaps the most famous of the five tribes. This tribe
strives to reproduce the brain’s functions using silicon instead of neurons. Essen-
tially, each of the neurons (created as an algorithm that models the real-world
counterpart) solves a small piece of the problem, and the use of many neurons in
parallel solves the problem as a whole.

The use of backpropagation, or backward propagation of errors, seeks to determine
the conditions under which errors are removed from networks built to resemble
the human neurons by changing the weights (how much a particular input figures
into the result) and biases (which features are selected) of the network. The goal is
to continue changing the weights and biases until such time as the actual output
matches the target output. At this point, the artificial neuron fires and passes its
solution along to the next neuron in line. The solution created by just one neuron
is only part of the whole solution. Each neuron passes information to the next
neuron in line until the group of neurons creates a final output.

EVOLUTIONARY ALGORITHMS THAT TEST VARIATION

The evolutionaries rely on the principles of evolution to solve problems. In other
words, this strategy is based on the survival of the fittest (removing any solutions
that don’t match the desired output). A fitness function determines the viability
of each function in solving a problem.

Using a tree structure, the solution method looks for the best solution based on
function output. The winner of each level of evolution gets to build the next-level
functions. The idea is that the next level will get closer to solving the problem but
may not solve it completely, which means that another level is needed. This par-
ticular tribe relies heavily on recursion and languages that strongly support recur-
sion to solve problems. An interesting output of this strategy has been algorithms
that evolve: One generation of algorithms actually builds the next generation.

BAYESIAN INFERENCE

The Bayesians use various statistical methods to solve problems. Given that sta-
tistical methods can create more than one apparently correct solution, the choice
of a function becomes one of determining which function has the highest prob-
ability of succeeding. For example, when using these techniques, you can accept a
set of symptoms as input and decide the probability that a particular disease will
result from the symptoms as output. Given that multiple diseases have the same
symptoms, the probability is important because a user will see some in which a
lower probability output is actually the correct output for a given circumstance.

0003054001.INDD 550 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

550 BOOK 8 Essentials of Machine Learning

Ultimately, this tribe supports the idea of never quite trusting any hypothesis (a
result that someone has given you) completely without seeing the evidence used
to make it (the input the other person used to make the hypothesis). Analyzing
the evidence proves or disproves the hypothesis that it supports. Consequently,
it isn’t possible to determine which disease someone has until you test all the
symptoms.

One of the most recognizable outputs from this tribe is the spam filter used in
many popular email applications.

SYSTEMS THAT LEARN BY ANALOGY

The analogyzers use kernel machines to recognize patterns in data. By recogniz-
ing the pattern of one set of inputs and comparing it to the pattern of a known
output, you can create a problem solution. The goal is to use similarity to deter-
mine the best solution to a problem. It’s the kind of reasoning that determines
that using a particular solution worked in a given circumstance at some previous
time; therefore using that solution for a similar set of circumstances should also
work. One of the most recognizable outputs from this tribe is recommender sys-
tems. For example, when you get on Amazon and buy a product, the recommender
system comes up with other, related products that you might also want to buy.

Defining what training means
Many people are somewhat used to the idea that applications start with a func-
tion, accept data as input, and then provide a result. For example, a programmer
might create a function called Add() that accepts two values as input, such as 1
and 2. The result of Add() is 3. The output of this process is a value. In the past,
writing a program meant understanding the function used to manipulate data to
create a given result with certain inputs.

Machine learning turns this process around. In this case, you know that you have
inputs, such as 1 and 2. You also know that the desired result is 3. However, you
don’t know what function to apply to create the desired result. Training provides
a learner algorithm with all sorts of examples of the desired inputs and results
expected from those inputs. The learner then uses this input to create a function.
In other words, training is the process whereby the learner algorithm maps a flex-
ible function to the data. The output is typically the probability of a certain class
or a numeric value.

A single learner algorithm can learn many different things, but not every algo-
rithm is suited for certain tasks. Some algorithms are general enough that they
can play chess, recognize faces on Facebook, and diagnose cancer in patients. An
algorithm reduces the data inputs and the expected results of those inputs to a

0003054001.INDD 551 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 1 Introducing How Machines Learn 551

In
tr

od
uc

in
g

H
ow

M

ac
hi

ne
s

Le
ar

n

function in every case, but the function is specific to the kind of task you want the
algorithm to perform.

The secret to machine learning is generalization. The goal is to generalize the
output function so that it works on data beyond the training set. For example,
consider a spam filter. Your dictionary contains 100,000 words (actually a small
dictionary). A limited training data set of 4,000 or 5,000 word combinations must
create a generalized function that can then find spam in the 2^100,000 combina-
tions that the function will see when working with actual data.

When viewed from this perspective, training might seem impossible and learning
even worse. However, to create this generalized function, the learner algorithm
relies on just three components:

 » Representation: The learner algorithm creates a model, which is a function
that will produce a given result for specific inputs. The representation is a set
of models that a learner algorithm can learn. In other words, the learner
algorithm must create a model that will produce the desired results from the
input data. If the learner algorithm can’t perform this task, it can’t learn from
the data, and the data is outside the hypothesis space of the learner algorithm.
Part of the representation is to discover which features (data elements within
the data source) to use for the learning process.

 » Evaluation: The learner can create more than one model. However, it doesn’t
know the difference between good and bad models. An evaluation function
determines which of the models works best in creating a desired result from a
set of inputs. The evaluation function scores the models because more than
one model could provide the required results.

 » Optimization: At some point, the training process produces a set of models
that can generally output the right result for a given set of inputs. At this point,
the training process searches through these models to determine which one
works best. The best model is then output as the result of the training process.

Much of Book 8 and Book 9 focuses on representation. For example, in Book 9,
Chapter 2 you discover how to work with the k-Nearest Neighbor (KNN) algo-
rithm. However, the training process is more involved than simply choosing a
representation. All three steps come into play when performing the training pro-
cess. Fortunately, you can start by focusing on representation and allow the vari-
ous libraries discussed in Book 9 to do the rest of the work for you.

0003054001.INDD 552 Trim size: 7.375 in × 9.25 in March 31, 2017 4:52 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 553

0003054002.INDD 553 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

 Demystifying the Math
behind Machine
Learning

 “With me, everything turns into mathematics.”
 — RENÉ DESCARTES

 I f you want to implement existing machine learning algorithms from scratch or
you need to devise new ones, you will require some knowledge of probability,
linear algebra, linear programming, and multivariable calculus. You also need

to know how to translate math into working code. This chapter begins by helping
you understand the mechanics of machine learning math and describes how to
translate math basics into usable code.

 If you want to apply existing machine learning for practical purposes instead,
you can leverage existing R and Python software libraries using a basic knowl-
edge of math and statistics. In the end, you can’t avoid having some of these
skills because machine learning has strong roots in both math and statistics, but

Chapter 2

 IN THIS CHAPTER

 » Figuring out why you need a matrix

 » Computing with matrix calculus to
your advantage

 » Getting a glance at how probability
works

 » Explaining the Bayesian point of view
on probability

 » Describing observations using
statistical measures

0003054002.INDD 554 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

554 BOOK 8 Essentials of Machine Learning

you don’t need to overdo it. After you get some math basics down, the chapter
shows how even simple Bayesian principles can help you perform some interest-
ing machine learning tasks.

Even though this introductory chapter focuses on machine learning experiments
using R and Python, in the text you still find many references to vectors, matri-
ces, variables, probabilities, and their distributions. Book 8 and Book 9 sometimes
use descriptive statistics as well. Consequently, it helps to know what a mean, a
median, and a standard deviation are in order to understand what happens under
the hood of the software you use. This knowledge makes it easier to learn how to
use the software better. The chapter also demonstrates how machine learning can
help you make better predictions, even when you don’t quite have all the informa-
tion you need.

Working with Data
Machine learning is so appealing because it allows machines to learn from real-
world examples (such as sales records, signals from sensors, and textual data
streaming from the Internet) and determine what such data implies. Common
outputs from a machine learning algorithm are predictions of the future, pre-
scriptions to act on now, or new knowledge in terms of examples categorized
by groups. Many useful applications have already become a reality by leveraging
these results:

 » Diagnosing hard-to-find diseases

 » Discovering criminal behavior and detecting criminals in action

 » Recommending the right product to the right person

 » Filtering and classifying data from the Internet at an enormous scale

 » Driving a car autonomously

The mathematical and statistical basis of machine learning makes outputting
such useful results possible. Using math and statistics in this way enables the
algorithms to understand anything with a numerical basis.

To begin the process, you represent the solution to the problem as a number. For
example, if you want to diagnose a disease using a machine learning algorithm,
you can make the response a 1 or a 0 (a binary response) to indicate whether the
person is ill, with a 1 stating simply that the person is ill. Alternatively, you can
use a number between 0 and 1 to convey a less definite answer. The value can

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 555 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 555

represent the probability that the person is ill, with 0 indicating that the person
isn’t ill and 1 indicating that the person definitely has the disease.

A machine learning algorithm can provide an answer (predictions) when sup-
ported by the required information (sample data) and an associated response
(examples of the predictions that you want to be able to guess). Information can
include facts, events, observations, counts, measurements, and so on. Any infor-
mation used as input is a feature or variable (a term taken from statistics). Effec-
tive features describe the values that relate to the response and help the algorithm
guess a response using the function it creates given similar information in other
circumstances.

There are two types of features: quantitative and qualitative. Quantitative features
are perfect for machine learning because they define values as numbers such as
integers, floats, counts, rankings, or other measures. Qualitative features are usu-
ally labels or symbols that convey useful information in a nonnumeric way, a way
that you can define as more humanlike such as words, descriptions, or concepts.

You can find a classic example of qualitative features in the paper “Induc-
tion of Decision Trees” by John Ross Quinlan (http://dl.acm.org/citation.
cfm?id=637969), a computer scientist who contributed to the development of
decision trees in a fundamental way. Decision trees are one of the most popu-
lar machine learning algorithms to date. In his paper, Quinlan describes a set of
information useful for deciding whether to play tennis outside or not, something
a machine can learn using the proper technique. The set of features described by
Quinlan is as follows:

 » Outlook: Sunny, overcast, or rain

 » Temperature: Cool, mild, hot

 » Humidity: High or normal

 » Windy: True or false

A machine learning algorithm cannot really digest such information. You must
first transform the information into numbers. Many ways are available to do
so, but the simplest is one-hot encoding, which turns every feature into a new
set of binary (values 0 or 1) features for all its symbolic values. For instance,
consider the outlook variable, which becomes three new features, as follows:
outlook:sunny, outlook:overcast, and outlook:rain. Each one will have a numeric
value of 1 or 0 depending on whether the implied condition is present. So when the
day is sunny, outlook:sunny has a value of 1 and outlook:overcast and outlook:rain
have a value of 0.

0003054002.INDD 556 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

556 BOOK 8 Essentials of Machine Learning

In addition to one-hot encoding, you can use a few other techniques to turn quali-
tative features into numbers, especially when a feature is made of words, such as
a tweet from Twitter, a chunk of text from an online review, or a news feed. In
Book 9, you have occasion to discuss other ways to effectively transform words
and concepts into meaningful numbers that are understandable by a machine
learning algorithm when dealing with textual analysis.

No matter what the information is, for a machine learning algorithm to correctly
process the information, it should always be transformed into a number.

Creating a matrix
After you make all the data numeric, the machine learning algorithm requires
that you turn the individual features into a matrix of features and the individual
responses into a vector or a matrix (when there are multiple responses). A matrix
is a collection of numbers, arranged in rows and columns, much like the squares
in a chessboard. However, unlike a chessboard, which is always square, matrices
can have a different number of rows and columns.

By convention, a matrix used for machine learning relies on rows to represent
examples and columns to represent features. So, as in the example for learning
the best weather conditions to play tennis, you would construct a matrix that uses
a new row for each day and columns containing the different values for outlook,
temperature, humidity, and wind. Typically, you represent a matrix as a series of
numbers enclosed by square brackets, as shown here:

X

1 1 1 545 1

4 6 0 345 2

7 2 1 754 3

.

.

.

In this example, the matrix called X contains three rows and four columns, so you
can say that the matrix has dimensions of 3 by 4 (also written as 3 x 4). To quote
the number of the rows in a formula, you commonly use the letter n and the letter
m for the number of columns. Knowing the size of a matrix is fundamental for
correctly operating on it.

Operating on a matrix also requires being able to retrieve a number or a portion of
a matrix for specific calculations. You use indexes, numbers that tell the position of
an element in a matrix to perform this task. Indexes point out the row and column
number that correspond to the location of a values of interest. Usually you use i for
the row index and j for the column index. Both i and j indexes start counting rows
and columns beginning with the number 0 (0-indexed) or 1 (1-indexed).

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 557 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 557

R matrices are 1-indexed, whereas matrices in Python are 0-indexed. The use of
different index starting points can prove confusing, so you need to know how the
language operates.

When viewing the example matrix, the element 2,3 is the element located in the
second row intersecting with the third column, that is, 345 (assuming that the
matrix is 1-index). Therefore, if you need to express three different elements of
matrix X, you can use the following notation:

X1,1=1.1, X2,3=345, X3,4=3

Sometimes multiple matrices are stacked in slices of a more complex data struc-
ture called an array. An array is a collection of numeric data having more than
two dimensions. As an example, you can have three-dimensional arrays where
each matrix represents a different timeframe, and the matrices are then stacked
together as the slices of a cake. A case for such an array happens when you con-
tinuously record medical data, perhaps from a scanner recording body func-
tions such as brain activity. In this case, rows are still examples and columns are
features — with the third dimension representing time.

A matrix that has a single feature is a special case called a vector. Vector is a term
used in different scientific disciplines, from physics, to medical disciplines, to
mathematics, so some confusion may arise depending on your previous expertise.
In machine learning, a vector is simply a matrix of dimension n by 1, and that’s all.

Vectors are lists of consecutive values. You have to represent and treat them as
single columns when compared to a two-dimensional matrix. When working with
a vector, you have a single positional index, i, which tells you the location of the
value you want to access in the element sequence. You mostly use vectors when
talking about response values (response vector) or when dealing with the internal
coefficients of some algorithms. In this case, you call them a vector of coefficients.

y

44

21

37

44 21 371 2 3y y y, ,

In machine learning, the matrix of features usually appears as X and the corre-
sponding vector of responses as y. More generally, matrices usually use a capital
letter and vectors use a lowercase letter for identification. In addition, you use
lowercase letters for constants, so you need to exercise care when determining
whether a letter is a vector or a constant, because the set of possible operations is
quite different.

0003054002.INDD 558 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

558 BOOK 8 Essentials of Machine Learning

You use matrices in machine learning quite often because they allow you to rapidly
organize, index, and retrieve large amounts of data in a uniform and meaningful
way. For every example i in the X feature matrix, you can then determine the i-th
row of the matrix expressing its features and the i-th element on the response
vector telling you the results that a specific set of features implies. This strategy
allows the algorithm to look up data and make product predictions quickly.

Matrix notation also allows you to perform systematic operations on the entire
matrix or portions of it quickly. Matrices are also useful for writing and executing
programs in a speedy way because you can use computer commands to execute
matrix operations.

Understanding basic operations
The basic matrix operations are addition, subtraction, and scalar multiplication.
They are possible only when you have two matrices of the same size and the result
is a new matrix of the same dimensions. If you have two matrices of the same
shape, you just have to apply the operation to each corresponding position in the
two matrices. Therefore, to perform addition, you start summing the values in
the first row and first column of the two source matrices and place the resulting
value in the same position of the resulting matrix. You continue the process for
each paired element in the two matrices until you complete all the operations. The
same process holds true for subtraction, as shown in the following example:

1 1

1 0

1 0

0 1

0 1

1 1

In scalar multiplication, you instead take a single numeric value (the scalar) and
multiply it for each element of the matrix. If your value is fractional, such as ½
or ¼, your multiplication turns into division. In the previous example, you can
multiply the resulting matrix by –2:

0 1

1 1
2

0 2

2 2

You can also perform scalar addition and subtraction. In this case, you add or sub-
tract a single value from all the elements of a matrix.

Performing matrix multiplication
Using indexes and basic matrix operations, you can express quite a few operations
in a compact way. The combination of indexes and operations allows you to

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 559 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 559

 » Slice a part of a matrix.

 » Mask a part of matrix, reducing it to zero.

 » Center the values of a matrix by removing a value from all elements.

 » Rescale the values of a matrix, changing its range of values.

However, you can achieve the largest number of operations at one time only when
you multiply a matrix against a vector or against another matrix. You perform
these tasks often in machine learning, and multiplying a matrix by a vector occurs
frequently. Many machine learning algorithms rely on finding a vector of coef-
ficients that, multiplied by the matrix of features, can result in an approximation
of the vector of response values. In such models, you have formulations like

y = Xb

where y is the response vector, X the feature matrix, and b a vector of coefficients.
Often, the algorithm also includes a scalar named a to add to the result. In this
example, you can imagine it as being zero, so it isn’t present. As a result, y is a
vector constituted by three elements:

y

2

2

3

With this in mind, you can express the multiplication between X and b as

Xb

4 5

2 4

3 3

3

2

To express multiplication when vectors or matrices are involved, the standard
notation is to write them side by side. Whether you write them within parentheses
or express them in letter form doesn’t matter. This is a common way to point out
matrix multiplication (called implicit because there is no sign marking the opera-
tion). As an alternative, you sometimes find an explicit dot format for the opera-
tion, such as in A·B. The use of the asterisk is limited to scalar products such as
A*2 or A*b, where b is a constant.

Next, you need to know how X multiplied by b can result in y. As a check of being
able to perform the multiplication, the matrix and the vector involved in the mul-
tiplication should have compatible sizes. In fact, the number of columns of the
matrix should equal the number of rows in the vector. In this case, there is a
match because X is 3 by 2 and b is 2 by 1. Knowing the shapes of the terms, you

0003054002.INDD 560 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

560 BOOK 8 Essentials of Machine Learning

can figure out in advance the shape of the resulting matrix, which is given by the
rows of the matrix and the columns of the vector, or 3 by 1.

Matrix vector multiplication works as a series of summed vector-vector multipli-
cations. Multiplication treats each row of the X matrix as a vector and multiplies it
by the b vector. The result becomes the corresponding row element of the result-
ing vector. For instance, the first row [4,5] is multiplied by [3,–2] resulting in a
vector [12,–10], whose elements summed result in a value of 2. This first summed
multiplication corresponds to the first row of the resulting vector and then all the
other calculations follow:

sum([4*3, 5*-2]) = 2

sum([2*3, 4*-2]) = -2

sum([3*3, 3*-2]) = 3

The resulting vector is [2, –2, 3]. Things get a little bit more tricky when mul-
tiplying two matrices, but you can perform the operation as a series of matrix-
vector multiplications, just as in the previous example, by viewing the second
matrix as a series of feature vectors. By multiplying the first matrix by the m vec-
tors, you obtain a single column of the resulting matrix for each multiplication.

An example can clarify the steps in obtaining a matrix by matrix multiplication.
The following example multiplies X by B, which is a square matrix 2 x 2:

XB

4 5

2 4

3 3

3 2

2 5

You can divide the operation into two distinct matrices by vector multiplications
by splitting the matrix B into column vectors.

4 5

2 4

3 3

3

2

2

2

3

4 5

2 4

3 3

2

55

17

16

9

Now all you have to do is take the resulting column vectors and use them to rebuild
the output matrix using the multiplication of the first column vector as the first
column in the new matrix and so on.

XB

4 5

2 4

3 3

3 2

2 5

2 17

2 16

3 9

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 561 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 561

In matrix multiplication, because of matrix shapes, order matters. Consequently,
you cannot invert terms, as you would do in a multiplication of scalar numbers.
Multiplying 5*2 or 2*5 is the same thing, because of the commutative property of
scalar multiplication, but Ab is not the same as bA because sometimes the multi-
plication isn’t possible (because the shapes of the matrices are incompatible), or,
worse, it produces a different result. When you have a series of matrix multiplica-
tions, such as ABC, the order of the terms doesn’t matter; whether you go with AB
first or BC first, you get the same result because, like scalars, matrix multiplica-
tion is associative.

Glancing at advanced matrix operations
You may encounter two important matrix operations in some algorithm formula-
tions. They are the transpose and inverse of a matrix. Transposition occurs when a
matrix of shape n x m is transformed into a matrix m x n by exchanging the rows
with the columns. Most tests indicate this operation using the superscript T, as
in AT. You see this operation used most often for multiplication, in order to obtain
the right dimensions.

You apply matrix inversion to matrices of shape m x m, which are square matri-
ces that have the same number of rows and columns. This operation is quite
important because it allows the immediate resolution of equations involving
matrix multiplication, such as y=bX, where you have to discover the values in
the vector b. Because most scalar numbers (exceptions include zero) have a num-
ber whose multiplication results in a value of 1, the idea is to find a matrix inverse
whose multiplication will result in a special matrix called the identity matrix,
whose elements are zero, except the diagonal elements (the elements in posi-
tions where the index I is equal to the index j). Finding the inverse of a scalar is
quite easy (the scalar number n has an inverse of n-1 that is 1/n). It’s a differ-
ent story for a matrix. Matrix inversion involves quite a large number of compu-
tations, so special math functions perform the calculations in R or Python. The
inverse of a matrix A is indicated as A-1.

Sometimes, finding the inverse of a matrix is impossible. When a matrix cannot
be inverted, it is referred to as a singular matrix or a degenerate matrix. Singular
matrices aren’t the norm; they’re quite rare.

Using vectorization effectively
If performing matrix operations, such as matrix by vector multiplication, seems
a bit hard, consider that your computer does all the hard work. All you have to do
is determine in a theoretical formulation what happens to the numbers as you put
them into matrices, vectors, and constants, and then you sum, subtract, divide,
or multiply them.

0003054002.INDD 562 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

562 BOOK 8 Essentials of Machine Learning

Understanding what happens in a machine learning algorithm will give you an
edge in using the algorithm because you’ll understand how it digests and pro-
cesses data. To get a correct result, you need to feed the right data to the right
algorithm, according to the manner in which it works with data.

In Python, the NumPy package offers all the functionality needed to create and
manipulate matrices. The ndarray objects allow fast creation of an array, such as
a multidimensional matrix, by starting with data queued into lists.

The term ndarray means “n-dimensional array,” implying that you can create
arrays of multiple dimensions, not just row-by-column matrices. Using a simple
list, ndarray can quickly create a vector, as shown in the Python example here:

import numpy as np

y = np.array([44,21,37])

print (y)

print (y.shape)

[44 21 37]

(3,)

The method shape can promptly inform you about the shape of a matrix. In this
case, it reports only three rows and no columns, which means that the object is
a vector.

To create matrices made of rows and columns, you can use a list of lists. The con-
tents of the lists inside the main list are the rows of your matrix.

X = np.array([[1.1, 1, 545, 1],[4.6, 0, 345, 2],

 [7.2, 1, 754, 3]])

print (X)

[[1.1 1. 545. 1.]

 [4.6 0. 345. 2.]

 [7.2 1. 754. 3.]]

You can also obtain the same result by using a single list, which creates a vector
that you can reshape into the desired number of rows and columns. Numbers are
filled into the new matrix row by row, starting from the element (0,0) down to
the last one.

X = np.array([1.1, 1, 545, 1, 4.6, 0, 345, 2,

 7.2, 1, 754, 3]).reshape(3,4)

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 563 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 563

Operations with addition and subtraction with scalars using NumPy ndarray are
straightforward. You just sum, subtract, multiply, or divide using the standard
operators:

a = np.array([[1, 1],[1, 0]])

b = np.array([[1, 0],[0, 1]])

print (a - b)

[[0 1]

 [1 -1]]

a = np.array([[0, 1],[1, -1]])

print (a * -2)

[[0 -2]

 [-2 2]]

To perform multiplication on vectors and matrices, you use the np.dot function
instead. The input for this function is two arrays of compatible sizes to multiply
according to the given order.

X = np.array([[4, 5],[2, 4],[3, 3]])

b = np.array([3,-2])

print(np.dot(X, b))

[2 -2 3]

B = np.array([[3, -2],[-2, 5]])

print (np.dot(X, B))

[[2 17]

 [-2 16]

 [3 9]]

Exploring the World of Probabilities
Probability tells you the likelihood of an event, and you express it as a number.
The probability of an event is measured in the range from 0 (no probability that
an event occurs) to 1 (certainty that an event occurs). Intermediate values, such as
0.25, 0.5, and 0.75, say that the event will happen with a certain frequency when
tried enough times. If you multiply the probability by an integer number repre-
senting the number of trials you’re going to try, you’ll get an estimate of how
many times an event should happen on average if all the trials are tried.

0003054002.INDD 564 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

564 BOOK 8 Essentials of Machine Learning

For instance, if you have an event occurring with probability p=0.25 and you try
100 times, you’re likely to witness that event happening 0.25 * 100 = 25 times.
This is, for example, the probability of picking a certain suit when choosing a
card randomly from a deck of cards. French playing cards make a classic example
of explaining probabilities. The deck contains 52 cards equally divided into four
suits: clubs and spades, which are black, and diamonds and hearts, which are red.
So if you want to determine the probability of picking an ace, you must consider
that there are four aces of different suits. The answer in terms of probability is
p=4/52=0.077.

Probabilities are between 0 and 1; no probability can exceed such boundaries. You
define probabilities empirically from observations. Simply count the number of
times a specific event happens with respect to all the events that interest you. For
example, say that you want to calculate the probability of how many times fraud
happens when doing banking transactions or how many times people get a certain
disease in a particular country. After witnessing the event, you can estimate the
probability associated with it by counting the number of times the event occurs
and dividing by the total number of events.

You can count the number of times the fraud or the disease happens using recorded
data (mostly taken from databases) and then divide that figure by the total num-
ber of generic events or observations available. Therefore you divide the number
of frauds by the number of transactions in a year, or you count the number of
people who fell ill during the year with respect to the population of a certain area.
The result is a number ranging from 0 to 1, which you can use as your baseline
probability for a certain event given certain circumstances.

Counting all the occurrences of an event is not always possible, so you need to
know about sampling. By sampling, which is an act based on certain probability
expectations, you can observe a small part of a larger set of events or objects, yet
be able to infer correct probabilities for an event, as well as exact measures such as
quantitative measurements or qualitative classes related to a set of objects.

For instance, if you want to track the sales of cars in the United States for the last
month, you don’t need to track every sale in the country. Using a sample compris-
ing the sales from a few car sellers around the country, you can determine quan-
titative measures, such as the average price of a car sold, or qualitative measures,
such as the car model sold most often.

Operating on probabilities
Operations on probabilities are indeed a bit different from numeric operations.
Because they always have to be in the range of 0 to 1, you must rely on particular
rules in order for the operation to make sense. For example, summations between

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 565 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 565

probabilities are possible if the events are mutually exclusive (they can’t happen
together). Say that you want to know the probability of drawing a spade or a dia-
mond from a deck of cards. You can sum the probability of drawing a spade and
the probability of drawing a diamond this way: p=0.25+0.25=0.5.

You use subtraction (difference) to determine the probability of events that are
different from the probability of an event that you have already computed. For
instance, to determine the probability of drawing a card that isn’t a diamond from
the deck, you just subtract from the probability of drawing any kind of card, which
is p=1, the probability of drawing a diamond, like so: p=1-0.25=0.75. You get the
complement of a probability when you subtract a probability from 1.

Multiplication helps you compute the intersection of independent events. Inde-
pendent events are events that do not influence each other. For instance, if you play
a game of dice and you throw two die, the probability of getting two sixes is 1/6
(the probability of getting six from the first dice) multiplied by 1/6 (the probability
of getting six from the second dice), which is p=1/6 * 1/6=0.028. This means that
if you throw the dice one hundred times, you can expect two sixes to come up only
two or three times.

Using summation, difference, and multiplication, you can get the probability of
most complex situations dealing with events. For instance, you can now compute
the probability getting at least a six from two thrown dice, which is a summation
of mutually exclusive events:

 » The probability of having two sixes: p=1/6 * 1/6

 » The probability of having a six on the first dice and something other than a six
on the second one: p= 1/6 * (1–1/6)

 » The probability of having a six on the second dice and something other than a
six on the first one: p= 1/6 * (1–1/6)

Your probability of getting at least one six from two thrown dice is p=1/6 * 1/6 +
2 * 1/6 * (1–1/6)=0.306.

Conditioning chance by Bayes’ theorem
Probability makes sense in terms of time and space, but some other conditions
also influence the probability you measure. The context is important. When you
estimate the probability of an event, you may (sometimes wrongly) tend to believe
that you can apply the probability you calculated to each possible situation. The
term to express this belief is a priori probability, meaning the general probability
of an event.

0003054002.INDD 566 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

566 BOOK 8 Essentials of Machine Learning

For example, when you toss a coin, if the coin is fair, the a priori probability of a
head is 50 percent. No matter how many times you toss the coin, when faced with
a new toss, the probability for heads is still 50 percent. However, there are other
situations in which, if you change the context, the a priori probability is not valid
anymore because something subtle happened and changed it. In this case, you can
express this belief as an a posteriori probability, which is the a priori probability
after something happened to modify the count.

For instance, the a priori probability of a person being female is roughly about
50 percent. However, the probability may differ drastically if you consider only
specific age ranges, because females tend to live longer, and after a certain age
there are more females than males. As another example related to gender, if you
examine the presence of women in certain faculties at a university, you notice that
fewer females are engaged in the scientific faculties than males. Therefore, given
these two contexts, the a posteriori probability is different from the expected a
priori one. In terms of gender distribution, nature and culture can both create a
different a posteriori probability.

You can view such cases as conditional probability, and express it as p(y|x), which
is read as the probability of event y happening given that x has happened. Conditional
probabilities are a very powerful tool for machine learning. In fact, if the a priori
probability can change so much because of certain circumstances, knowing the
possible circumstances can boost your chances of correctly predicting an event
by observing examples — exactly what machine learning is intended to do. For
example, as previously mentioned, generally the expectation of a random per-
son’s being a male or a female is 50 percent. But what if you add the evidence
that the person’s hair is long or short? You can estimate the probability of hav-
ing long hair as being 35 percent of the population; yet, if you observe only the
female population, the probability rises to 60 percent. If the percentage is so high
in the female population, contrary to the a priori probability, a machine learning
algorithm can benefit from knowing whether the person’s hair is long or short.

In fact, the Naïve Bayes algorithm can really take advantage of boosting the chance
of making a correct prediction by knowing the circumstances surrounding the pre-
diction, as explained in Book 9, Chapter 1, which covers the first, simplest learners.
Everything starts with Reverend Bayes and his revolutionary theorem of probabili-
ties. In fact, one of the machine learning tribes (see Book 8, Chapter 1) is named
after him. Also, there are great expectations for the development of advanced algo-
rithms based on Bayesian probability; MIT’s Technology Review magazine men-
tioned Bayesian machine learning as an emerging technology that will change our
world (www2.technologyreview.com/news/402435/10-emerging-technologies-
that-will-change-your). Yet the foundations of the theorem aren’t all that com-
plicated (although they may be a bit counterintuitive if you normally consider just
prior probabilities without considering posterior ones).

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 567 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 567

Reverend Thomas Bayes was a statistician and a philosopher who formulated his
theorem during the first half of the eighteenth century. The theorem was never
published while he was alive. Its publication revolutionized the theory of prob-
ability by introducing the idea of conditional probability just mentioned.

Thanks to Bayes’ theorem, predicting the probability of a person being male or
female becomes easier if the evidence is that the person has long hair. The formula
used by Thomas Bayes is quite useful:

P(B|E) = P(E|B)*P(B) / P(E)

Reading the formula using the previous example as input can provide a better
understanding of an otherwise counterintuitive formula:

 » P(B|E): The probability of a belief (B) given a set of evidence (E) (posterior
probability). Read “belief” as an alternative way to express a hypothesis. In this
case, the hypothesis is that a person is a female and the evidence is long hair.
Knowing the probability of such a belief given evidence can help to predict the
person’s gender with some confidence.

 » P(E|B): The probability of having long hair when the person is a female. This
term refers to the probability of the evidence in the subgroup, which is itself a
conditional probability. In this case, the figure is 60 percent, which translates
to a value of 0.6 in the formula (prior probability).

 » P(B): The general probability of being a female; that is, the a priori probability
of the belief. In this case, the probability is 50 percent, or a value of 0.5
(likelihood).

 » P(E): The general probability of having long hair. Here it is another a priori
probability, this time related to the observed evidence. In this formula, it is a
35 percent probability, which is a value of 0.35 (evidence).

If you solve the previous problem using the Bayes’ formula and the values you
have singled out, the result is 0.6 * 0.5 / 0.35 = 0.857. That is a high percentage
of likelihood, which leads you to affirm that given such evidence, the person is
probably a female.

Another common example, which can raise some eyebrows and is routinely found
in textbooks and scientific magazines, is that of the positive medical test. It is
quite interesting for a better understanding of how prior and posteriori probabili-
ties may indeed change a lot under different circumstances.

Say that you’re worried that you have a rare disease experienced by 1 percent of
the population. You take the test and the results are positive. Medical tests are

0003054002.INDD 568 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

568 BOOK 8 Essentials of Machine Learning

never perfectly accurate, and the laboratory tells you that when you are ill, the test
is positive in 99 percent of the cases, whereas when you are healthy, the test will
be negative in 99 percent of the cases.

Now, using these figures, you immediately believe that you’re certainly ill, given
the high percentage of positive tests when a person is ill (99 percent). However,
the reality is quite different. In this case, the figures to plug into the Bayes’ theo-
rem are as follows:

0.99 as P(E|B)

0.01 as P(B)

0.01*0.99 + 0.99*0.01 = 0.0198 as P(E)

The calculations are then 0.01*0.99 / 0.0198 = 0.5, which corresponds to just a
50 percent probability that you’re ill. In the end, your chances of not being ill are
more than you expected. You may wonder how this is possible. The fact is that the
number of people seeing a positive response from the test is as follows:

 » Who is ill and gets the correct answer from the test: This group is the true
positives, and it amounts to 99 percent of the 1 percent of the population who
gets the illness.

 » Who isn’t ill and gets the wrong answer from the test: This group is the
1 percent of the 99 percent of the population who gets a positive response
even though they aren’t ill. Again, this is a multiplication of 99 percent and
1 percent. This group corresponds to the false positives.

If you look at the problem using this perspective, it becomes evident why, when
limiting the context to people who get a positive response to the test, the prob-
ability of being in the group of the true positives is the same as that of being in
the false positives.

Describing the Use of Statistics
As a concluding topic related to probability, it’s important to skim through some
basic statistical concepts related to probability and statistics and understand how
they can better help you describe the information used by machine learning algo-
rithms. Previous sections discuss probability in ways that come in handy because
sampling, statistical distributions, and statistical descriptive measures are all, in
one way or another, based on concepts of probability.

D
em

ys
ti

fy
in

g
th

e
M

at
h

be
hi

nd
 M

ac
hi

ne
 L

ea
rn

in
g

0003054002.INDD 569 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

CHAPTER 2 Demystifying the Math behind Machine Learning 569

Here, the matter is not simply about how to describe an event by counting its
occurrences; it’s about describing an event without counting all the times it occurs
in a reliable way. For example, if you want an algorithm to learn how to detect a
disease or criminal intent, you have to face the fact that you can’t create a matrix
comprising all the occurrences of the disease or the crime, so the information that
you’ll elaborate will be necessarily partial. Moreover, if you measure something in
the real world, you often don’t get the exact measurements because of some error
in the procedure, imprecision in the instrument you use, or simply because of a
random nuisance disturbing the process of recording the measure. A simple mea-
sure such as your weight, for example, will differ every time you get on the scale,
slightly oscillating around what you believe to be your true weight. If you were to
take this measurement on a larger scale, such as by weighing all the people who
live in your city on one huge scale, you would get a picture of how difficult it is to
measure accurately (because error occurs) and completely (because it is difficult
to measure everything).

Having partial information, especially if what you want to describe is quite com-
plex, isn’t a completely negative condition, because you can use smaller matrices,
thereby implying fewer computations. Sometimes you can’t even get a sample of
what you want to describe and learn for certain problems, because the event is
complex and has a great variety of features. As another example, consider learn-
ing how to determine sentiment from a text taken from the Internet, such as
from Twitter tweets. Apart from retweets, you’re unlikely to see an identical tweet
(expressing the same sentiment using precisely the same words for precisely
the same topic) by another person in a lifetime. You may happen to see some-
thing somehow similar, but never identical. Therefore it’s impossible to know
in advance all the possible tweets that associate certain words to sentiments. In
short, you have to use a sample and derive general rules from a partial set.

Even given such practical restrictions and the impossibility of getting all the pos-
sible data, you can still grasp what you want to describe and learn from it. Sam-
pling is a part of the statistical practice. When using samples, you choose your
examples according to certain criteria. When done carefully, you have a certain
probability that your partial view resembles the global view well.

In statistics, population refers to all the events and objects you want to measure,
and a sample is a part of it chosen by certain criteria. Using random sampling,
which is picking the events or objects to represent randomly, helps you create a
set of examples for machine learning to learn as it would learn from all the pos-
sible examples. The sample works because the value distributions in the sample
are similar to those in the population, and that’s enough.

0003054002.INDD 570 Trim size: 7.375 in × 9.25 in March 31, 2017 4:53 AM

570 BOOK 8 Essentials of Machine Learning

Random sampling isn’t the only possible approach. You can also apply stratified
sampling, through which you can control some aspects of the random sample in
order to avoid picking too many or too few events of a certain kind. After all,
random is random, and you have no absolute assurance of always replicating the
exact distribution of the population.

A distribution is a statistical formulation describing how to observe an event or a
measure by telling you the probability of witnessing a certain value. Distributions
are described in mathematical formula (a topic not covered in the book) and can
be graphically described using charts such as histograms or distribution plots. The
information you put into your matrix has a distribution, and you may find that
distributions of different features are related. A distribution naturally implies a
variation, and when dealing with numeric values, it is important to figure out a
center of variation, which is often the statistical mean, calculated by summing all
your values and dividing the sum by the number of values you considered.

The mean is a descriptive measure, telling you the value to expect the most, con-
sidering all the possible cases. The mean is best suited for a symmetrical and bell-
shaped distribution (so that when values are above the mean, the distribution is
similarly shaped as for the values below). A famous distribution, the normal or
Gaussian distribution, is shaped just like that, but in the real world, you can also
find many skewed distributions that have extreme values only on one side of the
distribution, thereby influencing the mean too much.

The median is a measure that takes the value in the middle after you order all
your observations from the smallest to the largest. Being based on the value
order, the median is insensible to values in the distribution and can represent a
fairer descriptor than the average in certain cases. The significance of the mean
and median descriptors is that they describe a value in the distribution around
which there is a variation, and machine learning algorithms do care about such a
variation. Most people call the variation a variance. Because variance is a squared
number, there is also a root equivalent, termed the standard deviation. Machine
learning takes into account the variance in every single variable (univariate dis-
tributions) and in all features together (multivariate distributions) to determine
how such variation impacts the response.

In other words, statistics matter in machine learning because they convey the
idea that features have a distribution. Distribution implies variation, and varia-
tion is like a quantification of information — the more variance in your features,
the more information that can be matched to the response in order to draw a rule
from certain types of information to certain responses. You can then use statis-
tics to assess the quality of your feature matrix and even to leverage statistical
measures to build effective machine learning algorithms, as discussed in Book 9,
where matrix operations, sampling from distributions, statistics, and probability
all contribute to solutions and have computers effectively learn from data.

CHAPTER 3 Descending the Right Curve 571

0003054003.INDD 571	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

 Descending the Right
Curve

 “Those who only think in straight lines cannot see around a curve.”
 — ROMINA RUSSELL

 M achine learning may appear as a kind of magic trick to a newcomer to
the discipline — something to expect from any application of advanced
scientifi c discovery, as Arthur C. Clarke, the futurist and author of popu-

lar sci-fi stories (one of which became the landmark movie 2001: A Space Odyssey),
expressed by his third law: “ any su� ciently advanced technology is indistinguishable
from magic. ” However, machine learning isn’t magic at all. It’s the application of
mathematical formulations to how we view the human learning process.

 Expecting that the world itself is a representation of mathematical and statistical
formulations, machine learning algorithms strive to learn about such formulations

Chapter 3

 IN THIS CHAPTER

 » Understanding how machine learning
works under the hood

 » Recognizing the diff erent parts of a
learning process

 » Defi ning the most common error
functions

 » Deciding which error function is best
for your problem

 » Glancing at the steps in machine
learning optimization when using
gradient descent

 » Distinguishing between batch,
mini-batch, and online learning

0003054003.INDD 572	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

572 BOOK 8 Essentials of Machine Learning

by tracking them back from a limited number of observations. Just as you don’t
need to see all the trees in the world to learn to recognize one (because humans
can understand the distinguishing characteristics of trees), so machine learning
algorithms can use the computational power of computers and the wide availabil-
ity of data to learn how to solve a large number of important and useful problems.

Although machine learning is inherently complex, humans devised it, and in its
initial inception, it simply started mimicking the way we learn from the world. We
can express simple data problems and basic learning algorithms based on how a
child perceives and understands the world, or solve a challenging learning prob-
lem by using the analogy of descending from the top of a mountain by taking the
right slope. This chapter helps you understand machine learning as a technology
rather than as magic. To that end, the following sections offer some basic theory
and then delve into some simple problems that demonstrate the theory.

Interpreting Learning as Optimization
Learning comes in many different flavors, depending on the algorithm and its
objectives. You can divide machine learning algorithms into three main groups
based on their purpose:

 » Supervised	learning

 » Unsupervised	learning

 » Reinforcement	learning

Supervised learning
Supervised learning occurs when an algorithm learns from example data and asso-
ciated target responses that can consist of numeric values or string labels, such as
classes or tags, in order to later predict the correct response when posed with new
examples. The supervised approach is indeed similar to human learning under
the supervision of a teacher. The teacher provides good examples for the stu-
dent to memorize, and the student then derives general rules from these specific
examples. You need to distinguish between regression problems, whose target is a
numeric value, and classification problems, whose target is a qualitative variable,
such as a class or a tag. Referring to the examples used in the book, a regression
task determines the average prices of houses in the Boston area, and a classifica-
tion task distinguishes between kinds of iris flowers based on their sepal and petal
measures.

D
es

ce
nd

in
g

th
e

Ri
gh

t
Cu

rv
e

0003054003.INDD 573	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

CHAPTER 3 Descending the Right Curve 573

Unsupervised learning
Unsupervised learning occurs when an algorithm learns from plain examples without
any associated response, leaving it up to the algorithm to determine the data pat-
terns on its own. This type of algorithm tends to restructure the data into something
else, such as new features that may represent a class or a new series of uncorrelated
values. They are quite useful in providing humans with insights into the meaning of
data and new useful inputs to supervised machine learning algorithms. As a kind of
learning, it resembles the methods humans use to figure out that certain objects or
events are from the same class, such as by observing the degree of similarity between
objects. Some recommendation systems that you find on the web in the form of mar-
keting automation are based on this type of learning. The marketing automation
algorithm derives its suggestions from what you’ve bought in the past. The recom-
mendations are based on an estimation of what group of customers you resemble the
most and then an inference about your likely preferences based on that group.

Reinforcement learning
Reinforcement learning occurs when you present the algorithm with examples that
lack labels, as in unsupervised learning. However, you can accompany an example
with positive or negative feedback according to the solution the algorithm pro-
poses. Reinforcement learning is connected to applications for which the algo-
rithm must make decisions (so the product is prescriptive, not just descriptive,
as in unsupervised learning), and the decisions bear consequences. In the human
world, it is just like learning by trial and error. Errors help you learn because
they have a penalty added (cost, loss of time, regret, pain, and so on), teaching
you that a certain course of action is less likely to succeed than others. An inter-
esting example of reinforcement learning occurs when computers learn to play
video games by themselves. In this case, an application presents the algorithm
with examples of specific situations, such as having the gamer stuck in a maze
while avoiding an enemy. The application lets the algorithm know the outcome
of actions it takes, and learning occurs while trying to avoid what it discovers to
be dangerous and pursuing survival. You can have a look at how the company
Google DeepMind has created a reinforcement learning program that plays old
Atari’s video games at www.youtube.com/watch?v=V1eYniJ0Rnk. When watching
the video, notice how the program is initially clumsy and unskilled but steadily
improves with training until it becomes a champion.

The learning process
Even though supervised learning is the most popular and frequently used of the
three types, all machine learning algorithms respond to the same logic. The cen-
tral idea is that you can represent reality using a mathematical function that the
algorithm doesn’t know in advance but can guess after having seen some data.

0003054003.INDD 574	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

574 BOOK 8 Essentials of Machine Learning

You can express reality and all its challenging complexity in terms of unknown
mathematical functions that machine learning algorithms find and make advan-
tageous. This concept is the core idea for all kinds of machine learning algorithms.
To create clear examples, this chapter focuses on supervised classification as the
most emblematic of all the learning types and provides explanations of its inner
functioning that you can extend later to other types of learning approaches.

The objective of a supervised classifier is to assign a class to an example after
having examined some characteristics of the example itself. Such characteristics
are called features, and they can be both quantitative (numeric values) or qualita-
tive (string labels). To assign classes correctly, the classifier must first closely
examine a certain number of known examples (examples that already have a
class assigned to them), each one accompanied by the same kinds of features as
the examples that don’t have classes. The training phase involves observation of
many examples by the classifier that helps it learn so that it can provide an answer
in terms of a class when it sees an example without a class later.

To give an idea of what happens in the training process, imagine a child learning
to distinguish trees from other objects. Before the child can do so in an indepen-
dent fashion, a teacher presents the child with a certain number of tree images,
complete with all the facts that make a tree distinguishable from other objects
of the world. Such facts could be features such as its material (wood), its parts
(trunk, branches, leaves or needles, roots), and location (planted into the soil).
The child produces an idea of what a tree looks like by contrasting the display of
tree features with the images of other different objects, such as pieces of furniture
that are made of wood but do not share other characteristics with a tree.

A machine learning classifier works in the same way. It builds its cognitive capa-
bilities by creating a mathematical formulation that includes all the given features
in a way that creates a function that can distinguish one class from another. Pre-
tend that a mathematical formulation, also called target function, exists to express
the characteristics of a tree. In such a case, a machine learning classifier can look
for its representation as a replica or as an approximation (a different function that
works alike). Being able to express such mathematical formulation is the repre-
sentation capability of the classifier.

From a mathematical perspective, you can express the representation process in
machine learning using the equivalent term mapping. Mapping happens when
you discover the construction of a function by observing its outputs. A success-
ful mapping in machine learning is similar to a child internalizing the idea of an
object. She understands the abstract rules derived from the facts of the world in
an effective way so that when she sees a tree, for example, she immediately rec-
ognizes it.

D
es

ce
nd

in
g

th
e

Ri
gh

t
Cu

rv
e

0003054003.INDD 575	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

CHAPTER 3 Descending the Right Curve 575

Such a representation (abstract rules derived from real-world facts) is possible
because the learning algorithm has many internal parameters (constituted of vec-
tors and matrices of values), which equate to the algorithm’s memory for ideas that
are suitable for its mapping activity that connects features to response classes. The
dimensions and type of internal parameters delimit the kind of target functions that
an algorithm can learn. An optimization engine in the algorithm changes parameters
from their initial values during learning to represent the target’s hidden function.

During optimization, the algorithm searches among the possible variants of its
parameter combinations in order to find the one that best allows the correct map-
ping between the features and classes during training. This process evaluates
many potential candidate target functions from among those that the learning
algorithm can guess. The set of all the potential functions that the learning algo-
rithm can figure out is called the hypothesis space. You can call the resulting classi-
fier with all its set parameters a hypothesis, a way in machine learning to say that
the algorithm has set parameters to replicate the target function and is now ready
to work out correct classifications (a fact demonstrated later).

The hypothesis space must contain all the parameter variants of all the machine
learning algorithms that you want to try to map to an unknown function when
solving a classification problem. Different algorithms can have different hypoth-
esis spaces. What really matters is that the hypothesis space contains the target
function (or its approximation, which is a different but similar function).

You can imagine this phase as the time when a child, in an effort to figure out
her own idea of a tree, experiments with many different creative ideas by assem-
bling her own knowledge and experiences (an analogy for the given features).
Naturally, the parents are involved in this phase, and they provide relevant envi-
ronmental inputs. In machine learning, someone has to provide the right learn-
ing algorithms, supply some nonlearnable parameters (called hyper-parameters),
choose a set of examples to learn from, and select the features that accompany
the examples. Just as a child can’t always learn to distinguish between right and
wrong if left alone in the world, so machine learning algorithms need human
beings to learn successfully.

Even after completing the learning process, a machine learning classifier often
can’t univocally map the examples to the target classification function because
many false and erroneous mappings are also possible, as shown in Figure 3-1. In
many cases, the algorithm lacks enough data points to discover the right function.
Noise mixed with the data can also cause problems, as shown in Figure 3-2.

Noise in real-world data is the norm. Many extraneous factors and errors that
occur when recording data distort the values of the features. A good machine
learning algorithm should distinguish the signals that can map back to the target
function from extraneous noise.

0003054003.INDD 576	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

576 BOOK 8 Essentials of Machine Learning

Exploring Cost Functions
The driving force behind optimization in machine learning is the response from a
function internal to the algorithm, called the cost function. You may see other terms
used in some contexts, such as loss function, objective function, scoring function, or error
function, but the cost function is an evaluation function that measures how well the
machine learning algorithm maps the target function that it’s striving to guess. In
addition, a cost function determines how well a machine learning algorithm per-
forms in a supervised prediction or an unsupervised optimization problem.

The evaluation function works by comparing the algorithm predictions against the
actual outcome recorded from the real world. Comparing a prediction against its real
value using a cost function determines the algorithm’s error level. Because it’s a
mathematical formulation, the cost function expresses the error level in a numerical

FIGURE 3-1:
A	lack	of	evidence	
makes	it	hard	to	
map	back	to	the	
target	function.

FIGURE 3-2:
Noise	can	cause	
mismatches	in	
the	data	points.

D
es

ce
nd

in
g

th
e

Ri
gh

t
Cu

rv
e

0003054003.INDD 577	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

CHAPTER 3 Descending the Right Curve 577

form, thereby keeping errors low. The cost function transmits what is actually
important and meaningful for your purposes to the learning algorithm. As a result,
you must choose, or accurately define, the cost function based on an understand-
ing of the problem you want to solve or the level of achievement you want to reach.

As an example, when considering stock market forecasting, the cost function
expresses the importance of avoiding incorrect predictions. In this case, you want
to make money by avoiding big losses. In forecasting sales, the concern is differ-
ent because you need to reduce the error in common and frequent situations, not
in the rare and exceptional ones, so you use a different cost function.

When the problem is to predict who will likely become ill from a certain disease,
you prize algorithms that can score a high probability of singling out people who
have the same characteristics and actually did become ill later. Based on the sever-
ity of the illness, you may also prefer that the algorithm wrongly chooses some
people who don’t get ill after all rather than miss the people who actually do get ill.

The cost function is what truly drives the success of a machine learning applica-
tion. It’s as critical to the learning process as representation (the capability to
approximate certain mathematical functions) and optimization (how the machine
learning algorithms set their internal parameters). Most algorithms optimize
their own cost function, and you have little choice but to apply them as they are.
Some algorithms allow you to choose among a certain number of possible func-
tions, providing more flexibility. When an algorithm uses a cost function directly
in the optimization process, the cost function is used internally. Given that algo-
rithms are set to work with certain cost functions, the optimization objective may
differ from your desired objective. In such a case, you measure the results using
an external cost function that, for clarity of terminology, you call an error func-
tion or loss function (if it has to be minimized) or a scoring function (if it has to be
maximized).

With respect to your target, a good practice is to define the cost function that
works the best in solving your problem, and then to figure out which algorithms
work best in optimizing it to define the hypothesis space you want to test. When
you work with algorithms that don’t allow the cost function you want, you
can still indirectly influence their optimization process by fixing their hyper-
parameters and selecting your input features with respect to your cost function.
Finally, when you’ve gathered all the algorithm results, you evaluate them by
using your chosen cost function and then decide on the final hypothesis with the
best result from your chosen error function.

When an algorithm learns from data, the cost function guides the optimization
process by pointing out the changes in the internal parameters that are the most
beneficial for making better predictions. The optimization continues as the cost
function response improves iteration by iteration. When the response stalls or

0003054003.INDD 578	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

578 BOOK 8 Essentials of Machine Learning

worsens, it’s time to stop tweaking the algorithm’s parameters because the algo-
rithm isn’t likely to achieve better prediction results. When the algorithm works
on new data and makes predictions, the cost function helps you evaluate whether
it’s working properly and is indeed effective.

Deciding on the cost function is an underrated activity in machine learning. It’s a
fundamental task because it determines how the algorithm behaves after learning
and how it handles the problem you want to solve. Never rely on default options,
but always ask yourself what you want to achieve using machine learning and
check what cost function can best represent the achievement.

In Book 9, Chapters 1 through 4, you find out about some machine learning algo-
rithms, and in Book 9, Chapter 5, you see how to apply theory to real problems,
introducing classification problems for scoring text and sentiments. If you need
to pick a cost function, machine learning explanations and examples introduce a
range of error functions for regression and classification, comprising root mean
squared errors, log loss, accuracy, precision, recall, and area under the curve
(AUC). (Don’t worry if these terms aren’t quite clear right now; they’re explained
in detail in Book 9.)

Descending the Error Curve
The gradient descent algorithm offers a perfect example of how machine learning
works, and it sums up the concepts expressed so far in Book 8 because you can
provide it with an intuitive image, not just a mathematical formulation. Moreover,
though it is just one of many possible methods, gradient descent is a widely used
approach that’s applied to a series of machine learning algorithms presented in
Book 9, such as linear models, neural networks, and gradient boosting machines.

Gradient descent works out a solution by starting from a random solution when
given a set of parameters (a data matrix made of features and a response). It
then proceeds in various iterations using the feedback from the cost function,
thus changing its parameters with values that gradually improve the initial ran-
dom solution and lower the error. Even though the optimization may take a large
number of iterations before reaching a good mapping, it relies on changes that
improve the response cost function most (lower error) during each iteration.
 Figure 3-3 shows an example of a complex optimization process with many local
minima (the minimum points on the curve marked with letters) where the process
can get stuck (it no longer continues after the deep minimum marked with an
asterisk) and cannot continue its descent.

D
es

ce
nd

in
g

th
e

Ri
gh

t
Cu

rv
e

0003054003.INDD 579	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

CHAPTER 3 Descending the Right Curve 579

You can visualize the optimization process as a walk in high mountains, with the
parameters being the different paths to descend to the valley. A gradient descent
optimization occurs at each step. At each iteration, the algorithm chooses the path
that reduces error the most, regardless of the direction taken. The idea is that if
steps aren’t too large (causing the algorithm to jump over the target), always
following the most downward direction will result in finding the lowest place.
Unfortunately, this result doesn’t always occur because the algorithm can arrive at
intermediate valleys, creating the illusion that it has reached the target. However,
in most cases, gradient descent leads the machine learning algorithm to discover
the right hypothesis for successfully mapping the problem. Figure 3-4 shows how
a different starting point can make the difference. Starting point x1 ends toward a
local minimum, whereas points x2 and x3 reach the global minimum.

FIGURE 3-3:
A	plotting	of	

parameter	data	
against	the	

output	of	the	cost	
function.

FIGURE 3-4:
Visualizing	

the	effect	of	
starting	point	on	

outcome.

0003054003.INDD 580	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

580 BOOK 8 Essentials of Machine Learning

In an optimization process, you distinguish between different optimization out-
comes. You can have a global minimum that’s truly the minimum error from the
cost function, and you can have many local minima — solutions that seem to
produce the minimum error but actually don’t (the intermediate valleys where
the algorithm gets stuck). As a remedy, given the optimization process’s random
initialization, running the optimization many times is good practice. This means
trying different sequences of descending paths and not getting stuck in the same
local minimum.

MARKETING IN THE MOMENT WITH
ROCKET FUEL
Online	machine	learning	is	more	common	than	you	may	think.	The	constant	flow	of	
information	available	on	the	Internet	increases	as	the	world	becomes	more	digitized.	
One	of	the	more	interesting	applications	that	feature	online	machine	learning	is	Rocket	
Fuel	(https://rocketfuel.com),	which	provides	a	useful	and	unique	programmatic	
trading	platform.

Programmatic trading	involves	buying	large	amounts	of	goods	or	services	automatically	
based	on	a	combination	of	machine-based	transactions,	algorithms,	and	data.	When	
used	for	advertising,	the	sector	in	which	Rocket	Fuel	operates,	the	object	of	program-
matic	trading	is	to	align	the	selling	side,	represented	by	online	publishers	(websites	on	
which	the	advertising	is	placed),	to	the	buying	side,	represented	by	advertisers	and	adver-
tising	agencies.	This	approach	helps	advertising	to	reach	people	who	are	interested	in	it.	
Rocket	Fuel	relies	on	Real	Time	Bidding	(RTB)	platforms	(see	https://adexchanger.
com/online-advertising/real-time-bidding	and	http://digiday.com/
platforms/what-is-real-time-bidding)	as	a	smart	approach	that	uses	machine	
learning	to	connect	the	dots.	Machine	learning	determines	how	best	to	match	the	audi-
ence	of	a	website	to	a	specific	piece	of	advertising.

The	machine	learning	part	of	this	approach	relies	on	linear	and	logistic	regressions,	
as	well	as	neural	networks	trained	with	online	learning	(because	information	flow	on	
the	web	is	continuous,	and	the	advertising	scenery	is	changeable).	The	algorithms	
determine	whether	a	person	will	accept	a	particular	piece	of	advertising	based	on	the	
huge	amount	of	data	that	the	person	produces	online,	such	as	interests	hinted	at	by	
website	behaviors	and	social	networks	(see	www.pnas.org/content/110/15/5802.
full),	site-provided	social	and	demographic	information,	and	e-commerce	website	
preferences	and	intentions.	For	instance,	by	using	machine	learning	techniques,	Rocket	
Fuel	can	determine	the	right	moment	to	offer	a	person	information	on	a	product	or	a	
service	(https://rocketfuel.com/how-it-works),	thus	optimizing	communication	
between	companies	and	consumers	without	wasting	effort	and	attention.

D
es

ce
nd

in
g

th
e

Ri
gh

t
Cu

rv
e

0003054003.INDD 581	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

CHAPTER 3 Descending the Right Curve 581

Updating by Mini-Batch and Online
Machine learning boils down to an optimization problem in which you look for
a global minimum given a certain cost function. Consequently, working out an
optimization using all the data available is clearly an advantage, because it allows
checking, iteration by iteration, to determine the amount of minimization with
respect to all the data. That’s the reason that most machine learning algorithms
prefer to use all data available, and they want it accessible inside the computer
memory.

Learning techniques based on statistical algorithms use calculus and matrix alge-
bra, and they need all data in memory. Simpler algorithms, such as those based on
a step-by-step search of the next best solution by proceeding iteration by itera-
tion through partial solution (such as the gradient descent discussed in the previ-
ous section), can gain an advantage when developing a hypothesis based on all
data because they can catch weaker signals on the spot and avoid being fooled by
noise in data.

When operating with data within the limits of the computer’s memory (assuming
about 4GB or 8GB), you’re working in core memory. You can solve most machine
learning problems using this approach. Algorithms that work with core memory
are called batch algorithms because, as in a factory where machines process single
batches of materials, such algorithms learn to handle and predict a single data
batch at a time, represented by a data matrix.

However, sometimes data can’t fit into core memory because it’s too big. Data
derived from the web is a typical example of information that can’t fit easily into
memory. In addition, data generated from sensors, tracking devices, satellites,
and video monitoring are often problematic because of their dimensions when
compared to computer RAM; however, they can be stored easily on a hard disk,
given the availability of cheap and large storage devices that easily hold terabytes
of data.

A few strategies can save the day when data is too big to fit into the standard
memory of a single computer. A first solution you can try is to subsample. Data is
reshaped by a selection of cases (and sometimes even features) based on statisti-
cal sampling into a more manageable, yet reduced, data matrix. Clearly, reduc-
ing the amount of data can’t always provide exactly the same results as when
globally analyzing it. Working on less than the available data can even produce
less powerful models. Yet, if subsampling is executed properly, the approach can
generate almost equivalent and still reliable results. A successful subsampling
must correctly use statistical sampling, by employing random or stratified sample
drawings.

0003054003.INDD 582	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

582 BOOK 8 Essentials of Machine Learning

In random sampling, you create a sample by randomly choosing the examples that
appear as part of the sample. The larger the sample, the more likely the sample
will resemble the original structure and variety of data, but even with few drawn
examples, the results are often acceptable, both in terms of representation of the
original data and for machine learning purposes.

In stratified sampling, you control the final distribution of the target variable or
of certain features in data that you deem critical for successfully replicating the
characteristics of your complete data. A classic example is to draw a sample in
a classroom made up of different proportions of males and females in order to
guess the average height. If females are, on average, shorter than and in smaller
proportion to males, you want to draw a sample that replicates the same propor-
tion in order to obtain a reliable estimate of the average height. If you sample only
males by mistake, you’ll overestimate the average height. Using prior insight with
sampling (such as knowing that gender can matter in height guessing) helps a
lot in obtaining samples that are suitable for machine learning, as explained in
Book 9, Chapter 2.

After you choose a sampling strategy, you have to draw a subsample of enough
examples, given your memory limitations, to represent the variety of data. Data
with high dimensionality, characterized by many cases and many features, is
more difficult to subsample because it needs a much larger sample, which may
not even fit into your core memory.

Beyond subsampling, a second possible solution to fitting data in memory is to
leverage network parallelism, which splits data into multiple computers that are
connected in a network. Each computer handles part of the data for optimization.
After each computer has done its own computations and all the parallel optimiza-
tion jobs have been reduced into a single elaboration, a solution is achieved.

To understand how this solution works, compare the process of building a car
piece by piece using a single worker to having many workers working separately
on car part aggregates — leaving a single worker to perform the final assembly.
Apart from having a faster assembly execution, you don’t have to keep all the
parts in the factory at the same time. Similarly, you don’t have to keep all the data
parts in a single computer, but you can take advantage of their being processed
separately in different computers, thus overcoming core memory limitations.

This approach is the basis of the map-reduce technology and cluster-computer
frameworks, Apache Hadoop and Apache Spark, which are focused on mapping a
problem onto multiple machines and finally reducing their output into the desired
solution. Unfortunately, you can’t easily split all machine learning algorithms into
separable processes, and this problem limits the usability of such an approach.
More important, you encounter significant cost and time overhead in setup and

D
es

ce
nd

in
g

th
e

Ri
gh

t
Cu

rv
e

0003054003.INDD 583	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

CHAPTER 3 Descending the Right Curve 583

maintenance when you keep a network of computers ready for such data process-
ing, thereby limiting the applicability of this approach to only large organizations.

A third solution is to rely on out-of-core algorithms, which work by keeping data
on the storage device and feeding it in chunks into computer memory for process-
ing. The feeding process is called streaming. Because the chunks are smaller than
core memory, the algorithm can handle them properly and use them for updating
the machine learning algorithm optimization. After the update, the system dis-
cards them in favor of new chunks, which the algorithm uses for learning. This
process goes on repetitively until there are no more chunks. Chunks can be small
(depending on core memory), and the process is called mini-batch learning, or they
can even be constituted by just a single example, called online learning.

The previously described gradient descent, as with other iterative algorithms, can
work fine with such an approach; however, reaching an optimization takes lon-
ger because the gradient’s path is more erratic and nonlinear with respect to a
batch approach. The algorithm can reach a solution using fewer computations
with respect to its in-memory version.

When working with repeated updates of its parameters based on mini-batches and
single examples, the gradient descent takes the name stochastic gradient descent. It
will reach a proper optimization solution given two prerequisites:

 » The	examples	streamed	are	randomly	extracted	(hence	the	stochastic,	
recalling	the	idea	of	a	random	extraction	from	a	distribution	of	examples).

 » A	proper	learning	rate	is	defined	as	fixed	or	flexible	according	to	the	number	
of	observations	or	other	criteria.

Disregarding the first prerequisite implies that you must also consider the order-
ing of the examples — a sometimes undesirable effect. The learning rate makes
the learning more or less open to updates, rendering the learning itself more or
less flexible in dealing with the characteristics of examples, which are seen later
in the stream.

The learning parameter can make a difference in the quality of the optimization
because a high learning rate, though faster in the optimization, can constrain the
parameters to the effects of noisy or erroneous examples seen at the beginning of
the stream. A high learning rate also renders the algorithm insensible to the lat-
ter streamed observations, which can prove to be a problem when the algorithm
is learning from sources that are naturally evolving and mutable, such as data
from the digital advertising sector, where new advertising campaigns often start
mutating the level of attention and response of targeted individuals.

0003054003.INDD 584	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:54	AM

CHAPTER 4 Validating Machine Learning 585

0003054004.INDD 585 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

 Validating Machine
Learning

“I’m not running around looking for love and validation . . .”
 — SOPHIE B. HAWKINS

 H aving examples (in the form of data sets) and a machine learning algo-
rithm at hand doesn’t assure that solving a learning problem is possible or
that the results will provide the desired solution. For example, if you want

your computer to distinguish a photo of a dog from a photo of a cat, you can pro-
vide it with good examples of dogs and cats. You then train a dog versus cat clas-
sifi er based on some machine learning algorithm that could output the probability
that a given photo is a dog or a cat. Of course, the output is a probability — not an
absolute assurance that the photo is a dog or cat.

 Based on the probability that the classifi er reports, you can decide the class (dog
or cat) of a photo based on the estimated probability calculated by the algorithm.
When the probability is higher for a dog, you can minimize the risk of making a
wrong assessment by choosing the higher chances favoring a dog. The greater the
probability diff erence between the likelihood of a dog against that of a cat, the
higher the confi dence you can have in your choice. A close choice likely occurs

Chapter 4

 IN THIS CHAPTER

 » Explaining how correct sampling is
critical in machine learning

 » Highlighting errors dictated by bias
and variance

 » Proposing diff erent approaches to
validation and testing

 » Warning against biased samples,
overfi tting, underfi tting, and
snooping

0003054004.INDD 586 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

586 BOOK 8 Essentials of Machine Learning

because of some ambiguity in the photo (the photo is not clear or the dog is actu-
ally a bit cattish). For that matter, it might not even be a dog — and the algorithm
doesn’t know anything about the raccoon, which is what the picture actually
shows.

Such is the power of training a classifier: You pose the problem; you offer the
examples, with each one carefully marked with the label or class that the algo-
rithm should learn; your computer trains the algorithm for a while; and finally
you get a resulting model, which provides you with an answer or probability.
(Labeling is a challenging activity in itself, as you discover in Book 9.) In the end, a
probability is just an opportunity (or a risk, from another perspective) to propose
a solution and get a correct answer. At this point, you may seem to have addressed
every issue and believe that the work is finished, but you must still validate the
results. This chapter helps you discover why machine learning isn’t just a push-
the-button-and-forget-it activity.

Checking Out-of-Sample Errors
When you first receive the data used to train the algorithm, the data is just a data
sample. Unless the circumstances are quite rare, the data you receive won’t be all
the data that you could possibly get. For instance, if you receive sales data from
your marketing department, the data you receive is not all the possible sales data
because unless sales are stopped, there will always be new data representing new
sales in the future.

If your data is not all the data possible, you must call it a sample. A sample is a
selection, and as with all selections, the data could reflect different motivations
as to why someone selected it in such a way. Therefore, when you receive data,
the first question you have to consider is how someone has selected it. If someone
selected it randomly, without any specific criteria, you can expect that, if things
do not change from the past, future data won’t differ too much from the data you
have at hand.

Statistics expects that the future won’t differ too much from the past. Thus you
can base future predictions on past data by employing random sampling theory.
If you select examples randomly without a criterion, you do have a good chance
of choosing a selection of examples that won’t differ much from future examples,
or in statistical terms, you can expect that the distribution of your present sample
will closely resemble the distribution of future samples.

However, when the sample you receive is somehow special, it could present a
problem when training the algorithm. In fact, the special data could force your

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 587 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 587

algorithm to learn a different mapping to the response than the mapping it might
have created by using random data. As an example, if you receive sales data from
just one shop or only the shops in a single region (which is actually a specific
sample), the algorithm may not learn how to forecast the future sales of all the
shops in all the regions. The specific sample causes problems because other shops
may be different and follow different rules from the ones you’re observing.

Ensuring that your algorithm is learning correctly from data is the reason you
should always check what the algorithm has learned from in-sample data (the data
used for training) by testing your hypothesis on some out-of-sample data. Out-
of-sample data is data you didn’t have at learning time, and it should represent the
kind of data you need to create forecasts.

Looking for generalization
Generalization is the capability to learn from data at hand the general rules that
you can apply to all other data. Out-of-sample data therefore becomes essential to
figuring out whether learning from data is possible, and to what extent.

No matter how big your in-sample data set is, bias created by some selection
criteria still makes seeing similar examples frequently and systematically highly
unlikely in reality. For example, in statistics, there is an anecdote about inferring
from biased samples. It involves the 1936 US presidential election between Alfred
Landon and Franklin D. Roosevelt in which the Literary Digest used biased poll
information to predict the winner.

At that time, the Literary Digest, a respectable and popular magazine, polled its
readers to determine the next president of the United States, a practice that it had
performed successfully since 1916. The response of the poll was strikingly in favor
of Landon, with more than a 57 percent consensus on the candidate. The magazine
also used such a huge sample — more than 10 million people (with only 2.4 million
responding) — that the result seemed unassailable: A large sample coupled with a
large difference between the winner and the loser tends not to raise many doubts.
Yet the poll was completely unsuccessful. In the end, the margin of error was
19 percent, with Landon getting only 38 percent of the vote and Roosevelt getting
62 percent. This margin is the largest error ever for a public opinion poll.

What happened? Well, simply put, the magazine questioned people whose names
were pulled from every telephone directory in United States, as well as from the
magazine’s subscription list and from rosters of clubs and associations, gathering
more than ten million names. Impressive, but at the end of the Great Depression,
having a telephone, subscribing to a magazine, or being part of a club meant that
you were rich, so the sample was made of only affluent voters and completely
ignored lower-income voters, who happen to represent the majority (thereby

0003054004.INDD 588 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

588 BOOK 8 Essentials of Machine Learning

resulting in a selection bias). In addition, the poll suffered from a nonresponsive
bias because only 2.4 million people responded, and people who respond to polls
tend to differ from those who don’t. (You can read more about the faulty Literary
Digest poll at www.math.upenn.edu/~deturck/m170/wk4/lecture/case1.html.)
The magnitude of error for this particular incident ushered in the beginning of a
more scientific approach to sampling.

Such classical examples of selection bias point out that if the selection process
biases a sample, the learning process will have the same bias. However, some-
times bias is unavoidable and difficult to spot. As an example, when you go fishing
with a net, you can see only the fish you catch and that didn’t pass through the
net itself.

Another example comes from World War II. At that time, designers constantly
improved US war planes by adding extra armor plating to the parts that took
the most hits upon returning from bombing runs. It took the reasoning of the
mathematician Abraham Wald to point out that designers actually needed to rein-
force the places that didn’t have bullet holes on returning planes. These locations
were likely so critical that a plane hit there didn’t return home, and consequently
no one could observe its damage (a kind of survivorship bias where the survivors
skew the data). Survivorship bias is still a problem today. In fact, you can read
about how this story has shaped the design of Facebook at www.fastcodesign.
com/1671172/how-a-story-from-world-war-ii-shapes-facebook-today.

Preliminary reasoning on your data and testing results with out-of-sample exam-
ples can help you spot or at least have an intuition of possible sampling problems.
However, receiving new out-of-sample data is often difficult, costly, and requires
investment in terms of timing. In the sales example discussed earlier, you have
to wait for a long time to test your sales forecasting model — maybe an entire
year — in order to find out whether your hypothesis works. In addition, making
the data ready for use can consume a great deal of time. For example, when you
label photos of dogs and cats, you need to spend time labeling a larger number of
photos taken from the web or from a database.

A possible shortcut to expending additional effort is getting out-of-sample exam-
ples from your available data sample. You reserve a part of the data sample based
on a separation between training and testing data dictated by time or by random
sampling. If time is an important component in your problem (as it is in fore-
casting sales), you look for a time label to use as separator. Data before a certain
date appears as in-sample data; data after that date appears as out-of-sample
data. The same happens when you choose data randomly: What you extracted as
in-sample data is just for training; what is left is devoted to testing purposes and
serves as your out-of-sample data.

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 589 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 589

Getting to Know the Limits of Bias
Now that you know more about the in-sample and out-of-sample portions of
your data, you also know that learning depends a lot on the in-sample data. This
portion of your data is important because you want to discover a point of view of
the world, and as with all points of view, it can be wrong, distorted, or just merely
partial. You also know that you need an out-of-sample example to check whether
the learning process is working. However, these aspects form only part of the pic-
ture. When you make a machine learning algorithm work on data in order to guess
a certain response, you are effectively taking a gamble, and that gamble is not
just because of the sample you use for learning. There’s more. For the moment,
imagine that you freely have access to suitable, unbiased, in-sample data, so data
is not the problem. Instead you need to concentrate on the method for learning
and predicting.

First, you must consider that you’re betting that the algorithm can reasonably
guess the response. You can’t always make this assumption because figuring out
certain answers isn’t possible no matter what you know in advance. For instance,
you can’t fully determine the behavior of human beings by knowing their previ-
ous history and behavior. Maybe a random effect is involved in the generative
process of our behavior (the irrational part of us, for instance), or maybe the
issue comes down to free will (the problem is also a philosophical/religious one,
and there are many discordant opinions). Consequently, you can guess only some
types of responses, and for many others, such as when you try to predict people’s
behavior, you have to accept a certain degree of uncertainty which, with luck, is
acceptable for your purposes.

Second, you must consider that you’re betting that the relationship between the
information you have and the response you want to predict can be expressed as a
mathematical formula of some kind, and that your machine learning algorithm is
actually capable of guessing that formula. The capacity of your algorithm to guess
the mathematical formula behind a response is intrinsically embedded in the nuts
and bolts of the algorithm. Some algorithms can guess almost everything; oth-
ers actually have a limited set of options. The range of possible mathematical
formulations that an algorithm can guess is the set of its possible hypotheses.
Consequently, a hypothesis is a single algorithm, specified in all its parameters
and therefore capable of a single, specific formulation.

Mathematics is fantastic. It can describe much of the real world by using some
simple notation, and it’s the core of machine learning because any learning algo-
rithm has a certain capability to represent a mathematical formulation. Some
algorithms, such as linear regression, explicitly use a specific mathematical for-
mulation for representing how a response (for instance, the price of a house)
relates to a set of predictive information (such as market information, house loca-
tion, surface of the estate, and so on).

0003054004.INDD 590 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

590 BOOK 8 Essentials of Machine Learning

Some formulations are so complex and intricate that even though representing
them on paper is possible, doing so is too difficult in practical terms. Some other
sophisticated algorithms, such as decision trees (a topic of Book 9, Chapter 4),
don’t have an explicit mathematical formulation, but are so adaptable that they
can be set to approximate a large range of formulations easily. As an example,
consider a simple and easily explained formulation. The linear regression is just
a line in a space of coordinates given by the response and all the predictors. In
the easiest example, you can have a response, y, and a single predictor, x, with a
formulation of

y x1 1 0

In a simple situation of a response predicted by a single feature, such a model
is perfect when your data arranges itself as a line. However, what happens if it
doesn’t and instead shapes itself like a curve? To represent the situation, just
observe the following bidimensional representations, as shown in Figure 4-1.

When points resemble a line or a cloud, some error occurs when you’re figur-
ing out that the result is a straight line; therefore the mapping provided by the
preceding formulation is somehow imprecise. However, the error doesn’t appear
systematically but rather randomly because some points are above the mapped
line and others are below it. The situation with the curved, shaped cloud of points

FIGURE 4-1:
Example of a
linear model

struggling to map
a curve function.

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 591 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 591

is different, because this time, the line is sometimes exact but at other times is
systematically wrong. Sometimes points are always above the line; sometimes
they are below it.

Given the simplicity of its mapping of the response, your algorithm tends to sys-
tematically overestimate or underestimate the real rules behind the data, repre-
senting its bias. The bias is characteristic of simpler algorithms that can’t express
complex mathematical formulations.

Keeping Model Complexity in Mind
Just as simplicity of formulations is a problem, automatically resorting to mapping
very intricate formulations doesn’t always provide a solution. In fact, you don’t
know the true complexity of the required response mapping (such as whether it
fits in a straight line or in a curved one). Therefore, just as simplicity may create
an unsuitable response (refer to Figure 4-1), it’s also possible to represent the
complexity in data with an overly complex mapping. In such cases, the problem
with a complex mapping is that it has many terms and parameters — and in some
extreme cases, your algorithm may have more parameters than your data has
examples. Because you must specify all the parameters, the algorithm then starts
memorizing everything in the data — not just the signals but also the random
noise, the errors, and all the slightly specific characteristics of your sample.

In some cases, it can even just memorize the examples as they are. However,
unless you’re working on a problem with a limited number of simple features
with few distinct values (basically a toy data set, that is, a data set with few exam-
ples and features, thus simple to deal with and ideal for examples), you’re highly
unlikely to encounter the same example twice, given the enormous number of
possible combinations of all the available features in the data set.

When memorization happens, you may have the illusion that everything is work-
ing well because your machine learning algorithm seems to have fitted the in-
sample data so well. Instead, problems can quickly become evident when you start
having it work with out-of-sample data and you notice that it produces errors in
its predictions as well as errors that actually change a lot when you relearn from
the same data with a slightly different approach. Overfitting occurs when your
algorithm has learned too much from your data, up to the point of mapping curve
shapes and rules that do not exist, as shown in Figure 4-2. Any slight change in
the procedure or in the training data produces erratic predictions.

0003054004.INDD 592 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

592 BOOK 8 Essentials of Machine Learning

Keeping Solutions Balanced
To create great solutions, machine learning models trade off between simplicity
(implying a higher bias) and complexity (generating a higher variance of esti-
mates). If you intend to achieve the best predictive performance, you do need to
find a solution in the middle by understanding what works better, which you do
by using trial and error on your data. Because data is what dictates the most suit-
able solution for the prediction problem, you have neither a panacea nor an easy
recurrent solution for solving all your machine learning dilemmas.

A commonly referred to theorem in the mathematical folklore is the no-free-
lunch theorem by David Wolpert and William Macready, which states that “any
two optimization algorithms are equivalent when their performance is averaged
across all possible problems” (see https://en.wikipedia.org/wiki/No_free_
lunch_theorem for details). If the algorithms are equivalent in the abstract, no
one is superior to the other unless proved in a specific, practical problem. (See
the discussion at www.no-free-lunch.org for more details about no-free-lunch
theorems; two of them are actually used for machine learning.)

In particular, in his article “The Lack of A Priori Distinctions Between Learning
Algorithms,” Wolpert discussed the fact that there are no a priori distinctions
between algorithms, no matter how simple or complex they are (you can
obtain the article at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.51.9734). Data dictates what works and how well it works. In the end,
you cannot always rely on a single machine learning algorithm, but you have to
test many and find the best one for your problem.

FIGURE 4-2:
Example of a
linear model

going right and
becoming too
complex while

trying to map a
curve function.

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 593 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 593

Besides being led into machine learning experimentation by the try-everything
principle of the no-free-lunch theorem, you have another rule of thumb to con-
sider: Occam’s razor, which is attributed to William of Occam, a scholastic phi-
losopher and theologian who lived in the fourteenth century (see http://math.
ucr.edu/home/baez/physics/General/occam.html for details). The Occam’s
razor principle states that theories should be cut down to the minimum in order
to plausibly represent the truth (hence the razor). The principle doesn’t state that
simpler solutions are better but that, between a simple solution and a more com-
plex solution offering the same result, the simpler solution is always preferred. The
principle is at the very foundations of our modern scientific methodology, and even
Albert Einstein seems to have often referred to it, stating that “everything should
be as simple as it can be, but not simpler” (see http://quoteinvestigator.
com/2011/05/13/einstein-simple for details). Summarizing the evidence so far:

 » To get the best machine learning solution, try everything you can on your data
and represent your data’s performance with learning curves.

 » Start with simpler models, such as linear models, and always prefer a simpler
solution when it performs nearly as well as a complex solution. You benefit
from the choice when working on out-of-sample data from the real world.

 » Always check the performance of your solution using out-of-sample examples,
as discussed in the preceding sections.

Depicting learning curves
To visualize the degree to which a machine learning algorithm is suffering from
bias or variance with respect to a data problem, you can take advantage of a chart
type named learning curve. Learning curves are displays in which you plot the per-
formance of one or more machine learning algorithms with respect to the quantity
of data they use for training. The plotted values are the prediction error measure-
ments, and the metric is measured both as in-sample and cross-validated or out-
of-sample performance.

If the chart depicts performance with respect to the quantity of data, it’s a learn-
ing curve chart. When it depicts performance with respect to different hyper-
parameters or a set of learned features picked by the model, it’s a validation curve
chart instead. To create a learning curve chart, you must do the following:

 » Divide your data into in-sample and out-of-sample sets (a train/test split of
70/30 works fine, or you can use cross-validation).

 » Create portions of your training data of growing size. Depending on the size of
the data that you have available for training, you can use 10 percent portions

0003054004.INDD 594 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

594 BOOK 8 Essentials of Machine Learning

or, if you have a lot of data, grow the number of examples on a power scale
such as 103, 104, 105, and so on.

 » Train models on the different subsets of the data. Test and record their
performance on the same training data and on the out-of-sample set.

 » Plot the recorded results on two curves, one for the in-sample results and the
other for the out-of-sample results (see Figure 4-3). If instead of a train/test
split you use cross-validation, you can also draw boundaries expressing the
stability of the result across multiple validations (confidence intervals) based
on the standard deviation of the results themselves.

Ideally, you should obtain two curves with different starting error points: higher
for the out-of-sample; lower for the in-sample. As the size of the training set
increases, the difference in space between the two should reduce until, at a certain
number of observations, they become close to a common error value.

Noticeably, after you print your chart, problems arise when

 » The two curves tend to converge, but you can’t see on the chart that
they get near each other because you have too few examples. This
situation gives you a strong hint to increase the size of your data set if you
want to successfully learn with the tested machine learning algorithm.

 » The final convergence point between the two curves has a high error, so
consequently your algorithm has too much bias. Adding more examples
here does not help because you have a convergence with the amount of data
you have. You should increase the number of features or use a more complex
learning algorithm as a solution.

 » The two curves do not tend to converge because the out-of-sample
curve starts to behave erratically. Such a situation is clearly a sign of high
variance of the estimates, which you can reduce by increasing the number of

FIGURE 4-3:
Examples of

learning curves
affected by bias

(left) and variance
(right).

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 595 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 595

examples (at a certain number, the out-of-sample error will start to decrease
again), reducing the number of features, or, sometimes, just fixing some key
parameters of the learning algorithm.

Python provides learning curves as part of the scikit-learn package using the
learning_curve function that prepares all the computations for you (see the
details at http://scikit-learn.org/stable/modules/generated/sklearn.
learning_curve.learning_curve.html).

Training, Validating, and Testing
In a perfect world, you could perform a test on data that your machine learning
algorithm has never learned from before. However, waiting for fresh data isn’t
always feasible in terms of time and costs. As a first simple remedy, you can ran-
domly split your data into training and test sets. The common split is from 25 to
30 percent for testing and the remaining 70 to 75 percent for training. You split
your data consisting of your response and features at the same time, keeping cor-
respondence between each response and its features.

The second remedy occurs when you need to tune your learning algorithm. In
this case, the test split data isn’t a good practice because it causes another kind of
overfitting called snooping (see more on this topic later in the chapter). To over-
come snooping, you need a third split, called a validation set. A suggested split is
to have your examples partitioned in thirds: 70 percent for training, 20 percent for
validation, and 10 percent for testing.

You should perform the split randomly, that is, regardless of the initial order-
ing of the data. Otherwise, your test won’t be reliable, because ordering could
cause overestimation (when there is some meaningful ordering) or underestimation
(when distribution differs by too much). As a solution, you must ensure that the
test set distribution isn’t very different from the training distribution, and that
sequential ordering occurs in the split data. For example, check whether identifi-
cation numbers, when available, are continuous in your sets. Sometimes, even if
you strictly abide by random sampling, you can’t always obtain similar distribu-
tions among sets, especially when your number of examples is small.

When your number of examples n is high, such as n>10,000, you can quite con-
fidently create a randomly split data set. When the data set is smaller, comparing
basic statistics such as mean, mode, median, and variance across the response
and features in the training and test sets will help you understand whether the
test set is unsuitable. When you aren’t sure that the split is right, just recalculate
a new one.

0003054004.INDD 596 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

596 BOOK 8 Essentials of Machine Learning

Resorting to Cross-Validation
A noticeable problem with the train/test set split is that you’re actually intro-
ducing bias into your testing because you’re reducing the size of your in-sample
training data. When you split your data, you may be actually keeping some useful
examples out of training. Moreover, sometimes your data is so complex that a test
set, though apparently similar to the training set, is not really similar because
combinations of values are different (which is typical of highly dimensional data
sets). These issues add to the instability of sampling results when you don’t have
many examples. The risk of splitting your data in an unfavorable way also explains
why the train/test split isn’t the favored solution by machine learning practitio-
ners when you have to evaluate and tune a machine learning solution.

Cross-validation based on k-folds is actually the answer. It relies on random
splitting, but this time it splits your data into a number k of folds (portions of
your data) of equal size. Then each fold is held out in turn as a test set and the
others are used for training. Each iteration uses a different fold as a test, which
produces an error estimate. In fact, after completing the test on one fold against
the others used as training, a successive fold, different from the previous, is held
out and the procedure is repeated in order to produce another error estimate. The
process continues until all the k-folds are used once as a test set and you have a k
number of error estimates that you can compute into a mean error estimate (the
cross-validation score) and a standard error of the estimates. Figure 4-4 shows
how this process works.

This procedure provides the following advantages:

 » It works well regardless of the number of examples, because by increasing the
number of used folds, you are actually increasing the size of your training set
(larger k, larger training set, reduced bias) and decreasing the size of
the test set.

FIGURE 4-4:
A graphical

 representation of
how cross-

validation works.

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 597 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 597

 » Differences in distribution for individual folds don’t matter as much. When a
fold has a different distribution compared to the others, it’s used just once as
a test set and is blended with others as part of the training set during the
remaining tests.

 » You are actually testing all the observations, so you are fully testing your
machine learning hypothesis using all the data you have.

 » By taking the mean of the results, you can expect a predictive performance. In
addition, the standard deviation of the results can tell you how much variation
you can expect in real out-of-sample data. Higher variation in the cross-
validated performances informs you of extremely variegated data that the
algorithm is incapable of properly catching.

Using k-fold cross-validation is always the optimal choice unless the data you’re
using has some kind of order that matters. For instance, it could involve a time
series, such as sales. In that case, you shouldn’t use a random sampling method
but instead rely on a train/test split based on the original sequence so that the
order is preserved and you can test on the last examples of that ordered series.

Looking for Alternatives in Validation
You have a few alternatives to cross-validation, all of which are derived from
statistics. The first one to consider — but only if you have an in-sample made of
few examples — is the leave-one-out cross-validation (LOOCV). It is analogous
to k-folds cross-validation, with the only difference being that k, the number
of folds, is exactly n, the number of examples. Therefore, in LOOCV, you build
n models (which may turn into a huge number when you have many observa-
tions) and test each one on a single out-of-sample observation. Apart from being
computationally intensive and requiring that you build many models to test your
hypothesis, the problem with LOOCV is that it tends to be pessimistic (making
your error estimate higher). It’s also unstable for a small number of n, and the
variance of the error is much higher. All these drawbacks make comparing models
difficult.

Another alternative from statistics is bootstrapping, a method long used to esti-
mate the sampling distribution of statistics, which are presumed not to follow a
previously assumed distribution. Bootstrapping works by building a number (the
more the better) of samples of size n (the original in-sample size) drawn with
repetition. To draw with repetition means that the process could draw an example
multiple times to use it as part of the bootstrapping resampling. Bootstrapping
has the advantage of offering a simple and effective way to estimate the true
error measure. In fact, bootstrapped error measurements usually have much less

0003054004.INDD 598 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

598 BOOK 8 Essentials of Machine Learning

variance than cross-validation ones. On the other hand, validation becomes more
complicated due to the sampling with replacement, so your validation sample
comes from the out-of-bootstrap examples. Moreover, using some training sam-
ples repeatedly can lead to a certain bias in the models built with bootstrapping.

If you are using out-of-bootstrapping examples for your test, you’ll notice that
the test sample can be of various sizes, depending on the number of unique exam-
ples in the in-sample, likely accounting for about a third of your original in-
sample size. This simple Python code snippet demonstrates randomly simulating
a certain number of bootstraps:

from random import randint

import numpy as np

n = 1000 # number of examples

your original set of examples

examples = set(range(n))

results = list()

for j in range(10000):

 # your bootstrapped sample

 chosen = [randint(0,n) for k in range(n)]

 # out-of-sample

 results.append((1000-len(set(choosen)&examples))

 /float(n))

print ("Out-of-bootstrap: %0.1f %%" %

 (np.mean(results)*100))

Out-of-bootstrap: 36.8 %

Running the experiment may require some time, and your results may be dif-
ferent due to the random nature of the experiment. However, you should see an
output of around 36.8 percent.

Optimizing Cross-Validation Choices
Being able to validate a machine learning hypothesis effectively allows further
optimization of your chosen algorithm. As discussed in the previous sections, the
algorithm provides most of the predictive performance on your data, given its
ability to detect signals from data and fit the true functional form of the predic-
tive function without overfitting and generating much variance of the estimates.
Not every machine learning algorithm is a best fit for your data, and no single
algorithm can suit every problem. It’s up to you to find the right one for a specific
problem.

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 599 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 599

A second source of predictive performance is the data itself when appropriately
transformed and selected to enhance the learning capabilities of the chosen
algorithm.

The final source of performance derives from fine-tuning the algorithm’s hyper-
parameters, which are the parameters that you decide before learning happens
and that aren’t learned from data. Their role is in defining a priori a hypoth-
esis, whereas other parameters specify it a posteriori, after the algorithm interacts
with the data and, by using an optimization process, finds that certain param-
eter values work better in obtaining good predictions. Not all machine learning
algorithms require much hyper-parameter tuning, but some of the most complex
ones do, and though such algorithms still work out of the box, pulling the right
levers may make a large difference in the correctness of the predictions. Even
when the hyper-parameters aren’t learned from data, you should consider the
data you’re working on when deciding hyper-parameters, and you should make
the choice based on cross-validation and careful evaluation of possibilities.

Complex machine learning algorithms, the ones most exposed to variance of esti-
mates, present many choices expressed in a large number of parameters. Twid-
dling with them makes them adapt more or less to the data they are learning from.
Sometimes too much hyper-parameter twiddling may even make the algorithm
detect false signals from the data. That makes hyper-parameters themselves an
undetected source of variance if you start manipulating them too much based on
some fixed reference like a test set or a repeated cross-validation schema.

Python offers slicing functionalities that slice your input matrix into train, test,
and validation parts. In particular, for more complex testing procedures, such
as cross-validation or bootstrapping, the Scikit-learn package offers an entire
module (http://scikit-learn.org/stable/modules/classes.html#module-
sklearn.cross_validation). In Book 9, you discover how to apply machine
learning to real problems, including some practical examples using both these
packages.

Exploring the space of hyper-parameters
The possible combinations of values that hyper-parameters may form make
deciding where to look for optimizations hard. As described when discussing gra-
dient descent, an optimization space may contain value combinations that per-
form better or worse. Even after you find a good combination, you’re not assured
that it’s the best option. (This is the problem of getting stuck in local minima
when minimizing the error, an issue described in Book 8, Chapter 3 when talking
about gradient descent’s problems.)

As a practical way of solving this problem, the best way to verify hyper-parameters
for an algorithm applied to specific data is to test them all by cross-validation,

0003054004.INDD 600 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

600 BOOK 8 Essentials of Machine Learning

and to pick the best combination. This simple approach, called grid-search, offers
indisputable advantages by allowing you to sample the range of possible values to
input into the algorithm systematically and to spot when the general minimum
happens. On the other hand, grid-search also has serious drawbacks because it’s
computationally intensive (you can easily perform this task in parallel on mod-
ern multicore computers) and quite time-consuming. Moreover, systematic and
intensive tests enhance the possibility of incurring error because some good but
fake validation results can be caused by noise present in the data set.

Some alternatives to grid-search are available. Instead of testing everything, you
can try exploring the space of possible hyper-parameter values guided by compu-
tationally heavy and mathematically complex nonlinear optimization techniques
(like the Nelder-Mead method), using a Bayesian approach (where the number
of tests is minimized by taking advantage of previous results), or using random
search.

Surprisingly, random search works incredibly well, is simple to understand, and
isn’t just based on blind luck, though it may initially appear to be. In fact, the
main point of the technique is that if you pick enough random tests, you actually
have enough possibilities to spot the right parameters without wasting energy
on testing slightly different combinations of similarly performing combinations.

The graphical representation shown in Figure 4-5 explains why random search
works well. A systematic exploration, though useful, tends to test every combina-
tion, which turns into a waste of energy if some parameters don’t influence the
result. A random search actually tests fewer combinations but more in the range
of each hyper-parameter, a strategy that proves winning if, as often happens,
certain parameters are more important than others.

FIGURE 4-5:
Comparing

grid-search to
random search.

Va
lid

at
in

g
M

ac
hi

ne

Le
ar

ni
ng

0003054004.INDD 601 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

CHAPTER 4 Validating Machine Learning 601

For randomized search to perform well, you should make from 15 to a maximum
of 60 tests. It does make sense to resort to random search if a grid-search requires
a larger number of experiments.

Avoiding Sample Bias and Leakage Traps
On a final note, it’s important to mention a possible remedy to in-sampling bias.
In-sampling bias can happen to your data before machine learning is put into
action, and it causes high variance of the following estimates. In addition, this
section provides a warning about leakage traps that can occur when some infor-
mation from the out-of-sample passes to in-sample data. This issue can arise
when you prepare the data or after your machine learning model is ready and
working.

The remedy, which is called ensembling of predictors, works perfectly when your
training sample is not completely distorted and its distribution is different from
the out-of-sample, but not in an irremediable way, such as when all your classes
are present but not in the right proportion (as an example). In such cases, your
results are affected by a certain variance of the estimates that you can possi-
bly stabilize in one of several ways: by resampling, as in bootstrapping; by sub-
sampling (taking a sample of the sample); or by using smaller samples (which
increases bias).

To understand how ensembling works so effectively, visualize the image of a
bull’s eye. If your sample is affecting the predictions, some predictions will be
exact and others will be wrong in a random way. If you change your sample, the
right predictions will keep on being right, but the wrong ones will start being
variations between different values. Some values will be the exact prediction you
are looking for; others will just oscillate around the right one.

By comparing the results, you can guess that what is recurring is the right answer.
You can also take an average of the answers and guess that the right answer
should be in the middle of the values. With the bull’s-eye game, you can visualize
superimposing photos of different games: If the problem is variance, ultimately
you will guess that the target is in the most frequently hit area or at least at the
center of all the shots.

In most cases, such an approach proves to be correct and improves your machine
learning predictions a lot. When your problem is bias and not variance, using
ensembling really doesn’t cause harm unless you subsample too few samples.
A good rule of thumb for subsampling is to take a sample from 70 to 90 percent
compared to the original in-sample data.

0003054004.INDD 602 Trim size: 7.375 in × 9.25 in March 31, 2017 4:55 AM

602 BOOK 8 Essentials of Machine Learning

If you want to make ensembling work, you should do the following:

1. Iterate a large number of times through your data and models (from just a
minimum of three iterations to ideally hundreds of times of them).

2. Every time you iterate, subsample (or else bootstrap) your in-sample data.

3. Use machine learning for the model on the resampled data, and predict the
out-of-sample results. Store those results away for later use.

4. At the end of the iterations, for every out-of-sample case you want to predict,
take all its predictions and average them if you are doing a regression. Take the
most frequent class if you are doing a classification.

Watching out for snooping
Leakage traps can surprise you because they can prove to be an unknown and
undetected source of problems with your machine learning processes. The prob-
lem is snooping, or otherwise observing the out-of-sample data too much and
adapting to it too often. In short, snooping is a kind of overfitting — and not just
on the training data but also on the test data, making the overfitting problem
itself harder to detect until you get fresh data. Usually you realize that the prob-
lem is snooping when you already have applied the machine learning algorithm
to your business or to a service for the public, making the problem an issue that
everyone can see.

You can avoid snooping in two ways. First, when operating on the data, take care
to neatly separate training, validation, and test data. Also, when processing, never
take any information from validation or test, even the most simple and innocent-
looking examples. Worse still is to apply a complex transformation using all the
data. In finance, for instance, it is well known that calculating the mean and the
standard deviation (which can actually tell you a lot about market conditions and
risk) from all training and testing data can leak precious information about your
models. When leakage happens, machine learning algorithms perform predic-
tions on the test set rather than the out-of-sample data from the markets, which
means that they didn’t work at all.

Check the performance of your out-of-sample examples. In fact, you may bring
back some information from your snooping on the test results to help you deter-
mine that certain parameters are better than others, or lead you to choose one
machine learning algorithm instead of another. For every model or parameter,
apply your choice based on cross-validation results or from the validation sample.
Never fall for getting takeaways from your out-of-sample data, or you’ll regret
it later.

9
0003053970.INDD 603 Trim size: 7.375 in × 9.25 in March 30, 2017 11:19 PM

 Applying
Machine
Learning

0003053970.INDD 604 Trim size: 7.375 in × 9.25 in March 30, 2017 11:19 PM

Contents at a Glance
CHAPTER 1: Starting with Simple Learners . 605

Discovering the Incredible Perceptron . 606
Growing Greedy Classification Trees . 610
Taking a Probabilistic Turn . 615

CHAPTER 2: Leveraging Similarity . 623
Measuring Similarity between Vectors . 624
Using Distances to Locate Clusters . 626
Tuning the K-Means Algorithm . 630
Searching for Classification by k-Nearest Neighbors 637
Leveraging the Correct K Parameter . 638

CHAPTER 3: Hitting Complexity with Neural Networks 643
Learning and Imitating from Nature. 644
Struggling with Overfitting . 653
Introducing Deep Learning . 657

CHAPTER 4: Resorting to Ensembles of Learners 661
Leveraging Decision Trees . 662
Working with Almost Random Guesses . 670
Boosting Smart Predictors . 673
Averaging Different Predictors . 676

CHAPTER 5: Real-World Applications . 677
Classifying Images . 677
Scoring Opinions and Sentiments . 691
Using Scoring and Classification . 703
Recommending Products and Movies . 710

CHAPTER 1 Starting with Simple Learners 605

0003054005.INDD 605 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

 Starting with Simple
Learners

 “We learn from failure, not from success.”
 — DRACULA

 B eginning with this chapter, the examples start illustrating the basics of
how to learn from data. The plan is to touch some of the simplest learning
strategies fi rst — providing some formulas (just those that are essential),

 intuitions about their functioning, and examples in R and Python for experi-
menting with some of their most typical characteristics. The chapter begins by
 reviewing the use of the perceptron to separate classes.

 At the root of all principal machine learning techniques presented in the book,
there is always an algorithm based on somewhat interrelated linear combina-
tions, variations of the sample splitting of decision trees, or some kind of Bayesian
probabilistic reasoning. This chapter uses classifi cation trees to demonstrate
the technique. The only exception is the k-Nearest Neighbors (kNN) algorithm,
which, based on analogical reasoning, is treated apart in a special chapter devoted
to detection of similarity in data (see Book 9, Chapter 2).

 Getting a grasp on these basic techniques means being able to deal with more
complex learning techniques later and being able to understand (and use) them
better. It may appear incredible now, but you can create some of the most eff ective

Chapter 1

 IN THIS CHAPTER

 » Partitioning recursively training data
by decision trees

 » Discovering the rules behind playing
tennis and surviving the Titanic

 » Leveraging Bayesian probability to
analyze textual data

0003054005.INDD 606 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

606 BOOK 9 Applying Machine Learning

algorithms using ensembles of the simplest algorithms — those viewed as weak
learners. In this chapter, you see how to use various techniques to predict when
playing tennis is appropriate based on weather conditions.

At the end of the journey, no algorithm will appear as a black box anymore.
Machine learning has a strong intuitive and human component because it is a
human creation (at least for the moment), and it is based on analogies of how we
learn from the world or on the imitation of nature (for instance, on how we know
the brain works). If core ideas of the discipline are conveyed, no algorithm is really
too difficult to understand. The chapter demonstrates this approach using Bayes-
ian probability to analyze text samples.

Discovering the Incredible Perceptron
You can start the journey toward discovering how machine learning algorithms
work by looking at models that figure out their answers using lines and surfaces
to divide examples into classes or to estimate value predictions. These are linear
models, and this chapter presents one of the earliest linear algorithms used in
machine learning: the perceptron.

Falling short of a miracle
Frank Rosenblatt at the Cornell Aeronautical Laboratory devised the perceptron
in 1957 under the sponsorship of the US Naval Research Laboratory. Rosenblatt
was a psychologist and pioneer in the field of artificial intelligence. Proficient in
cognitive science, it was his idea to create a computer that could learn by trial and
error, just as a human does.

The idea was successfully developed, and at the beginning, the perceptron wasn’t
conceived as just a piece of software; it was created as software running on dedi-
cated hardware. The use of the combination allowed faster and more precise rec-
ognition of complex images than any other computer could do at the time. The
new technology raised great expectations and caused a huge controversy when
Rosenblatt affirmed that the perceptron was the embryo of a new kind of com-
puter that would be able to walk, talk, see, write, and even reproduce itself and
be conscious of its existence. If true, it would have been a powerful tool, and it
introduced the world to AI.

Needless to say, perceptron didn’t realize the expectations of its creator. It
soon displayed a limited capacity, even in its image-recognition specialization.

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 607 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 607

The general disappointment ignited the first AI Winter and the temporary aban-
donment of connectionism until the 1980s.

Connectionism is the approach to machine learning that is based on neuroscience
as well as the example of biologically interconnected networks. You can retrace
the root of connectionism to the perceptron. (See the “Specifying the role of sta-
tistics in machine learning” section of Book 8, Chapter 1 for a discussion of the
five tribes of machine learning.)

The perceptron is an iterative algorithm that strives to determine, by successive
and reiterative approximations, the best set of values for a vector, w, which is
also called the coefficient vector. Vector w can help predict the class of an example
when you multiply it by the matrix of features, X (containing the information in
numeric values) and then add it to a constant term, called the bias. The output is a
prediction in the sense that the previously described operations output a number
whose sign should be able to predict the class of each example exactly.

The natural specialty of the perceptron is binary classification. However, you can
use it to predict multiple classes using more models (one for each class guess,
a training strategy called one-versus-all or OVA). Apart from classification, the
perceptron can’t provide much more information. For instance, you can’t use it
to estimate the probability of being exact in predictions. In mathematical terms,
the perceptron tries to minimize the following cost function formulation, but it
does so only for the examples that are misclassified (in other words, whose sign
doesn’t correspond to the right class):

Error y x w bi M i i
T

The formula, which is an example of a cost function as defined in Book 8, Chapter 3,
involves only the examples of the matrix X, which, under the current set of w, have
been assigned a misclassified sign. To understand the function of the formula, you
have to consider that there are only two classes. The examples from the first class
are expressed as a +1 value in response to vector y, whereas the examples from the
other class are consequently coded as –1. The misclassified examples are deemed
part of the set M (summations consider just the i-th example as being part of M).
The formula picks up each of the misclassified examples and, in turn, multiplies
their features by the vector w, and then adds the bias.

Because the multiplication of misclassified examples, X, by the weight vector, w,
within the parenthesis is a multiplication of vectors, you should transpose the
x vector of features of an example so that the result of the multiplication with w is
a number. This is an aspect of matrix multiplication covered in Book 8, Chapter 2.

0003054005.INDD 608 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

608 BOOK 9 Applying Machine Learning

Multiplying two vectors is the same as creating a weighted sum of the values
of the first vector using the values in the second vector as the weights. There-
fore, if xi has five features and the vector w has five coefficients, the result of
their multiplication is the sum of all five features, each one first multiplied by
its respective coefficient. Matrix multiplication makes the procedure compact to
express in formula, but in the end, the operation doesn’t differ from a weighted
average.

After getting the result of the multiplication of vectors, you sum the values to the
bias and multiply everything to the value that you should have predicted (which is
+1 for the first class and –1 for the second one). Because you’re working only with
misclassified examples, the result of the operation is always negative because the
multiplication of two sign-mismatched values is always negative.

Finally, after running the same computation for all the misclassified examples,
you pool all the results together and sum them. The result is a negative number
that becomes positive because of the negative sign at the head of the formulation
(which is like multiplying everything by –1). The size of the result increases as the
number of perceptron errors becomes larger.

By observing the results carefully, you realize that the formula is devised in a
smart way (although far from being a miracle). The output is smaller when the
number of errors is smaller. When you have no misclassification, the summation
(result) turns to zero. By putting the formula in this form, you tell the computer
to try to achieve perfect classification and never give up. The idea is that when it
finds the right values of the vector w, and there aren’t any prediction errors, all
that’s left to do is to apply the following formula:

ŷ sign Xw q

Running the formula outputs a vector of predictions (ŷ) containing a sequence of
+1 and –1 values that correspond to the expected classes.

Touching the nonseparability limit
The secret to perceptron calculations is in how the algorithm updates the vec-
tor w values. Such updates happen by randomly picking one of the misclassified
examples (call it xt) and changing the w vector using a simple weighted addition:

w w x yt t()

The Greek letter eta (η) is the learning rate. It’s a floating number between 0 and 1.
When you set this value near zero, it can limit the ability of the formula to update
the vector w too much, whereas setting the value near one makes the update pro-
cess fully impact the w vector values. Setting different learning rates can speed

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 609 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 609

up or slow down the learning process. Many other algorithms use this strategy,
and lower eta is used to improve the optimization process by reducing the number
of sudden w value jumps after an update. The trade-off is that you have to wait
longer before getting the concluding results.

The update strategy provides intuition about what happens when using a per-
ceptron to learn the classes. If you imagine the examples projected on a Cartesian
plane, the perceptron is nothing more than a line trying to separate the positive
class from the negative one. As you may recall from linear algebra, everything
expressed in the form of y = xb+a is actually a line in a plane.

Initially, when w is set to zero or to random values, the separating line is just
one of the infinite possible lines found on a plane, as shown in Figure 1-1. The
updating phase defines it by forcing it to become nearer to the misclassified point.
Using multiple iterations to define the errors places the line at the exact border
between the two classes.

In spite of being such a smart algorithm, perceptron showed its limits quite soon.
Apart from being capable of guessing two classes using only quantitative features,
it had an important limit: If two classes had no border due to mixing, the algo-
rithm couldn’t find a solution and kept updating itself infinitively.

If you can’t divide two classes spread on two or more dimensions by any line or
plane, they’re nonlinearly separable. Overcoming data’s being nonlinearly sepa-
rable is one of the challenges that machine learning has to accomplish in order to
become effective against complex problems based on real data, not just on artifi-
cial data created for academic purposes.

FIGURE 1-1:
The separating

line of a
 perceptron
across two

classes.

0003054005.INDD 610 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

610 BOOK 9 Applying Machine Learning

When the nonlinear separability matter came under scrutiny and practitioners
started losing interest in the perceptron, experts quickly theorized that they could
fix the problem by creating a new feature space in which previously insepara-
ble classes are tuned to become separable. Thus the perceptron would be as fine
as before. Unfortunately, creating new feature spaces is a challenge because it
requires computational power that’s only partially available to the public today.

In recent years, the algorithm has had a revival thanks to big data: A perceptron,
in fact, doesn’t need to work with all the data in memory, but it can do fine using
single examples (updating its coefficient vector only when a misclassified case
makes it necessary). It’s therefore a perfect algorithm for online learning, such as
learning from big data an example at a time.

Growing Greedy Classification Trees
Decision trees have a long history. The first algorithm of their kind dates back to
the 1970s, but if you consider experiments and first original research, the use of
decision trees goes back even earlier. As core algorithms of the symbolists tribe,
decision trees have enjoyed a long popularity because of their intuitive algorithm.
Their output is easily translated into rules and is therefore quite understandable
by humans. They’re also extremely easy to use. All these characteristics make
them an effective and appealing no-brainer with respect to models that require
complex mathematical transformations of the input data matrix or extremely
accurate tuning of their hyper-parameters.

Predicting outcomes by splitting data
Using a sample of observations as a starting point, the algorithm retraces the rules
that generated the output classes (or the numeric values when working through a
regression problem) by dividing the input matrix into smaller and smaller parti-
tions until the process triggers a rule for stopping. Such retracing from particular
toward general rules is typical of human inverse deduction, as treated by logic and
philosophy. In a machine learning context, such inverse reasoning is achieved by
applying a search among all the possible ways to split the training in-sample and
decide, in a greedy way, to use the split that maximizes statistical measurements
on the resulting partitions.

An algorithm is greedy when it always chooses its move to maximize the result in
each step along the optimization process, regardless of what could happen in the
following steps. In other words, the algorithm looks to maximize the current step
without looking forward toward achieving a global optimization.

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 611 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 611

The division occurs to enforce a simple principle: Each partition of the initial data
must make it easier to predict the target outcome, which is characterized by a
different and more favorable distribution of classes (or values) than the original
sample. The algorithm creates partitions by splitting the data. It determines the
data splits by first evaluating the features and then the values in the features that
could bring the maximum improvement of a special statistical measure that plays
the role of the cost function in a decision tree.

A number of statistical measurements determine how to make the splits in a deci-
sion tree. All abide by the idea that a split must improve on the original sample,
or another possible split, when it makes prediction safer. Among the most used
measurements are gini impurity, information gain, and variance reduction (for regres-
sion problems). These measurements operate similarly, so this chapter focuses on
information gain because it’s the most intuitive measurement and conveys how
a decision tree can detect an increased predictive ability (or a reduced risk) in
the easiest way for a certain split. Ross Quinlan created a decision tree algorithm
based on information gain (ID3) in the 1970s, and it’s still quite popular thanks
to its recent upgraded version to C4.5. Information gain relies on the formula for
informative entropy, a generalized formulation that describes the expected value
from the information contained in a message:

Entropy p pi ilog2

In the formula, p is the probability for a class (expressed in the range of 0 to 1)
and log2 is the base 2 logarithm. Starting with a sample in which you want to clas-
sify two classes having the same probability (a 50/50 distribution), the maximum
possible entropy is

Entropy = -0.5*log2(0.5) -0.5*log2(0.5) = 1.0

However, when the decision tree algorithm detects a feature that can split the
data set into two partitions, where the distribution of the two classes is 40/60, the
average informative entropy diminishes:

Entropy = -0.4*log2(0.4) -0.6*log2(0.6) = 0.97

Note the entropy sum for all the classes. Using the 40/60 split, the sum is less than
the theoretical maximum of 1 (diminishing the entropy). Think of the entropy as
a measure of the mess in data: the less mess, the more order, and the easier it is
to guess the right class. After a first split, the algorithm tries to split the obtained
partitions further using the same logic of reducing entropy. It progressively splits
any successive data partition until no more splits are possible because the sub-
sample is a single example or because it has met a stopping rule.

0003054005.INDD 612 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

612 BOOK 9 Applying Machine Learning

Stopping rules are limits to the expansion of a tree. These rules work by consider-
ing three aspects of a partition: initial partition size, resulting partition size, and
information gain achievable by the split. Stopping rules are important because
decision tree algorithms approximate a large number of functions; however, noise
and data errors can easily influence this algorithm. Consequently, depending on
the sample, the instability and variance of the resulting estimates affect decision
tree predictions.

As an example, take a look at what a decision tree can achieve using one of the
original Ross Quinlan data sets that present and describe the ID3 algorithm in
“Induction of Decision Trees” (1986) (dl.acm.org/citation.cfm?id=637969).
The data set is quite simple, consisting of only 14 observations relative to the
weather conditions, with results that say whether it’s appropriate to play ten-
nis. The example contains four features: outlook, temperature, humidity, and
wind, all expressed using qualitative classes instead of measurements (you could
express temperature, humidity, and wind strength numerically) to convey a more
intuitive understanding of how the features relate to the outcome. The following
example uses R to create a data.frame containing the play tennis data:

weather <- expand.grid(Outlook = c("Sunny","Overcast","Rain"), Temperature =

c("Hot","Mild","Cool"), Humidity=c("High","Normal"), Wind=c("Weak","Strong"))

response <- c(1, 19, 4, 31, 16, 2, 11, 23, 35, 6, 24, 15, 18, 36)

play <- as.factor(c("No", "No", "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes",

"Yes", "No", "Yes", "Yes", "No"))

tennis <- data.frame(weather[response,],play)

To create a decision tree, the example uses the rpart library and sets the param-
eters necessary to have a tree fully grown by information gain as the split criteria:

library(rpart)

tennis_tree <- rpart(play ~ ., data=tennis, method="class",

parms=list(split="information"), control=rpart.control(minsplit=1))

After creating the tree, you can inspect it using a simple print command or the
summary command for a more detailed and verbose report about its construction.
Different implementations can have different outputs, as you can see from the
rpart output.

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 613 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 613

In addition to rpart, you have other R implementation options for working with
decision trees, such as the packages tree, party, and a few others that you can
discover in this blog post: www.r-bloggers.com/a-brief-tour-of-the-trees-
and-forests. Python also provides a Scikit-learn described at scikit-learn.
org/stable/modules/tree.html. However, if the tree isn’t too complex, a visual
representation can immediately reveal how the tree works no matter what imple-
mentation you use. You can represent trees made by rpart using the rpart.plot
package. Download the package from CRAN. The paper “rpart.plot: Plot rpart
Models” by Stephen Milborrow at www.milbo.org/rpart-plot describes the
package in detail (you can click the rpart plot link on the page to begin the down-
load). After installing the package, you run it and plot the representation of the
tree, as shown in Figure 1-2:

library(rpart.plot)

prp(tennis_tree, type=0, extra=1, under=TRUE, compress=TRUE)

To read the nodes of the tree, just start from the topmost node, which corresponds
to the original training data, and then start reading the rules. Note that each node
has two derivations: The left branch means that the upper rule is true (stated as
yes in a square box), and the right one means that it is false (stated as no in a
square box).

On the right of the first rule, you see an important terminal rule (a terminal leaf),
in a circle, stating a positive result, Yes, that you can read as play tennis=True.
According to this node, when the outlook isn’t sunny (Snn) or rainy (Ran), it’s
 possible to play. (The numbers under the terminal leaf show four examples
affirming this rule and zero denying it.) Please note that you could understand the
rule better if the output simply stated that when the outlook is overcast, play is
possible. Frequently, decision tree rules aren’t immediately usable, and you need

FIGURE 1-2:
A visualization
of the decision
tree built from
the play tennis

data set.

0003054005.INDD 614 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

614 BOOK 9 Applying Machine Learning

to interpret them before use. However, they are clearly intelligible (and much
 better than a coefficient vector of values).

On the left, the tree proceeds with other rules related to Humidity. Again, on the
left, when humidity is high and outlook is sunny, most terminal leaves are nega-
tive, except when wind isn’t strong. When you explore the branches on the right,
you see that the tree reveals that play is always possible when wind isn’t strong,
or when the wind is strong but it doesn’t rain.

Pruning overgrown trees
Even though the play tennis data set in the previous section illustrates the nuts
and bolts of a decision tree, it has little probabilistic appeal because it proposes
a set of deterministic actions (there are no conflicting instructions). Training with
real data usually doesn’t feature such sharp rules, thereby providing room for
ambiguity and hopeful likelihood.

Another, more realistic example, is a data set describing the survival rates of pas-
sengers from the RMS Titanic, the British passenger liner that sank in the North
Atlantic Ocean in April 1912 after colliding with an iceberg. Various versions of the
data set exist — the R version used in the example is made of cross tabulations of
gender, age, and survival. The example transforms the tables into a matrix and
learns rules using the rpart package as previously done with the play tennis data set.

data(Titanic, package = "datasets")

dataset <- as.data.frame(Titanic)

library(rpart)

titanic_tree <- rpart(Survived ~ Class + Sex + Age, data=dataset, weights=Freq,

method="class", parms=list(split="information"),

control=rpart.control(minsplit=5))

pruned_titanic_tree <- prune(titanic_tree, cp=0.02)

Decision trees have more variance than bias in their estimations. To overfit the
data less, the example specifies that the minimum split has to involve at least five
examples; also, it prunes the tree. Pruning happens when the tree is fully grown.
Starting from the leaves, the example prunes the tree of branches, showing little
improvement in the reduction of information gain. By initially letting the tree
expand, branches with little improvement are tolerated because they can unlock
more interesting branches and leaves. Retracing from leaves to root and keeping
only branches that have some predictive value reduces the variance of the model,
making the resulting rules more strict.

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 615 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 615

For a decision tree, pruning is just like brainstorming. First, the code generates
all possible ramifications of the tree (as with ideas in a brainstorming session).
 Second, when the brainstorming concludes, the code keeps only what really
works. A chart of the tree structure (see Figure 1-3) reveals that only two rules
matter in survival: gender (being male penalizes survival) and not being in third
class (the poorest).

library(rpart.plot)

prp(pruned_titanic_tree, type=0, extra=1, under=TRUE, compress=TRUE)

Taking a Probabilistic Turn
Naïve Bayes, another basic learning algorithm, is more similar to the previously
discussed perceptron than the decision tree because it is based on a set of values
being put together to obtain a prediction. As with the perceptron and decision
trees, Naïve Bayes is a historical algorithm used since the 1950s, although under
different names and slightly different forms. Moreover, Naïve Bayes is famed for
being an effective algorithm for learning from text, and it clearly appeals to the
Bayesian tribe. Given its simplicity and the fact that it works with little prepro-
cessing, it has become the baseline for most textual problems in machine learning
before testing more complex solutions.

Understanding Naïve Bayes
As with the perceptron, Naïve Bayes requires values that are probabilities of an
outcome given a certain context (a conditional probability). Moreover, you multiply
the values instead of summing them. Naïve Bayes is powered by computations on
probability, and it consequently requires typical operations on probabilities.

FIGURE 1-3:
A visualization
of the pruned
 decision tree

build from the
Titanic data set.

0003054005.INDD 616 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

616 BOOK 9 Applying Machine Learning

As seen in Book 8, Chapter 2, when probabilities are multiplied, it means that the
events, whose likelihood we are considering, are independent and not influencing
each other in any way. Such an assumption, though deemed simplistic and naïve,
is frequent in many basic machine learning algorithms because it’s unbelievably
effective when working with a lot of data.

By summing values or multiplying probabilities, you treat each piece of infor-
mation as a separate contribution to the answer. It’s an unrealistic assumption
sometimes because reality points to a world of interconnections. However, in spite
of the lack of realism, Naïve Bayes can outperform most complex techniques, as
described by two researchers from Microsoft, Banko and Brill, in their memorable
paper “Scaling to Very Very Large Corpora for Natural Language Disambigua-
tion” (www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
acl2001.pdf).

Naïve Bayes relates to the Bayes’ theorem discussed in Book 8, Chapter 2. It rep-
resents a simplified form of the theorem itself. To answer the class of an example,
the algorithm does the following:

1. Learns the probabilities connecting the features to each of the possible classes.

2. Multiplies all the probabilities related to each resulting class.

3. Normalizes the probabilities by dividing each of them by their total sum.

4. Takes the class featuring the highest probability as the answer.

For instance, in the previous example of the play tennis data set, you observe that
the different distributions of the sunny, overcast, and rain outlooks connect to the
positive and negative answer of whether to play tennis. Using R can provide you
with a quick check on that observation:

print (table(tennis$Outlook, tennis$play))

 No Yes

 Sunny 3 2

 Overcast 0 4

 Rain 2 3

The output shows nine positive responses and five negative ones. By analyz-
ing the positive responses, you see that given a positive response, the outlook is
sunny two times out of nine (probability = 2/9 = 0.22); overcast four times out of
nine (probability = 4/9 = 0.44); and rainy three times out of nine (probability =
3/9 = 0.33). You can repeat the same procedure using the negative responses with
probabilities of 3/5, 0/5, and 2/5, respectively, for sunny, overcast, and rainy
when you can’t play tennis. Using the Bayes’ theorem, you can determine that the

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 617 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 617

probabilities that you calculated are actually P(E|B), which is the probability that
given a certain belief (such as whether to play tennis), you have certain evidence
(which is weather, in this case):

P(B|E) = P(E|B)*P(B) / P(E)

The formula provides the answer you need, because it is the probability of a cer-
tain belief (to play or not to play) given certain evidence (the weather conditions).
If you estimate the probabilities for every belief, you can choose the belief that has
the highest probability, thus minimizing the risk of predicting something incor-
rectly. P(E|B) then becomes critical for estimating the probabilities because P(B)
is the general probability of a positive or negative answer (the prior probability)
and it’s easy to determine. In this case, you have nine positive outcomes and five
negative ones. Thus P(B) is 9/(9+5) = 0.64 for positive and 0.36 for negative.

When you have many pieces of evidence, as in this example, P(E|B) is a compound
of all the single P(E|B) probabilities on hand. This example has sets of probabili-
ties for outlook, temperature, humidity, and wind. Putting them together isn’t
easy unless you presume that they affect the response separately. As mentioned
previously, probabilities of independent events are simply multiplied together,
and the overall P(E|B) turns out to be the multiplication of all the P(E|B) for each
feature.

It may happen that you don’t have evidence for a response. For instance, in this
example, you don’t have cases of not playing tennis when the sky is overcast.
The result is a zero probability, and in a multiplication, a zero probability always
returns zero no matter what other probabilities are involved. A lack of evidence for
a response can occur when you don’t sample enough examples. A good practice is
to modify observed probabilities by a constant, called a Laplace correction, which
consists of adding fictitious evidence when estimating the probability. Using such
a correction in this example, you’d find that the probability of 0/5 would become
(0+1)/(5+1) = 0.17.

P(E) isn’t a big deal for this example, and you should ignore it. The reason P(E)
doesn’t matter is that it represents the probability of seeing a certain set of fea-
tures in reality and it naturally varies from example to example (for instance,
your location could make certain weather conditions rare). However, you’re not
comparing probabilities across examples. You’re comparing probabilities within
each example to determine the most likely prediction for that example. Within
the same example, the probability of a certain set of evidence is the same because
you have only that set for every possible outcome. Whether the set of evidence is
rare doesn’t matter; in the end, you have to predict that example in isolation from
the others, so you can safely rule out P(E) by making it a value of 1. The following

0003054005.INDD 618 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

618 BOOK 9 Applying Machine Learning

example shows that how to use R determines the numbers to plug in the formula-
tion for getting a prediction given certain weather conditions:

outcomes <- table(tennis$play)

prob_outcomes <- outcomes / sum(outcomes)

outlook <- t(as.matrix(table(tennis$Outlook, tennis$play))) / as.vector(outcomes)

temperature <- t(as.matrix(table(tennis$Temperature, tennis$play))) /

as.vector(outcomes)

humidity <- t(as.matrix(table(tennis$Humidity, tennis$play))) /

as.vector(outcomes)

wind <- t(as.matrix(table(tennis$Wind, tennis$play))) / (as.vector(outcomes))

After running the previous code snippet, you have all the elements needed to fig-
ure out a prediction. Pretend that you to need to guess the following condition:

Outlook = Sunny, Temperature = Mild, Humidity = Normal, Wind = Weak

To obtain the required information, you first compute the probability for a posi-
tive outcome:

p_positive <- outlook["Yes","Sunny"] * temperature["Yes","Mild"] *

humidity["Yes","Normal"] * wind["Yes","Weak"] * prob_outcomes["Yes"]

If you print p_positive, you can see that the probability is 0.02821869. Now you
can check for a negative outcome:

p_negative <- outlook["No","Sunny"] * temperature["No","Mild"] *

humidity["No","Normal"] * wind["No","Weak"] * prob_outcomes["No"]

The result in terms of probability for a negative response is 0.006857143. Finally,
you can obtain the guess using a Boolean check:

print (p_positive >= p_negative)

The positive result, TRUE, confirms that given such conditions, the algorithm pre-
dicts that you can play tennis.

Estimating response with Naïve Bayes
Now that you know how it works, Naïve Bayes should appear quite simple and
strongly naïve in its assumption. You should also know that multiplying prob-
abilities is fine. You also need to consider these issues:

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 619 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 619

 » Fixing zero probabilities using the Laplace correction

 » Converting numeric features into qualitative variables because estimating
probability for classes comprising ranges of numbers is easier

 » Using counted features only (values equal to or above zero) — although some
algorithm variants can deal with binary features and negative values

 » Imputing values in missing features (when you’re missing an important
probability in the computation), along with removing redundant and irrelevant
features (keeping such features would make estimation by Naïve Bayes more
difficult)

In particular, irrelevant features can affect results a lot. When you are work-
ing with a few examples with many features, an unlucky probability can really
skew your result. As a solution, you can select features, filtering only the most
important ones. When you have enough examples and you spend some time fix-
ing features, Naïve Bayes renders effective solutions to many prediction problems
involving the analysis of textual input such as:

 » Email spam detection: Allows you to place only useful information in
your Inbox.

 » Text classification: No matter the source (online news, tweets, or other
textual feeds), you can correctly arrange text into the right category (such as
sports, politics, foreign affairs, and economy).

 » Text-processing tasks: Lets you perform spelling correction or guess the
language of a text.

 » Sentiment analysis: Detects the sentiment behind written text (positive,
negative, neutral, or one of the basic human emotions).

As an example of a practical application, you can use R and the klaR library, which
contains the NaiveBayes function. This library offers an interesting data set
 containing selected features for detecting whether an inbound email should be
considered spam. Because klarR and kernlab are nonstandard libraries, the first
time you run the code, you have to install them:

install.packages(c("klarR","kernlab"))

After doing so, you are ready to run the example code:

library(klaR)

data(spam, package = "kernlab")

0003054005.INDD 620 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

620 BOOK 9 Applying Machine Learning

Hewlett-Packard Labs collected the data set and classified 4,601 emails as spam
or nonspam, using 57 features. You can also find the spam data set on the free UCI
machine learning repository at https://archive.ics.uci.edu/ml/datasets/
Spambase.

If you upload the spam data set and check its features (using the command
head(spam), for instance), you notice that some features are words, whereas oth-
ers point to the presence of certain characters or writing styles (such as capital
letters). More noticeably, some of the features aren’t integer numbers represent-
ing counts but rather are floats ranging from 0 to 100. They represent the presence
of each feature in the text as a percentage (for instance, the variable charDollar
represents the percentage of dollar sign characters in the phrase and ranges from
0 to 6).

Features expressed as percentages of certain words or characters in text represent
a wise strategy to balance the higher likelihood of finding certain elements if the
text is long. Using percentages instead of counts normalizes the texts and lets you
view them as being of the same length.

Applying a Naïve Bayes model in R requires just a few commands. You can set
the Laplace correction using the fL parameter (the example keeps it set to zero)
and defining different a priori probabilities, P(B), using the prior parameter and
providing a vector of probabilities. In this example, we set the probability of an
email’s being nonspam to 90 percent:

set.seed(1234)

train_idx <- sample(1:nrow(spam), ceiling(nrow(spam)*3/4), replace=FALSE)

naïve <- NaiveBayes(type ~ ., data=spam[train_idx,], prior = c(0.9,0.1), fL = 0)

The code doesn’t use all the examples at hand, but instead keeps a quarter of them
for testing the results out-of-sample. NaiveBayes automatically translates the
numeric features into features suitable for the algorithm, thus leaving little more
to do than to ask the model to scan the out-of-sample data and generate predic-
tions that you check in order to know how well the model works. (Don’t worry
about the warnings you see from the confusionMatrix function found in the caret
library — what you care about is the confusion matrix output.)

The caret library is used for error estimation, and is a powerful tool supporting
you in many operations for validating and evaluating machine learning algorithm,
but you must install it first:

install.packages("caret")

St
ar

ti
ng

 w
it

h
Si

m
pl

e
Le

ar
ne

rs

0003054005.INDD 621 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 1 Starting with Simple Learners 621

Installation will take some time because the library has many dependencies (it
requires many other R libraries, such as the e1071 library, a package for support-
ing vector machines). After completing the installation, you can proceed with the
example.

library(caret)

predictions <- predict(naïve, spam[-train_idx,])

confusionMatrix(predictions$class, spam[-train_idx,"type"])

The example shows that NaiveBayes takes longer to predict than to train. The
increased prediction time happens because training the algorithm involves
 counting only the occurrences in the features and stores the results. The real
 computations happen when the algorithm is predicting, making it fast to train
and slow to predict. Here’s the output you see from this example:

Prediction nonspam spam

 nonspam 403 24

 spam 293 430

It seems that, as often happens, an algorithm can catch almost all the spam, but
does so at the cost of putting some regular email into the spam box. The code can
report such problems using a score measure such as accuracy, which you can split
further into accuracy for the positive and the negative classes, respectively:

Accuracy : 0.7243

Pos Pred Value : 0.9438

Neg Pred Value : 0.5947

Catching spam isn’t that difficult; the problem is to avoid discarding important
emails in the process (false positives, where a positive is a spam email).

There are quite a few kinds of Naïve Bayes models. The model you just used is
called multinomial. However, there is also a Bernoulli version, suitable for binary
indicators (you don’t count words but instead check to determine whether they’re
present) and a Gaussian version (which expects normally distributed features —
having both positive and negative values). Python, contrary to R, offers a complete
range of Naïve Bayes models in the Scikit-learn package at scikit-learn.org/
stable/modules/naive_bayes.html.

0003054005.INDD 622 Trim size: 7.375 in × 9.25 in March 30, 2017 10:58 PM

CHAPTER 2 Leveraging Similarity 623

0003054006.INDD 623 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

 Leveraging Similarity
 “A rose by any other name would smell as sweet.”

 — JULIET, ROMEO AND JULIET

 A rose is a rose. A tree is a tree. A car is a car. Even though you can make
simple statements like this, one example of each kind of item doesn’t suf-
fi ce to identify all the items that fi t into that classifi cation. After all, many

species of trees and many kinds of roses exist. If you evaluate the problem under
a machine learning framework in the examples, you fi nd features whose values
change frequently and features that somehow systematically persist (a tree is
always made of wood and has a trunk and roots, for instance). When you look
closely for the features’ values that repeat constantly, you can guess that certain
observed objects are of much the same kind.

 So children can fi gure out by themselves what cars are by looking at the features.
After all, cars all have four wheels and run on roads. But what happens when
a child sees a bus or a truck? Luckily, someone is there to explain the big cars
and open the child’s world to larger defi nitions. In this chapter, you explore how
machines can learn by exploiting similarity in

 » A supervised way: Learning from previous examples. For example, a car has
four wheels; therefore if a new object has four wheels, it could be a car.

Chapter 2

 IN THIS CHAPTER

 » Understanding diff erences between
examples

 » Clustering data into meaningful
groups

 » Classifying and regressing after
looking for data neighbors

 » Grasping the diffi culties of working in
a high-dimensional data space

0003054006.INDD 624 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

624 BOOK 9 Applying Machine Learning

 » An unsupervised way: Inferring a grouping without any label to learn from.
For example, a list of items all have roots and are made of wood, so they
should go into the same group even though they lack a name.

Both our topic algorithms, K-means, an unsupervised clustering algorithm,
and k-Nearest Neighbors, a supervised regression and classification algorithm,
work by leveraging similarities among examples. They offer a good glance at the
advantages and disadvantages of ordering the world in items that are more or less
similar.

Measuring Similarity between Vectors
You can easily compare examples from your data using calculations if you think
of each of them as a vector. The following sections describe how to measure simi-
larity between vectors to perform tasks such as computing the distance between
vectors for learning purposes.

Understanding similarity
In a vector form, you can see each variable in your examples as a series of
 coordinates, with each one pointing to a position in a different space dimension,
as shown in Figure 2-1. If a vector has two elements, that is, it has just two vari-
ables, working with it is just like checking an item’s position on a map by using
the first number for the position on the East-West axis and the second on the
North-South axis.

FIGURE 2-1:
Examples of

values plotted as
points on a chart.

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 625 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 625

For instance, the numbers between parentheses (1,2) (3,2), and (3,3) are all exam-
ples of points. Each example is an ordered list of values (called a tuple) that can
be easily located and printed on a map using the first value of the list for x (the
horizontal axis) and the second for y (the vertical axis). The result is a scatterplot,
and you find examples of them in this chapter.

If your data set, in matrix form, has many numeric features (the columns), ide-
ally the number of the features represents the dimensions of the data space, while
the rows (the examples) represent each point, which mathematically is a vector.
When your vector has more than two elements, visualization becomes trouble-
some because representing dimensionalities above the third isn’t easy (after all,
we live in a three-dimensional world). However, you can strive to convey more
dimensionalities by some expedient, such as by using size, shape, or color for
other dimensions. Clearly, that’s not an easy task, and often the result is far from
being intuitive. However, you can grasp the idea of where the points would be in
your data space by systematically printing many graphs while considering the
dimensions two by two. Such plots are called matrices of scatterplots.

Don’t worry about multidimensionality. You extend the rules you learned in two
or three dimensions to multiple dimensions, so if a rule works in a bidimensional
space, it also works in a multiple one. Therefore all the examples first refer to
bidimensional examples.

Computing distances for learning
An algorithm can learn by using vectors of numbers that use distance measure-
ments. Often the space implied by your vectors is a metric one that is a space
whose distances respect certain specific conditions:

 » No negative distances exist, and your distance is zero only when the starting
point and ending point coincide (called nonnegativity).

 » The distance is the same going from a point to another and vice versa (called
symmetry).

 » The distance between an initial point and a final one is always greater than, or
at worse the same as, the distance going from the initial to a third point and
from there to the final one (called triangle inequality — which means that there
are no shortcuts).

Distances that measure a metric space are the Euclidean distance, the Manhattan
distance, and the Chebyshev distance. These are all distances that can apply to
numeric vectors.

0003054006.INDD 626 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

626 BOOK 9 Applying Machine Learning

Euclidean distance
The most common is the Euclidean distance, also described as the l2 norm of
two vectors (you can find a discussion of l1, l2, and linfinity norms at https://
rorasa.wordpress.com/2012/05/13/l0-norm-l1-norm-l2-norm-l-infinity-
norm). In a bidimensional plane, the Euclidean distance refigures as the straight
line connecting two points, and you calculate it as the square root of the sum of
the squared difference between the elements of two vectors. In the previous plot,
the Euclidean distance between points (1,2) and (3,3) can be computed in R as
sqrt((1-3)^2+(2-3)^2), which results in a distance of about 2.236.

Manhattan distance
Another useful measure is the Manhattan distance (also described as the l1 norm
of two vectors). You calculate the Manhattan distance by summing the absolute
value of the difference between the elements of the vectors. If the Euclidean dis-
tance marks the shortest route, the Manhattan distance marks the longest route,
resembling the directions of a taxi moving in a city. (The distance is also known
as taxicab or city-block distance.) For instance, the Manhattan distance between
points (1,2) and (3,3) is abs(1–3) and abs(2–3), which results in 3.

Chebyshev distance
The Chebyshev distance or maximum metric takes the maximum of the abso-
lute difference between the elements of the vectors. It is a distance measure that
can represent how a king moves in the game of chess or, in warehouse logistics,
the operations required by an overhead crane to move a crate from one place to
another. In machine learning, the Chebyshev distance can prove useful when
you have many dimensions to consider and most of them are just irrelevant or
 redundant (in Chebyshev, you just pick the one whose absolute difference is the
largest). In the example used in previous sections, the distance is simply 2, the
max between (1–3) and abs(2–3).

Using Distances to Locate Clusters
Working with a well-ordered space, you naturally find similar items next to
each other, such as books about the same topic in a library. In a library, similar
books stand in the same bookshelf, in the same bookcase, and in the same sec-
tion. Imagine, for instance, being a librarian who is tasked with gathering all the
books on the same topic without any helpful indication of a preexisting index or
label. Grouping similar objects or examples in this case is clustering. In machine

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 627 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 627

learning, it is an unsupervised task. It allows you to create labels when no labeling
is available, or when creating new labeling empirically is helpful.

With the library example, a good solution to the lack of an index or labels would be
picking books here and there at random, each one located in a different bookcase
and bookshelf, and then looking for similar books in all directions. You could go
as far from the original book as makes sense. In a short time, based on the books’
locations, you could partition your library into homogeneous areas of books
around similar topics. After reading a single representative book from each area,
you could easily and confidently label all the books located there by topic.

Based on this same idea (starting from an example and looking in all directions
within a given range), an entire series of statistical algorithms, called parti-
tion algorithms, help you explore data dimensions around starting examples by
aggregating the ones that are similar. Among partition algorithms, K-means is
the most well-known and popular one. It usually works out good solutions by
 leveraging the nearness of similar examples in a data space, drawing the boundar-
ies of classes, and ultimately recovering any unknown group structure. K-means
allows labeling, summarization, and sometimes a deeper understanding of hidden
dynamics of data. K-means can help you achieve the following:

 » Labeling examples into separated groups

 » Creating new features (the labels of the groups) for use in supervised learning
tasks (labels from a cluster analysis are very helpful as new features when
learning from text and images)

 » Grouping anomalous examples into groups of their own, thus helping you to
locate them easily

K-means is not the only algorithm capable of performing clustering tasks.
 Clustering (also known as cluster analysis) has a long history, and algorithms of
different kinds exist for performing it. There are clustering methods that arrange
the examples into tree-like structures (hierarchical clustering) and others that
look for parts of the data space where examples are denser (DBSCAN). Others fig-
ure out whether any cluster is derivable from certain statistical distributions, such
as a Gaussian. Among so many choices, K-means has become a very successful
algorithm in machine learning for good reasons:

 » It’s easy and intuitive to understand.

 » It can be fast and scales nicely to large amounts of data.

 » It does not require keeping too much information in memory.

 » Its output is useful as an input to other machine learning algorithms.

0003054006.INDD 628 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

628 BOOK 9 Applying Machine Learning

Checking assumptions and expectations
K-means relies on assumptions that some people dispute and that you need to
know about. First, the algorithm assumes that your data has groups called clusters.
It also assumes that the groups are made of similar examples, with the starting
example, called the prototype or the centroid, in the center of the cluster. Finally,
it assumes that, in the data space, groups have a rigorously spherical-like shape.
Therefore, regretfully, K-means doesn’t allow strange shapes, which can be a
weakness of the technique because the real world isn’t always geometrically
shaped. These are all theoretical assumptions. (The algorithm can work well when
the data meets the conditions; otherwise, you must check the result closely.)

K-means works with a numeric measure, the Euclidean distance. All your data has
to be in the form of a number representing a measure (technically called a metric
measure; for instance, everyday metrics measures are meters and kilos). You can’t
use variables whose values are assigned arbitrarily; the measure should have some
relation to reality. However, even though it’s not ideal, you can use ordinal num-
bers (like 1st, 2nd, 3rd, and so on, because they have a measure-like order). You can
also use binary variables (1 or 0).

The Euclidean distance is the root of a big sum, so all your variables have to be of
the same scale, or the variables with the larger range will dominate the distance
(and you’ll create clusters on just those variables). The same domination also
occurs if some variables are correlated; that is, they share a part of their infor-
mative content (variance). Again, you have some variables influencing the result
more than others do. One solution is to transform your data before the K-means
by statistically standardizing all the variables and transforming them into com-
ponents with a dimensionality reduction algorithm such as principal component
analysis (PCA), which is discussed later in this chapter.

K-means also expects you to already know how many clusters your data contains.
However, it isn’t a big problem if you don’t know, because you can guess or try many
solutions, starting from the desirable ones. Because the algorithm makes so many
theoretical and practical assumptions, it always comes up with a solution (which is
why everyone loves it so much). When you work with data with no clusters or ask
for the wrong number of clusters, it can provide you with some misleading results.
You can distinguish good results from bad ones based on the following:

 » Heuristics: You can measure the quality of the clustering.

 » Reproducibility: Random results cannot be replicated.

 » Understandability: Absurd solutions are seldom real solutions.

 » Usability: You care about how machine learning practically solves problems
and aren’t concerned about its correctness in terms of assumptions.

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 629 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 629

The K-means algorithm is an unsupervised algorithm, so unless you know the
cluster solution beforehand, you don’t have any error to measure in terms of
 deviance or accuracy. After getting a solution, always do a reality check with
the clustering quality measures to see whether the result is reproducible under
 different conditions, makes sense, and can help with your problem.

Inspecting the gears of the algorithm
The K-means algorithm performs tasks in a specific way. By understanding the
procedure that the algorithm uses to perform tasks, you can better understand
how to employ the K-means algorithm. You can detail the procedure that the
algorithm uses in a few steps:

1. After you instruct the algorithm that there are k clusters in the data (where k is
an integer number), the algorithm picks k random examples as the original
centroids of your k clusters.

2. The algorithm assigns all the examples to each of the k clusters based on their
Euclidian distance to each one’s centroid. The nearest centroid wins the
example, which then becomes part of its cluster.

3. After assigning all the examples to the clusters, the algorithm recalculates the
new centroid of each one by averaging all the examples that are part of the
group. After the first round, the new centroids likely won’t coincide with a real
example anymore. At this point, when thinking of centroids, consider them as
ideal examples (actually, prototypes).

4. If it is not the first round, after averaging, the algorithm checks how much the
position of centroids has changed in the data space. If it has not changed all
that much from the previous round, the algorithm assumes a stable solution
and returns the solution to you. Otherwise, the algorithm repeats Steps 2 and 3.
Having changed the position of centroids, the algorithm reassigns part of the
examples to a different cluster, which likely leads to a change in the centroid
position.

Given the jumps between Steps 2 and 4 until the output meets a certain conver-
gence condition, the K-means algorithm is iterative. Iteration after iteration, the
initial centroids, which the algorithm chooses randomly, move their position until
the algorithm finds a stable solution. (The examples don’t move anymore between
clusters, or at least few do.) At that point, after the algorithm has converged, you
can expect that

 » All your data is separated into clusters (so each example will have one and just
one cluster label).

0003054006.INDD 630 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

630 BOOK 9 Applying Machine Learning

 » All the clusters tend to have the maximum internal cohesion possible. You can
compute the cohesion for every cluster by subtracting the centroid position
from the position of each example, then squaring the result of each subtrac-
tion (so you remove the sign), and finally summing all the results. Thus you
obtain the cohesion, which in a cluster analysis, always tends to be the
minimum possible (called within-cluster sum of squares or WSS).

 » All the clusters have the maximum external difference possible. This means that
if you take the difference of each centroid with the average of the data space
(the grand centroid), square each difference, multiply each of them by their
respective cluster’s number of examples, and then sum all results together, the
result is the maximum possible (between-cluster sum of squares or BSS).

Because the between-cluster sum of squares is dependent on the result of the
within-cluster calculation, you need to look at only one of them (usually WSS will
suffice). Sometimes the starting position is an unlucky one, and the algorithm
doesn’t converge at a proper solution. The data is always partitioned, so you can
only guess that the algorithm has performed the work acceptably by calculating
the within-cluster sum of squares of the solution and comparing it with previous
calculations.

If you run the K-means a few times and record the results, you can easily spot
algorithm runs that had a higher within-cluster sum of squares and a lower
between-cluster result as the solution that you can’t trust. Depending on your
computational power at hand and the data set size, running many trials can con-
sume a lot of time, and you have to decide how to trade time for safety in choosing
a good solution.

Tuning the K-Means Algorithm
To get the best possible results from the K-means algorithm, you must tune it.
Tuning a K-means algorithm requires clear ideas about its purpose:

 » If the purpose is explorative, stop at the number of clusters when the
solution makes sense and you can determine which clusters to use by
naming them.

 » If you are working with abstract data, looking at the within-cluster sum of
squares or at some other tuning measure can help hint at the right solution.

 » If you need the cluster results to feed a supervised algorithm, use
cross-validation to determine the solution that brings more predictive power.

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 631 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 631

The next step requires you to decide on an implementation. The Python language
offers two versions of the algorithm in the scikit-learn package. The first one is
the classical algorithm, sklearn.cluster.KMeans. You can also use a mini-batch
version, sklearn.cluster.MiniBatchKMeans, which differs from the standard
K-means because it can compute new centroids and reassign all previous cluster
labels on portions of the data (instead of making all the computations after evalu-
ating all the data sample).

The advantage of the mini-batch is that it can process data that won’t fit in the
available memory of your computer by fetching examples in small chunks from
disk. The algorithm processes each chunk, updates the clusters, and then loads
the next chunk. The only possible bottleneck is the speed of data transfer. The
process takes more time than the classical algorithm, but when it’s finished com-
puting (and it may take a few passages on all your data), you’ll have a complete
model that’s not much different from the model you could have obtained using
the standard algorithm.

sklearn.cluster.MiniBatchKMeans has two fit methods:

 » fit: Works with data in memory and stops after it processes the information
available based on the batch size that you set using the batch_size
parameter.

 » partial_fit: Processes the data in memory, but then remains open to start
again when presented with new data, so it’s perfect for streaming data in
blocks from disk or from a network such as the Internet.

sklearn.cluster.KMeans offers all the standard parameters discussed earlier:
the number of clusters (n_clusters) and the initialization method (init). More-
over, it offers the possibility to precompute distances (precompute_distances).
If the number of effective iterations is high, sklearn.cluster.KMeans calculates
the distances repetitively, wasting time. If you have memory and need speed, just
set precompute_distances to TRUE, which stores all the calculations in advance.
You can also instruct the algorithm to work in parallel (setting n_job to -1) when
it has to create many solutions simultaneously (because of different random ini-
tializations). Precomputing distances and parallel computation make the Python
implementation currently the fastest available.

Experimenting K-means reliability
The nuances of K-means can be seen using the Iris data set, a popular example
data set about three species of iris flowers that had their petals and sepals (part
of the flower, supporting the petals when in bloom) measured. Introduced by
the statistician Ronald Fisher in one of his papers in 1936 to demonstrate linear

0003054006.INDD 632 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

632 BOOK 9 Applying Machine Learning

discriminant analysis (a statistical predictive analysis), the tricky thing about this
data set is that two iris species (Virginica and Versicolor) need combined measure-
ments to aid in distinguishing one from the other (in supervised learning). You
can’t resolve labeling in unsupervised learning by using just the given informa-
tion. The Iris data set is also a balanced data set because you use the same number
of examples for each of the three iris species, as shown in the following Python
example:

from sklearn.datasets import load_iris

data = load_iris()

print ("Features :%s" % data.feature_names)

features = data.data

labels = data.target

Features :['sepal length (cm)', 'sepal width (cm)',

 'petal length (cm)', 'petal width (cm)']

The experiment uses both of the two available K-means versions in scikit-learn:
the standard algorithm and the mini-batch version. In the scikit-learn package,
you must define a variable for each learning algorithm in advance, specifying its
parameters. Therefore you define two variables, k_means and mb_k_means, which
requires three clusters, a smart initialization procedure (called ‘k-means++’),
and raising the number of maximum iterations to a high figure (don’t worry,
 usually the algorithm is quite fast). Finally, you fit the features, and after a short
delay, the computations complete.

from sklearn.cluster import MiniBatchKMeans, KMeans

k_means = KMeans(n_clusters=3, init='k-means++',
 max_iter=999, n_init=1, random_state=101)

mb_k_means = MiniBatchKMeans(n_clusters=3, init='k-means++',
 max_iter=999, batch_size=10, n_init=1, random_state=101)

k_means.fit(features)

mb_k_means.fit(features)

The following code prints a nice plot on your screen of how points (our exam-
ples of flowers) distribute on a map made of sepal length and width, as shown
in Figure 2-2. If you’re working with IPython Notebook, %matplotlib inline
 displays the chart inside your notebook.

%matplotlib inline

import matplotlib.pyplot as plt

plt.scatter(features[:,0], features[:,1], s=2**7, c=labels,

 edgecolors='white', alpha=0.85, cmap='autumn')

plt.grid() # adds a grid

plt.xlabel(data.feature_names[0]) # adds label to x axis

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 633 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 633

plt.ylabel(data.feature_names[1]) # adds label to y axis

Printing centroids, first of regular K-means, then of mini-batch

plt.scatter(k_means.cluster_centers_[:,0], k_means.cluster_centers_[:,1],

 s=2**6, marker='s', c='white')

plt.scatter(mb_k_means.cluster_centers_[:,0],

 mb_k_means.cluster_centers_[:,1], s=2**8,

 marker='*', c='white')

for class_no in range(0,3): # We just annotate a point for each class

 plt.annotate(data.target_names[class_no],

 (features[3+50*class_no,0],features[3+50*class_no,1]))
plt.show() # Showing the result

What is noticeable about the plot is that it also displays the centroids — those
from the standard algorithm as squares; those from the mini-batch version as
stars — and they don’t differ all that much. This fact demonstrates how the dif-
ferent learning procedures lead to almost identical conclusions. Sometimes it’s
amazing to see how even algorithms that are different may arrive at the same
conclusions. When that doesn’t happen, you might have too much variance in the
estimates, and each algorithm could have a very different learning strategy; yet
you’ll notice that machine learning algorithms often tend to get the same strong
signals (though in the end they make different use of them).

All the information about the algorithm is now stored in the variables. For
instance, by typing k_means.cluster_centers_, you can get all the coordinates of
the centroids elaborated by the K-means procedure.

FIGURE 2-2:
Clusters of iris

species plotted
on a chart based

on sepal length
and width.

0003054006.INDD 634 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

634 BOOK 9 Applying Machine Learning

Experimenting with how
centroids converge
Though you can now compute the result and know that the different versions and
runs of K-means tend to arrive at similar solutions, you still need to grasp how
you reach the result. In this section’s experiment, you follow how a centroid (the
second one) changes along iterations by visualizing its vector of coordinates step
by step along the optimization.

import numpy as np

np.set_printoptions(precision=3, suppress=True) # sets output 3 dec points

for iteration in range(1, 10):

 k_means = KMeans(n_clusters=3, init='random',

 max_iter=iteration, n_init=1, random_state=101)

 k_means.fit(features)

 print ("Iteration: % - 2nd centroid: %s" %

 (iteration, k_means.cluster_centers_[1]))

Iteration: 1 - 2nd centroid: [5.362 3.763 1.512 0.275]

Iteration: 2 - 2nd centroid: [4.959 3.352 1.47 0.246]

Iteration: 3 - 2nd centroid: [4.914 3.268 1.539 0.275]

Iteration: 4 - 2nd centroid: [4.878 3.188 1.58 0.295]

Iteration: 5 - 2nd centroid: [4.833 3.153 1.583 0.294]

Iteration: 6 - 2nd centroid: [4.8 3.109 1.606 0.303]

Iteration: 7 - 2nd centroid: [4.783 3.087 1.62 0.307]

Iteration: 8 - 2nd centroid: [4.776 3.072 1.621 0.297]

Iteration: 9 - 2nd centroid: [4.776 3.072 1.621 0.297]

Observing the adjusting values as iterations proceed, the rate of change dimin-
ishes until later iterations, when the change from each passage is so small that
you can’t see it without using many decimal places.

The clustering module in scikit-learn contains all the presented versions of
K-means plus other clustering algorithms. You can find it at http://scikit-
learn.org/stable/modules/classes.html#module-sklearn.cluster. In addi-
tion, R has a rich and efficient implementation of K-means. You can find it in the
library stats (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/
kmeans.html).

The next experiment, which uses R, aims to check how good the K-means algo-
rithm is at guessing the real clusters in the Iris data set. This experiment is a
challenging task because various studies say that it isn’t possible to achieve it
accurately (see https://en.wikipedia.org/wiki/Iris_flower_data_set for
details).

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 635 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 635

We call the libraries

library(datasets)

library(class)

We divide our dataset into answer and features

answer <- iris[,5]

features <- iris[,1:4]

X <- princomp(features)$scores

clustering <- kmeans(x=X, centers=3, iter.max = 999, nstart = 10,

 algorithm = "Hartigan-Wong")

print (clustering$tot.withinss)

table(answer, clustering$cluster)

answer 1 2 3

 setosa 0 50 0

 versicolor 2 0 48

 virginica 36 0 14

Working with the Iris data set allows tests on both real data using a ground truth
(which is another way of saying that the examples are labeled). This example
first creates a principal component analysis (PCA) solution and then computes
a three-cluster solution. The PCA removes the correlations and standardizes the
variables at the same time, so you can be confident that the Euclidean distance
measurement that K-means computes works well. Finally, you print a confusion
matrix, a matrix representation of where the correct answers are in the rows and
the predicted ones are in columns. Glancing at the confusion matrix, you notice
that 14 flowers of the Virginica species are classified as Versicolor. K-means wasn’t
able to recover the correct natural classes at this time. Usually, increasing the
number of clusters solves such problems, although doing so may generate many
clusters that differ only slightly from each other. From a machine learning point
of view, having more clusters is not all that much fuss, but for humans, it may
render understanding more complicated. This experiment tests different cluster-
ing solutions in an iterative loop with the output shown in Figure 2-3.

w <- rep(0,10)

for (h in 1:10) {

 clustering <- kmeans(x=X, centers=h, iter.max = 999, nstart = 10,

 algorithm = "Hartigan-Wong")

 w[h] <- clustering$tot.withinss

}

plot(w, type='o')

0003054006.INDD 636 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

636 BOOK 9 Applying Machine Learning

clustering <- kmeans(x=X, centers=8, iter.max = 999, nstart = 10,

 algorithm = "Hartigan-Wong")

table(answer, clustering$cluster)

answer 1 2 3 4 5 6 7 8

 setosa 22 28 0 0 0 0 0 0

 versicolor 0 0 3 20 0 9 18 0

 virginica 0 0 15 1 22 0 0 12

plot(X[,c(1,2)], col = clustering$cluster)

points(clustering$centers[,c(1,2)], col = 1:8,

 pch = 15, cex = 1.2)

A loop over many solutions reveals that after a four-cluster solution, improve-
ments are slight. Such is a quite common (and disappointing) situation, and the
best heuristic is to see when the WSS curve flattens out. In this case, the right
solution is eight clusters because you can test it and visually confirm that this
solution is the best in separating classes, as shown in Figure 2-4.

FIGURE 2-3:
Plot of a

within-cluster
sum of squares

regarding
different cluster

solutions.

FIGURE 2-4:
Iris species

represented by
eight clusters.

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 637 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 637

When working with real data, you rarely have a ground truth to check. Trust your
intuition and the cluster quality measures if you can’t rely on a test. If you’re not
satisfied with the solutions, look for ways to add and remove one or more of your
features.

Searching for Classification
by k-Nearest Neighbors

No matter if the problem is to guess a number or a class, the idea behind the learn-
ing strategy of the k-Nearest Neighbors (kNN) algorithm is always the same. The
algorithm finds the most similar observations to the one you have to predict and
from which you derive a good intuition of the possible answer by averaging the
neighboring values, or by picking the most frequent answer class among them.

The learning strategy in a kNN is more like memorization. It’s just like remem-
bering what the answer should be when the question has certain characteristics
(based on circumstances or past examples) rather than really knowing the answer,
because you understand the question by means of specific classification rules. In
a sense, kNN is often defined as a lazy algorithm because no real learning is done
at the training time, just data recording.

Being a lazy algorithm implies that kNN is quite fast at training but very slow at
predicting. (Most of the searching activities and calculations on the neighbors is
done at that time.) It also implies that the algorithm is quite memory-intensive
because you have to store your data set in memory (which means that there’s a
limit to possible applications when dealing with big data). Ideally, kNN can make
the difference when you’re working on classification and you have many labels to
deal with (for instance, when a software agent posts a tag on a social network or
when proposing a selling recommendation). kNN can easily deal with hundreds
of labels, whereas other learning algorithms have to specify a different model for
each label.

Usually, kNN works out the neighbors of an observation after using a measure of
distance such as Euclidean (the most common choice) or Manhattan (works bet-
ter when you have many redundant features in your data). No absolute rules exist
concerning what distance measure is best to use. It really depends on the imple-
mentation you have. You also have to test each distance as a distinct hypothesis
and verify by cross-validation as to which measure works better with the problem
you’re solving.

0003054006.INDD 638 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

638 BOOK 9 Applying Machine Learning

Leveraging the Correct K Parameter
The k parameter is the one you can work on tuning to make a kNN algorithm per-
form well in prediction and regression. The following sections describe how to use
the k parameter to tune the kNN algorithm.

Understanding the k parameter
The k value, an integer number, is the number of neighbors that the algorithm
has to consider in order to figure out an answer. The smaller the k parameter, the
more the algorithm will adapt to the data you are presenting, risking overfitting
but nicely fitting complex separating boundaries between classes. The larger the
k parameter, the more it abstracts from the ups and downs of real data, which
derives nicely smoothed curves between classes in data, but does so at the expense
of accounting for irrelevant examples.

As a rule of thumb, first try the nearest integer of the square root of the number
of examples available as a k parameter in kNN. For instance, if you have 1,000
examples, start with k = 31 and then decrease the value in a grid search backed up
by cross-validation.

Using irrelevant or unsuitable examples is a risk that a kNN algorithm takes as
the number of examples it uses for its distance function increases. The previous
illustration of the problem of data dimensions shows how to compute a well-
ordered data space as a library in which you could look for similar books in the
same bookshelf, bookcase, and section. However, things won’t look so easy when
the library has more than one floor. At that point, books upstairs and downstairs
are not necessarily similar; therefore being near but on a different floor won’t
assure that the books are similar. Adding more dimensions weakens the role of
useful ones, but that is just the beginning of your trouble.

Now imagine having more than the three dimensions in daily life (four if you
consider time). The more dimensions, the more space you gain in your library. (As
in geometry, you multiply dimensions to get an idea of the volume.) At a certain
point, you will have so much space that your books will fit easily with space left
over. For instance, if you have 20 binary variables representing your library, you
could have 2 raised to the 20th power combinations, that is, 1,048,576 possible
different bookcases. It’s great to have a million bookcases, but if you don’t have
a million books to fill them, most of your library will be empty. So you obtain a
book and then look for similar books to place it with. All your nearby bookcases are
actually empty, so you have to go far before finding another nonempty bookcase.
Think about it: You start with The Hitchhiker’s Guide to the Galaxy and end up having
a book on gardening as its nearest neighbor. This is the curse of dimensionality.

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 639 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 639

The more dimensions, the more likely you are to experience some false similarity,
misunderstanding far for near.

Using the right-sized k parameters alleviates the problem because the more
neighbors you have to find, the further kNN has to look — but you have other
remedies. Principal component analysis (PCA) can compress the space, making
it denser and removing noise and irrelevant, redundant information. In addition,
feature selection can do the trick, selecting only the features that can really help
kNN find the right neighbors.

As explained in Book 8, Chapter 4 about validating machine learning tasks, a step-
wise selection, checked by cross-validation, can make a kNN work well because it
keeps only the features that are truly functional for the task.

kNN is an algorithm that’s sensitive to outliers. Neighbors on the boundaries of
your data cloud in the data space could be outlying examples, causing your pre-
dictions to become erratic. You need to clean your data before using it. Running
a K-means first can help you identify outliers gathered into groups of their own.
(Outliers love to stay in separate groups; you can view them as the hermit types
in your data.) Also, keeping your neighborhood large can help you minimize (but
sometimes not avoid completely) the problem at the expense of a lower fit to the
data (more bias than overfitting).

Experimenting with a flexible algorithm
The kNN algorithm has slightly different implementations in R and Python. In
R, the algorithm is found in the library class. The function is just for classifica-
tion and uses only the Euclidean distance for locating neighbors. It does offer
a convenient version with automatic cross-validation for discovering the best k
value. There’s also another R library, FNN (https://cran.r-project.org/web/
packages/FNN/index.html), which contains one kNN variant for classification
and another for regression problems. The peculiarity of the FNN functions is that
they can deal with the complexity of distance computations using different algo-
rithms, but the Euclidean distance is the only distance available.

Choosing and testing k values
The following R code experiment uses the cross-validated kNN from the library
class. It looks for the best k value by cross-validation and then tests it on an
out-of-sample portion of the data. Learning the correct hyper-parameters using
cross-validation guarantees that you find the best value, not just for the single
analyzed data but also for any other possible data arriving from the same source.
Testing using out-of-sample data offers a realistic evaluation of the accuracy of

0003054006.INDD 640 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

640 BOOK 9 Applying Machine Learning

the learned model because the data was never used for any setting during the
learning phase.

set.seed(seed=101)

out_of_sample <- sample(x=length(answer),25)

in a loop we try values of k ranging from 1 to 15

for (h in 1:15) {

 in_sample_pred <- knn.cv(train=features[-out_of_sample,],

 cl=answer[-out_of_sample],

 k = h, l = 0, prob = FALSE, use.all = TRUE)

 # After getting the cross-validated predictions,

 # we calculate the accuracy

 accuracy <- sum(answer[-out_of_sample]==in_sample_pred) /

 length(answer[-out_of_sample])

 # We print the result

 print (paste("for k=",h," accuracy is:",accuracy))

}

[1] "for k= 1 accuracy is: 0.952"

[1] "for k= 2 accuracy is: 0.968"

[1] "for k= 3 accuracy is: 0.96"

[1] "for k= 4 accuracy is: 0.96"

[1] "for k= 5 accuracy is: 0.952"

[1] "for k= 6 accuracy is: 0.952"

[1] "for k= 7 accuracy is: 0.968"

[1] "for k= 8 accuracy is: 0.968"

[1] "for k= 9 accuracy is: 0.968"

[1] "for k= 10 accuracy is: 0.968"

[1] "for k= 11 accuracy is: 0.976"

[1] "for k= 12 accuracy is: 0.968"

[1] "for k= 13 accuracy is: 0.968"

[1] "for k= 14 accuracy is: 0.968"

[1] "for k= 15 accuracy is: 0.96"

out_sample_pred <- knn(train=features[-out_of_sample,],

 test=features[out_of_sample,],

 cl=answer[-out_of_sample], k = 11,

 l = 0, prob = TRUE, use.all = TRUE)

print (table(answer[out_of_sample], out_sample_pred))

 out_sample_pred

 setosa versicolor virginica

 setosa versicolor virginica

 setosa 7 0 0

 versicolor 0 10 1

 virginica 0 0 7

Le
ve

ra
gi

ng
 S

im
ila

ri
ty

0003054006.INDD 641 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

CHAPTER 2 Leveraging Similarity 641

The cross-validated search indicates that setting k to value 11 scores the best
accuracy. The example then predicts a result using the untouched test set and
verifies the results using a confusion matrix by cross-validating on rows contain-
ing real values against estimated values on columns. The performance is high,
as expected, with just an Iris Versicolor example misclassified as an Iris Virginica.

Finding shapes in data
The second experiment with kNN uses the Python class from scikit-learn and
demonstrates how such a simple algorithm is quite apt at learning shapes and
nonlinear arrangements of examples in the data space. The block of code prepares
a tricky data set: In two dimensions, two classes are arranged in bull’s-eye con-
centric circles, as shown in Figure 2-5.

import numpy as np

from sklearn.datasets import make_circles, make_blobs

strange_data = make_circles(n_samples=500, shuffle=True,

 noise=0.15, random_state=101,

 factor=0.5)

center = make_blobs(n_samples=100, n_features=2,

 centers=1, cluster_std=0.1,

 center_box=(0, 0))

first_half = np.row_stack((strange_data[0][:250,:],

 center[0][:50,:]))

first_labels = np.append(strange_data[1][:250],

 np.array([0]*50))

second_half = np.row_stack((strange_data[0][250:,:],

 center[0][50:,:]))

second_labels = np.append(strange_data[1][250:],

 np.array([0]*50))

%matplotlib inline

import matplotlib.pyplot as plt

plt.scatter(first_half[:,0], first_half[:,1], s=2**7,

 c=first_labels, edgecolors='white',

 alpha=0.85, cmap='winter')

plt.grid() # adds a grid

plt.show() # Showing the result

After having built the data set, you can test the experiment by setting the classifi-
cation algorithm to learn the patterns in data after fixing a neighborhood of 3 and
set weights to be uniform (scikit-learn allows you to weight less distant obser-
vations when it’s time to average them or pick the most frequent observations),
and the Euclidean distance as metric. scikit-learn algorithms, in fact, allow you to
both regress and classify using different metrics, such as Euclidean, Manhattan,
or Chebyshev, as shown in this Python code.

0003054006.INDD 642 Trim size: 7.375 in × 9.25 in March 30, 2017 10:51 PM

642 BOOK 9 Applying Machine Learning

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score

kNN = KNeighborsClassifier(n_neighbors=3,

 weights='uniform',

 algorithm='auto',

 metric='euclidean')

kNN.fit(first_half,first_labels)

print ("Learning accuracy score:%0.3f" %

 accuracy_score(y_true=second_labels,

 y_pred=kNN.predict(second_half)))

Learning accuracy score:0.937

FIGURE 2-5:
The bull’s-eye

data set, a
nonlinear cloud
of points that is

difficult to learn.

CHAPTER 3 Hitting Complexity with Neural Networks 643

0003054007.INDD 643 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

 Hitting Complexity with
Neural Networks

“Computers will overtake humans . . . within the next 100 years. When that
happens, we need to make sure the computers have goals that align with ours.”

 — STEPHEN HAWKING

 A s you journey in the world of machine learning, you often see metaphors
from the natural world to explain the details of algorithms. This chapter
presents a family of learning algorithms that directly derives inspiration

from how the brain works. They are neural networks, the core algorithms of the
connectionists’ tribe.

 Starting with the idea of reverse-engineering how a brain processes signals, the
connectionists base neural networks on biological analogies and their compo-
nents, using brain terms such as neurons and axons as names. However, you’ll
discover that neural networks resemble nothing more than a sophisticated kind of
linear regression when you check their math formulations. Yet these algorithms
are extraordinarily eff ective against complex problems such as image and sound
recognition, or machine language translation. They also execute quickly when
predicting.

Chapter 3

 IN THIS CHAPTER

 » Upgrading the perceptron to the
interconnection paradigm

 » Structuring neural architectures
made of nodes and connections

 » Getting a glimpse of the
backpropagation algorithm

 » Understanding what deep learning is
and what it can achieve

0003054007.INDD 644 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

644 BOOK 9 Applying Machine Learning

Well-devised neural networks use the name deep learning and are behind such
power tools as Siri and other digital assistants. They are behind the more aston-
ishing machine learning applications as well. For instance, you see them at work
in this incredible demonstration by Microsoft CEO Rick Rashid, who is speaking in
English while being simultaneously translated into Chinese: www.youtube.com/
watch?v=Nu-nlQqFCKg.

If an AI revolution is about to happen, the increased learning capabilities of neural
networks will likely drive it.

Learning and Imitating from Nature
The core neural network algorithm is the neuron (also called a unit). Many neurons
arranged in an interconnected structure make up a neural network, with each
neuron linking to the inputs and outputs of other neurons. Thus a neuron can
input features from examples or the results of other neurons, depending on its
location in the neural network.

Something similar to the neuron, the perceptron, appears in Book 9, Chapter 1,
although it uses a simpler structure and function. When the psychologist Rosen-
blatt conceived the perceptron, he thought of it as a simplified mathematical
version of a brain neuron. A perceptron takes values as inputs from the nearby
environment (the data set), weights them (as brain cells do, based on the strength
of the in-bound connections), sums all the weighted values, and activates when
the sum exceeds a threshold. This threshold outputs a value of 1; otherwise, its
prediction is 0. Unfortunately, a perceptron can’t learn when the classes it tries to
process aren’t linearly separable. However, scholars discovered that even though
a single perceptron couldn’t learn the logical operation XOR shown in Figure 3-1
(the exclusive or, which is true only when the inputs are dissimilar), two percep-
trons working together could.

Neurons in a neural network are a further evolution of the perceptron: They take
many weighted values as inputs, sum them, and provide the summation as the
result, just as a perceptron does. However, they also provide a more sophisticated
transformation of the summation, something that the perceptron can’t do. In
observing nature, scientists noticed that neurons receive signals but don’t always
release a signal of their own. It depends on the amount of signal received. When
a neuron acquires enough stimuli, it fires an answer; otherwise, it remains silent.
In a similar fashion, algorithmic neurons, after receiving weighted values, sum
them and use an activation function to evaluate the result, which transforms it in
a nonlinear way. For instance, the activation function can release a zero value
unless the input achieves a certain threshold, or it can dampen or enhance a value
by nonlinearly rescaling it, thus transmitting a rescaled signal.

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 645 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 645

A neural network has different activation functions, as shown in Figure 3-2. The
linear function doesn’t apply any transformation, and it’s seldom used because it
reduces a neural network to a regression with polynomial transformations. Neural
networks commonly use the sigmoid or the hyperbolic tan.

The figure shows how an input (expressed on the horizontal axis) can transform
an output into something else (expressed on the vertical axis). The examples show
a binary step, a logistic, and a tangent hyperbolic activation function.

You learn more about activation functions later in the chapter, but note for now
that activation functions clearly work well in certain ranges of x values. For this
reason, you should always rescale inputs to a neural network using statistical
standardization (zero mean and unit variance) or normalize the input in the range
from 0 to 1 or from –1 to 1.

Going forth with feed-forward
In a neural network, you have first to consider the architecture, which is how the
neural network components are arranged. Contrary to other algorithms, which

FIGURE 3-1:
Learning logical

XOR using a
single separating

line isn’t possible.

FIGURE 3-2:
Plots of different

activation
 functions.

0003054007.INDD 646 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

646 BOOK 9 Applying Machine Learning

have a fixed pipeline that determines how algorithms receive and process data,
neural networks require you to decide how information flows by fixing the num-
ber of units (the neurons) and their distribution in layers, as shown in Figure 3-3.

The figure shows a simple neural architecture. Note how the layers filter informa-
tion in a progressive way. This is a feed-forward input because data feeds one way
forward into the network. Connections exclusively link the units in one layer with
the units in the following layer (information flow from left to right). No connec-
tions exist between units in the same layer or with units outside the next layer.
Moreover, the information pushes forward (from the left to the right). Processed
data never returns to previous neuron layers.

Using a neural network is like using a stratified filtering system for water: You
pour the water from above, and the water is filtered at the bottom. The water has
no way to go back; it just goes forward and straight down, and never laterally. In
the same way, neural networks force data features to flow through the network
and mix with each other only according to the network’s architecture. By using
the best architecture to mix features, the neural network creates new composed
features at every layer and helps achieve better predictions. Unfortunately, there
is no way to determine the best architecture without empirically trying different
solutions and testing whether output data helps predict your target values after
flowing through the network.

The first and last layers play an important role. The first layer, called the input
layer, picks up the features from each data example processed by the network. The
last layer, called the output layer, releases the results.

A neural network can process only numeric, continuous information; it can’t be
constrained to work with qualitative variables (for example, labels indicating a
quality such as red, blue, or green in an image). You can process qualitative vari-
ables by transforming them into a continuous numeric value, such as a series of

FIGURE 3-3:
An example of

the architecture
of a neural

 network.

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 647 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 647

binary values, as discussed in Book 8, Chapter 2 in the material about working
with data. When a neural network processes a binary variable, the neuron treats
the variable as a generic number and turns the binary values into other values,
even negative ones, by processing across units.

Note the limitation of dealing only with numeric values, because you can’t expect
the last layer to output a nonnumeric label prediction. When dealing with a
regression problem, the last layer is a single unit. Likewise, when you’re working
with a classification and you have output that must choose from a number n of
classes, you should have n terminal units, each one representing a score linked
to the probability of the represented class. Therefore, when classifying a multi-
class problem such as iris species (as in the Iris data set demonstration found in
Book 9, Chapter 2), the final layer has as many units as species. For instance, in
the classical iris classification example, created by the famous statistician Fisher,
you have three classes: setosa, versicolor, and virginica. In a neural network
based on the Iris data set, you therefore have three units representing one of the
three iris species. For each example, the predicted class is the one that gets the
higher score at the end.

In some neural networks, there are special final layers, called a softmax, which
can adjust the probability of each class based on the values received from a previ-
ous layer.

In classification, the final layer may represent both a partition of probabilities
thanks to softmax (a multiclass problem in which total probabilities sum to
100 percent) or an independent score prediction (because an example can have
more classes, which is a multilabel problem in which summed probabilities can be
more than 100 percent). When the classification problem is a binary classification,
a single node suffices. Also, in regression, you can have multiple output units,
each one representing a different regression problem (for instance, in forecast-
ing, you can have different predictions for the next day, week, month, and so on).

Going even deeper down the rabbit hole
Neural networks have different layers, each one having its own weights. Because
the neural network segregates computations by layers, knowing the reference
layer is important because it means accounting for certain units and connections.
Thus you can refer to every layer using a specific number and generically talk
about each layer using the letter l.

Each layer can have a different number of units, and the number of units located
between two layers dictates the number of connections. By multiplying the
number of units in the starting layer with the number in the following layer,
you can determine the total number of connections between the two: number of
connections(l) = units(l)*units(l+1).

0003054007.INDD 648 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

648 BOOK 9 Applying Machine Learning

A matrix of weights, usually named with the uppercase Greek letter theta (Θ),
represents the connections. For ease of reading, the book uses the capital letter W,
which is a fine choice because it is a matrix. Thus you can use W1 to refer to the
connection weights from layer 1 to layer 2, W2 for the connections from layer 2 to
layer 3, and so on.

You may see references to the layers between the input and the output as hidden
layers and count layers starting from the first hidden layer. This is just a different
convention from the one used in the book. The examples in the book always start
counting from the input layer, so the first hidden layer is layer number 2.

Weights represent the strength of the connection between neurons in the net-
work. When the weight of the connection between two layers is small, it means
that the network dumps values flowing between them and signals that taking this
route won’t likely influence the final prediction. On the contrary, a large positive
or negative value affects the values that the next layer receives, thus determin-
ing certain predictions. This approach is clearly analogous to brain cells, which
don’t stand alone but are in connection with other cells. As someone grows in
experience, connections between neurons tend to weaken or strengthen to active
or deactivate certain brain network cell regions, causing other processing or an
activity (a reaction to a danger, for instance, if the processed information signals
a life-threatening situation).

Now that you know some conventions regarding layers, units, and connections,
you can start examining the operations that neural networks execute in detail.
First, you can call inputs and outputs in different ways:

 » a: The result stored in a unit in the neural network after being processed by
the activation function (called g). This is the final output that is sent further
along the network.

 » z: The multiplication between a and the weights from the W matrix. z repre-
sents the signal going through the connections, analogous to water in pipes
that flows at a higher or lower pressure depending on the pipe thickness. In
the same way, the values received from the previous layer get higher or lower
values because of the connection weights used to transmit them.

Each successive layer of units in a neural network progressively processes the
values taken from the features, same as in a conveyor belt. As data transmits in
the network, it arrives into each unit as a value produced by the summation of the
values present in the previous layer and weighted by connections represented in
the matrix W. When the data with added bias exceeds a certain threshold, the acti-
vation function increases the value stored in the unit; otherwise, it extinguishes
the signal by reducing it. After processing by the activation function, the result

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 649 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 649

is ready to push forward to the connection linked to the next layer. These steps
repeat for each layer until the values reach the end and you have a result, as shown
in Figure 3-4.

The figure shows a detail of the process that involves two units pushing their
results to another unit. This event happens in every part of the network. When you
understand the passage from two neurons to one, you can understand the entire
feed-forward process, even when more layers and neurons are involved. For more
explanation, here are the six steps used to produce a prediction in a neural net-
work made of four layers (like the one shown earlier in Figure 3-3):

1. The first layer (notice the superscript 1 on a) loads the value of each feature in
a different unit:

a(1)= X

The weights of the connections bridging the input layer with the second layer
are multiplied by the values of the units in the first layer. A matrix multiplica-
tion weights and sums the inputs for the second layer together.

z(2)=W(1)a(1)

2. The algorithm adds a bias constant to layer two before running the activation
function. The activation function transforms the second-layer inputs. The
resulting values are ready to pass to the connections.

a(2) = g(z(2) + bias(2))

3. The third-layer connections weigh and sum the outputs of layer two.

z(3) = W(2)a(2)

4. The algorithm adds a bias constant to layer three before running the activation
function. The activation function transforms the layer-three inputs.

a(3) = g(z(3) + bias(3))

FIGURE 3-4:
A detail of the
feed-forward

 process in a
 neural network.

0003054007.INDD 650 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

650 BOOK 9 Applying Machine Learning

5. The layer-three outputs are weighted and summed by the connections to the
output layer.

z(4) = W(3)a(3)

6. Finally, the algorithm adds a bias constant to layer four before running the
activation function. The output units receive their inputs and transform the
input using the activation function. After this final transformation, the output
units are ready to release the resulting predictions of the neural network.

a(4) = g(z(4) + bias(4))

The activation function plays the role of a signal filter, helping to select the rel-
evant signals and avoid the weak and noisy ones (because it discards values below
a certain threshold). Activation functions also provide nonlinearity to the output
because they enhance or damp the values passing through them in a nonpropor-
tional way.

The weights of the connections provide a way to mix and compose the features
in a new way, creating new features in a way not too different from a polynomial
expansion. The activation renders nonlinear the resulting recombination of the
features by the connections. Both of these neural network components enable
the algorithm to learn complex target functions that represent the relationship
between the input features and the target outcome.

Getting back with backpropagation
From an architectural perspective, a neural network does a great job of mixing
signals from examples and turning them into new features to achieve an approxi-
mation of complex nonlinear functions (functions that you can’t represent as a
straight line in the features’ space). To create this capability, neural networks work
as universal approximators (for more details, go to https://en.wikipedia.org/
wiki/Universal_approximation_theorem), which means that they can guess
any target function. However, you have to consider that one aspect of this feature
is the capacity to model complex functions (representation capability), and another
aspect is the capability to learn from data effectively. Learning occurs in a brain
because of the formation and modification of synapses between neurons, based on
stimuli received by trial-and-error experience. Neural networks provide a way to
replicate this process as a mathematical formulation called backpropagation.

Since its early appearance in the 1970s, the backpropagation algorithm has been
given many fixes. Each neural network learning process improvement resulted in
new applications and a renewed interest in the technique. In addition, the current
deep learning revolution, a revival of neural networks, which were abandoned at
the beginning of the 1990s, is due to key advances in the way neural networks

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 651 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 651

learn from their errors. As seen in other algorithms, the cost function activates
the necessity to learn certain examples better (large errors correspond to high
costs). When an example with a large error occurs, the cost function outputs a
high value that is minimized by changing the parameters in the algorithm.

In linear regression, finding an update rule to apply to each parameter (the vec-
tor of beta coefficients) is straightforward. However, in a neural network, things
are a bit more complicated. The architecture is variable, and the parameter coef-
ficients (the connections) relate to each other because the connections in a layer
depend on how the connections in the previous layers recombined the inputs. The
solution to this problem is the backpropagation algorithm. Backpropagation is
a smart way to propagate the errors back into the network and make each con-
nection adjust its weights accordingly. If you initially feed-forward propagated
information to the network, it’s time to go backward and give feedback on what
went wrong in the forward phase.

Discovering how backpropagation works isn’t complicated, even though demon-
strating how it works using formulas and mathematics requires derivatives and
the proving of some formulations, which is quite tricky and beyond the scope
of this book. To get a sense of how backpropagation operates, start from the end
of the network, just at the moment when an example has been processed and you
have a prediction as an output. At this point, you can compare it with the real
result and, by subtracting the two results, get the difference, which is the error.
Now that you know the mismatch of the results at the output layer, you can prog-
ress backward in order to distribute it along all the units in the network.

The cost function of a neural network for classification is based on cross-entropy
(as seen in logistic regression):

Cost Xy log h X 1 y log 1 hW W

This is a formulation involving logarithms. It refers to the prediction produced by
the neural network and expressed as hW(X) (which reads as the result of the net-
work given connections W and X as input). To make things easier, when thinking
of the cost, it helps to simply think of the formulation as computing the offset
between the expected results and the neural network output.

The first step in transmitting the error back into the network relies on backward
multiplication. Because the values fed to the output layer are made of the con-
tributions of all units, proportional to the weight of their connections, you can
redistribute the error according to each contribution. For instance, the vector of
errors of a layer n in the network, a vector indicated by the Greek letter delta (δ),
is the result of the following formulation:

(n) n T (n+1)W

0003054007.INDD 652 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

652 BOOK 9 Applying Machine Learning

This formula says that, starting from the final delta, you can continue redistribut-
ing delta going backward in the network and using the weights you used to push
forward the value to partition the error to the different units. In this way, you
can get the terminal error redistributed to each neural unit, and you can use it to
recalculate a more appropriate weight for each network connection to minimize
the error. To update the weights W of layer l, you just apply the following formula:

W W g z a(l) (1) (1) (l) (1)’

It may appear to be a puzzling formula at first sight, but it is a summation, and
you can discover how it works by looking at its elements. First, look at the func-
tion g’. It’s the first derivative of the activation function g, evaluated by the input
values z. In fact, this is the gradient descent method. Gradient descent determines
how to reduce the error measure by finding, among the possible combinations of
values, the weights that most reduce the error.

The Greek letter eta (η), sometimes also called alpha (α) or epsilon (ε) depending
on the textbook you consult, is the learning rate. As found in other algorithms, it
reduces the effect of the update suggested by the gradient descent derivative. In
fact, the direction provided may be only partially correct or just roughly correct.
By taking multiple small steps in the descent, the algorithm can take a more pre-
cise direction toward the global minimum error, which is the target you want to
achieve (that is, a neural network producing the least possible prediction error).

Different methods are available for setting the right eta value, because the opti-
mization largely depends on it. One method sets the eta value starting high and
reduces it during the optimization process. Another method variably increases
or decreases eta based on the improvements obtained by the algorithm: Large
improvements call a larger eta (because the descent is easy and straight); smaller
improvements call a smaller eta so that the optimization will move slower, look-
ing for the best opportunities to descend. Think of it as being on a tortuous path
in the mountains: You slow down and try not to be struck or thrown off the road
as you descend.

Most implementations offer an automatic setting of the correct eta. You need to
note this setting’s relevance when training a neural network because it’s one of
the important parameters to tweak to obtain better predictions, together with the
layer architecture.

Weight updates can happen in different ways with respect to the training set of
examples:

 » Online mode: The weight update happens after every example traverses the
network. In this way, the algorithm treats the learning examples as a stream

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 653 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 653

from which to learn in real time. This mode is perfect when you have to learn
out-of-core, that is, when the training set can’t fit into RAM memory. However,
this method is sensitive to outliers, so you have to keep your learning rate low.
(Consequently, the algorithm is slow to converge to a solution.)

 » Batch mode: The weight update happens after seeing all the examples in the
training set. This technique makes optimization fast and less subject to having
variance appear in the example stream. In batch mode, the backpropagation
considers the summed gradients of all examples.

 » Mini-batch (or stochastic) mode: The weight update happens after the
network has processed a subsample of randomly selected training set
examples. This approach mixes the advantages of online mode (low memory
usage) and batch mode (a rapid convergence), while introducing a random
element (the subsampling) to avoid having the gradient descent stuck in a
local minima.

Struggling with Overfitting
Given the neural network architecture, you can imagine how easily the algorithm
could learn almost anything from data, especially if you added too many layers.
In fact, the algorithm does so well that its predictions are often affected by a high
estimate variance called overfitting. Overfitting causes the neural network to learn
every detail of the training examples, which makes it possible to replicate them
in the prediction phase. But apart from the training set, it won’t ever correctly
predict anything different. The following sections discuss some of the issues with
overfitting in more detail.

Understanding the problem
When you use a neural network for a real problem, you have to take some cau-
tionary steps in a much stricter way than you do with other algorithms. Neural
networks are frailer and more prone to relevant errors than other machine learn-
ing solutions.

First, you carefully split your data into training, validation, and test sets. Before
the algorithm learns from data, you must evaluate the goodness of your param-
eters: architecture (the number of layers and nodes in them); activation functions;
learning parameter; and number of iterations. In particular, the architecture offers
great opportunities to create powerful predictive models at a high risk of overfit-
ting. The learning parameter controls how fast a network learns from data, but it
may not suffice in preventing overfitting the training data.

0003054007.INDD 654 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

654 BOOK 9 Applying Machine Learning

You have two possible solutions to this problem:

 » The first solution is regularization, as in linear and logistic regression. You can
sum all connection coefficients, squared or in absolute value, to penalize
models with too many coefficients with high values (achieved by L2 regulariza-
tion) or with values different from zero (achieved by L1 regularization).

 » The second solution is also effective because it controls when overfitting
happens. It’s called early-stop and works by checking the cost function on the
validation set as the algorithm learns from the training set.

You may not realize when your model starts overfitting. The cost function calcu-
lated using the training set keeps improving as optimization progresses. However,
as soon as you start recording noise from the data and stop learning general rules,
you can check the cost function on an out-of-sample (the validation sample). At
some point, you’ll notice that it stops improving and starts worsening, which
means that your model has reached its learning limit.

Opening the black box
The best way to learn how to build a neural network is to build one. Python offers
a wealth of possible implementations for neural networks and deep learning.
Python has libraries such as Theano (http://deeplearning.net/software/
theano), which allows complex computations at an abstract level, and more prac-
tical packages, such as Lasagne (https://github.com/Lasagne/Lasagne), which
allows you to build neural networks, though it still requires some abstractions. For
this reason, you need wrappers, such as nolearn, which is compatible with scikit-
learn (https://github.com/dnouri/nolearn), or Keras (https://github.com/
fchollet/keras), which can also wrap the TensorFlow (https://github.com/
tensorflow/tensorflow) library released by Google that has the potential to
replace Theano as a software library for neural computation.

R provides libraries that are less complicated and more accessible, such as nnet
(https://cran.r-project.org/web/packages/nnet/), AMORE (https://
cran.r-project.org/web/packages/AMORE/), and neuralnet (https://cran.r-
project.org/web/packages/neuralnet/). These brief examples in R show how
to train both a classification network (on the Iris data set) and a regression net-
work (on the Boston data set). Starting from classification, the following code
loads the data set and splits it into training and test sets:

library(neuralnet)

target <- model.matrix(~ Species - 1, data=iris)

colnames(target) <- c("setosa", "versicolor", "virginica")

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 655 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 655

set.seed(101)

index <- sample(1:nrow(iris), 100)

train_predictors <- iris[index, 1:4]

test_predictors <- iris[-index, 1:4]

Because neural networks rely on gradient descent, you need to standardize or
normalize the inputs. Normalizing is better so that the minimum is zero and the
maximum is one for every feature. Naturally, you learn how to make the numeric
conversion using the training set only in order to avoid any chance of using infor-
mation from the test out-of-sample.

min_vector <- apply(train_predictors, 2, min)

range_vector <- apply(train_predictors, 2, max) -

 apply(train_predictors, 2, min)

train_scaled <- cbind(scale(train_predictors,

 min_vector, range_vector),

 target[index,])

test_scaled <- cbind(scale(test_predictors,

 min_vector, range_vector),

 target[-index,])

summary(train_scaled)

When the training set is ready, you can train the model to guess three binary
variables, with each one representing a class. The output is a value for each class
proportional to its probability of being the real class. You pick a prediction by
taking the highest value. You can also visualize the network by using the internal
plot and thus seeing the neural network architecture and the assigned weights, as
shown in Figure 3-5.

set.seed(102)

nn_iris <- neuralnet(setosa + versicolor + virginica ~
 Sepal.Length + Sepal.Width
 + Petal.Length + Petal.Width,
 data=train_scaled, hidden=c(2),

 linear.output=F)

plot(nn_iris)

predictions <- compute(nn_iris, test_scaled[,1:4])

y_predicted <- apply(predictions$net.result,1,which.max)

y_true <- apply(test_scaled[,5:7],1,which.max)

confusion_matrix <- table(y_true, y_predicted)

accuracy <- sum(diag(confusion_matrix)) /

 sum(confusion_matrix)

0003054007.INDD 656 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

656 BOOK 9 Applying Machine Learning

print (confusion_matrix)

print (paste("Accuracy:",accuracy))

The following example demonstrates how to predict house values in Boston, using
the Boston data set. The procedure is the same as in the previous classification,
but here you have a single output unit. The code also plots the test set’s predicted
results against the real values to verify the good fit of the model.

no_examples <- nrow(Boston)

features <- colnames(Boston)

set.seed(101)

index <- sample(1:no_examples, 400)

train <- Boston[index,]

test <- Boston[-index,]

min_vector <- apply(train,2,min)

range_vector <- apply(train,2,max) - apply(train,2,min)

scaled_train <- scale(train,min_vector,range_vector)

scaled_test <- scale(test, min_vector,range_vector)

formula = paste("medv ~", paste(features[1:13],

 collapse='+'))
nn_boston <- neuralnet(formula, data=scaled_train,

 hidden=c(5,3), linear.output=T)

predictions <- compute(nn_boston, scaled_test[,1:13])

predicted_values <- (predictions$net.result *

 range_vector[14]) + min_vector[14]

FIGURE 3-5:
You can plot a
trained neural

network.

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 657 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 657

RMSE <- sqrt(mean((test[,14] - predicted_values)^2))

print (paste("RMSE:",RMSE))

plot(test[,14],predicted_values, cex=1.5)

abline(0,1,lwd=1)

Introducing Deep Learning
After backpropagation, the next improvement in neural networks led to deep
learning. Research continued in spite of AI winter and neural networks started
to take advantage of the developments in CPUs and GPUs (the graphic processing
units better known for their application in gaming but which are actually power-
ful computing units for matrix and vector calculations). These technologies make
training neural networks an achievable task in a shorter time and accessible to
more people. Research also opened a world of new applications. Neural networks
can learn from huge amounts of data, and because they’re more prone to high
variance than to bias, they can take advantage of big data, creating models that
continuously perform better, depending on the amounts of data you feed them.
However, you need large, complex networks for certain applications (to learn
complex features, such as the characteristics of a series of images) and thus incur
problems like the vanishing gradient.

In fact, when training a large network, the error redistributes among the neu-
rons favoring the layers nearest to the output layer. Layers that are further away
receive smaller errors, sometimes too small, making training slow if not impos-
sible. Thanks to the studies of scholars such as Geoffrey Hinton, new turnarounds
help avoid the problem of the vanishing gradient. The result definitely helps a
larger network, but deep learning isn’t just about neural networks with more lay-
ers and units.

In addition, something inherently qualitative changed in deep learning as com-
pared to shallow neural networks, shifting the paradigm in machine learning from
feature creation (features that make learning easier) to feature learning (complex
features automatically created on the basis of the actual features). Big players
such as Google, Facebook, Microsoft, and IBM spotted the new trend and since
2012 have started acquiring companies and hiring experts (Hinton now works
with Google; LeCun leads Facebook AI research) in the new fields of deep learning.
The Google Brain project, run by Andrew Ng and Jeff Dean, put together 16,000
computers to calculate a deep learning network with more than a billion weights,
thus enabling unsupervised learning from YouTube videos.

There is a reason why the quality of deep learning is different. Of course, part of
the difference is the increased usage of GPUs. Together with parallelism (more

0003054007.INDD 658 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

658 BOOK 9 Applying Machine Learning

computers put in clusters and operating in parallel), GPUs allow you to success-
fully apply pretraining, new activation functions, convolutional networks, and
drop-out, a special kind of regularization different from L1 and L2. In fact, it has
been estimated that a GPU can perform certain operations 70 times faster than
any CPU, allowing a cut in training times for neural networks from weeks to days
or even hours (for reference, see http://robotics.stanford.edu/~ang/papers/
icml09-LargeScaleUnsupervisedDeepLearningGPU.pdf).

Both pretraining and new activation functions help solve the problem of the van-
ishing gradient. New activation functions offer better derivative functions, and
pretraining helps start a neural network with better initial weights that require
just a few adjustments in the latter parts of the network. Advanced pretraining
techniques such as restricted Boltzmann machines (https://en.wikipedia.org/
wiki/Restricted_Boltzmann_machine), autoencoders (https://en.wikipedia.
org/wiki/Autoencoder), and deep belief networks (https://en.wikipedia.
org/wiki/Deep_belief_network) elaborate data in an unsupervised fashion by
establishing initial weights that don’t change much during the training phase of
a deep learning network. Moreover, they can produce better features representing
the data and thus achieve better predictions.

Given the high reliance on neural networks for image recognition tasks, deep
learning has achieved great momentum thanks to a certain type of neural net-
work, the convolutional neural networks. Discovered in the 1980s, such networks
now bring about astonishing results because of the many deep learning additions
(for reference, see http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html).

To understand the idea behind convolutional neural networks, think about the
convolutions as filters that, when applied to a matrix, transform certain parts of
the matrix, make other parts disappear, and make other parts stand out. You can
use convolution filters for borders or for specific shapes. Such filters are also use-
ful for finding details in images that determine what the image shows. Humans
know that a car is a car because it has a certain shape and certain features, not
because they have previously seen every type of car possible. A standard neural
network is tied to its input, and if the input is a pixel matrix, it recognizes shapes
and features based on their position on the matrix. Convolution neural networks
can elaborate images better than a standard neural network because

 » The network specializes particular neurons to recognize certain shapes
(thanks to convolutions), so that same capability to recognize a shape doesn’t
need to appear in different parts of the network.

 » By sampling parts of an image into a single value (a task called pooling), you
don’t need to strictly tie shapes to a certain position (which would make it
impossible to rotate them). The neural network can recognize the shape in

H
it

ti
ng

 C
om

pl
ex

it
y

w
it

h
N

eu
ra

l N
et

w
or

ks

0003054007.INDD 659 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 3 Hitting Complexity with Neural Networks 659

every rotation or distortion, thus assuring a high capacity of generalization of
the convolutional network.

Finally, drop-out is a new type of regularization that is particularly effective with
deep convolutional networks, but it also works with all deep learning architec-
tures, which acts by temporarily and randomly removing connections between
the neurons. This approach removes connections that collect only noise from data
during training. Also, this approach helps the network learn to rely on critical
information coming from different units, thus increasing the strength of the cor-
rect signals passed along the layers.

0003054007.INDD 660 Trim size: 7.375 in × 9.25 in March 31, 2017 4:56 AM

CHAPTER 4 Resorting to Ensembles of Learners 661

0003054008.INDD 661 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

 Resorting to Ensembles
of Learners

“Prediction is very di� cult, especially if it ’ s about the future.”
 — NILS BOHR

 A fter discovering so many complex and powerful algorithms, you might
be surprised to discover that a summation of simpler machine learning
algorithms can often outperform the most sophisticated solutions. Such

is the power of ensembles, groups of models made to work together to produce
 better predictions. The amazing thing about ensembles is that they are made up
of groups of singularly nonperforming algorithms.

 Ensembles don’t work much diff erently from the collective intelligence of crowds,
through which a set of wrong answers, if averaged, provides the right answer. Sir
Francis Galton, the English Victorian age statistician known for having formu-
lated the idea of correlation, narrated the anecdote of a crowd in a county fair that
could guess correctly the weight of an ox after all the people’s previous answers
were averaged. You can fi nd similar examples everywhere and easily re-create the
experiment by asking friends to guess the number of sweets in a jar and averaging
their answers. The more friends who participate in the game, the more precise the
averaged answer.

Chapter 4

 IN THIS CHAPTER

 » Discovering why many guesses are
better than one

 » Making uncorrelated trees work well
together in Random Forests

 » Learning to map complex target
functions piece by piece using
boosting

 » Getting better predictions by
averaging models

0003054008.INDD 662 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

662 BOOK 9 Applying Machine Learning

Luck isn’t what’s behind the result — it’s simply the law of large numbers in action
(see more at https://en.wikipedia.org/wiki/Law_of_large_numbers). Even
though an individual has a slim chance of getting the right answer, the guess is
better than a random value. By cumulating guesses, the wrong answers tend to
distribute themselves around the right one. Opposite wrong answers cancel each
other when averaging, leaving the pivotal value around which all answers are
distributed, which is the right answer. You can employ such an incredible fact in
many practical ways (consensus forecasts in economics and political sciences are
examples) and in machine learning.

Leveraging Decision Trees
Ensembles are based on a recent idea (formulated around 1990), but they leverage
older tools, such as decision trees, which have been part of machine learning since
1950. As covered in Book 9, Chapter 1, decision trees at first looked quite promis-
ing and appealing to practitioners because of their ease of use and understanding.
After all, a decision tree can easily do the following:

 » Handle mixed types of target variables and predictors, with very little or no
feature preprocessing (missing values are handled almost automatically).

 » Ignore redundant variables and select only the relevant features.

 » Work out of the box, with no complex hyper-parameters to fix and tune.

 » Visualize the prediction process as a set of recursive rules arranged in a tree
with branches and leaves, thus offering ease of interpretation.

Given the range of positive characteristics, you may wonder why practitioners
slowly started distrusting this algorithm after a few years. The main reason is that
the resulting models often have high variance in the estimates.

To grasp the critical problem of decision trees better, you can consider the prob-
lem visually. Think of the tricky situation of the bull’s-eye problem that requires
a machine learning algorithm to approximate nonlinear functions (as neural net-
works do) or to transform the feature space (as when using linear model with
polynomial expansion or kernel functions in support vector machines). Figure 4-1
shows the squared decision boundary of a single decision tree (on the left) as
compared to an ensemble of decision trees (on the right).

Decision trees partition the feature space into boxes and then use the boxes for
classification or regression purposes. When the decision boundary that separates
classes in a bull’s-eye problem is an ellipse, decision trees can approximate it by
using a certain number of boxes.

Re
so

rt
in

g
to

 E
ns

em
bl

es

of
 L

ea
rn

er
s

0003054008.INDD 663 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

CHAPTER 4 Resorting to Ensembles of Learners 663

The visual example seems to make sense and might give you confidence when you
see the examples placed far from the decision boundary. However, in proximity
of the boundary, things are quite different from how they appear. The decision
boundary of the decision tree is very imprecise and its shape is extremely rough
and squared. The issue is visible on bidimensional problems. It decisively wors-
ens as feature dimensions increase and in the presence of noisy observations
 (observations that are somehow randomly scattered around the feature space).
You can improve decision trees using some interesting heuristics that stabilize
results from trees:

 » Keep only the correctly predicted cases to retrain the algorithm.

 » Build separate trees for misclassified examples.

 » Simplify trees by pruning the less decisive rules.

Apart from these heuristics, the best trick is to build multiple trees using different
samples and then compare and average their results. The example in Figure 4-1,
shown previously, indicates that the benefit is immediately visible. As you build
more trees, the decision boundary gets smoother, slowly resembling the hypo-
thetical target shape.

Growing a forest of trees
Improving a decision tree by replicating it many times and averaging results to get
a more general solution sounded like such a good idea that it spread, and practi-
tioners created various solutions. When the problem is a regression, the technique
averages results from the ensemble. However, when the trees deal with a classifi-
cation task, the technique can use the ensemble as a voting system, choosing the
most frequent response class as an output for all its replications.

When using an ensemble for regression, the standard deviation, calculated from
all the ensemble’s estimates for an example, can provide you with an estimate of
how confident you can be about the prediction. The standard deviation shows how
good a mean is. For classification problems, the percentage of trees predicting a

FIGURE 4-1:
Comparing a

single decision
tree output (left)
to an ensemble

of decision
trees (right).

0003054008.INDD 664 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

664 BOOK 9 Applying Machine Learning

certain class is indicative of the level of confidence in the prediction, but you can’t
use it as a probability estimate because it’s the outcome of a voting system.

Deciding on how to compute the solution of an ensemble happened quickly; find-
ing the best way to replicate the trees in an ensemble required more research and
reflection. The first solution is pasting, that is, sampling a portion of your training
set. Initially proposed by Leo Breiman, pasting reduces the number of training
examples, which can become a problem for learning from complex data. It shows
its usefulness by reducing the learning sample noise (sampling fewer examples
reduces the number of outliers and anomalous cases). After pasting, Professor
Breiman also tested the effects of bootstrap sampling (sampling with replace-
ment), which not only leaves out some noise (when you bootstrap, on average you
leave out 37 percent of your initial example set) but, thanks to sampling repeti-
tion, also creates more variation in the ensembles, improving the results. This
technique is called bagging (also known as bootstrap aggregation).

Bootstrapping appears in Book 8, Chapter 4 as part of validation alternatives. In
bootstrapping, you sample the examples from a set to create a new set, allowing
the code to sample the examples multiple times. Therefore, in a bootstrapped
sample, you can find the same example repeated from one to many times.

Breiman noticed that results of an ensemble of trees improved when the trees
differ significantly from each other (statistically, they’re uncorrelated), which
leads to the last technique transformation — the creation of mostly uncorrelated
ensembles of trees. This approach performs predictions better than bagging. The
transformation tweak samples both features and examples. Breiman, in collabo-
ration with Adele Cutler, named the new ensemble Random Forests (RF).

Random Forests is a trademark of Leo Breiman and Adele Cutler. For this reason,
open source implementations often have different names, such as randomForest
in R or RandomForestClassifier in Python’s scikit-learn.

RF is a classification (naturally multiclass) and regression algorithm that uses
a large number of decision tree models built on different sets of bootstrapped
examples and subsampled features. Its creator strove to make an algorithm that
is easy to use (little preprocessing and few hyper-parameters to try) and under-
standable (the decision tree basis) and that can democratize the access of machine
learning to nonexperts. In other words, because of its simplicity and immediate
usage, RF can allow anyone to apply machine learning successfully. The algorithm
works through a few repeated steps:

1. Bootstrap the training set multiple times. The algorithm obtains a new set to
use to build a single tree in the ensemble during each bootstrap.

2. Randomly pick a partial feature selection in the training set to use for finding
the best split variable every time you split the sample in a tree.

Re
so

rt
in

g
to

 E
ns

em
bl

es

of
 L

ea
rn

er
s

0003054008.INDD 665 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

CHAPTER 4 Resorting to Ensembles of Learners 665

3. Create a complete tree using the bootstrapped examples. Evaluate new
subsampled features at each split. Don’t limit the full tree expansion to allow
the algorithm to work better.

4. Compute the performance of each tree using examples you didn’t choose in
the bootstrap phase (out-of-bag estimates, or OOB). OOB examples provide
performance metrics without cross-validation or using a test set (equivalent to
out-of-sample).

5. Produce feature importance statistics and compute how examples associate in
the tree’s terminal nodes.

6. Compute an average or a vote on new examples when you complete all the
trees in the ensemble. Declare for each of them the average estimate or the
winning class as a prediction.

All these steps reduce both the bias and the variance of the final solution because
the solution limits the bias. The solution builds each tree to its maximum possible
extension, thus allowing a fine fitting of even complex target functions, which
means that each tree is different from the others. It’s not just a matter of build-
ing on different bootstrapped example sets: Each split taken by a tree is strongly
 randomized — the solution considers only a random feature selection. Conse-
quently, even if an important feature dominates the others in terms of predictive
power, the times a tree doesn’t contain the selection allows the tree to find differ-
ent ways of developing its branches and terminal leaves.

The main difference with bagging is this opportunity to limit the number of
features to consider when splitting the tree branches. If the number of selected
features is small, the complete tree will differ from others, thus adding uncor-
related trees to the ensemble. On the other hand, if the selection is small, the bias
increases because the fitting power of the tree is limited. As always, determining
the right number of features to consider for splitting requires that you use cross-
validation or OOB estimate results.

GETTING MORE RANDOM FORESTS
INFORMATION
You can find more information on Random Forests in Python at http://scikit-
learn.org/stable/modules/ensemble.html#forest. The R version appears at
https://cran.r-project.org/web/packages/randomForest/randomForest.
pdf. For a general discussion of the algorithm, the best resource is the manual by Leo
Breiman and Adele Cutler at www.stat.berkeley.edu/~breiman/RandomForests.

0003054008.INDD 666 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

666 BOOK 9 Applying Machine Learning

No problem arises in growing a high number of trees in the ensemble. You do
need to consider the cost of the computational effort (completing a large ensemble
takes a long time). A simple demonstration conveys how a Random Forests algo-
rithm can solve a simple problem using a growing number of trees. Both R and
Python offer good implementations of the algorithm. The R implementation has
more parameters; the Python’s implementation is easier to parallelize.

Because the test is computationally expensive, the example starts with the Python
implementation and uses the digits data set.

import numpy as np

from sklearn import datasets

from sklearn.learning_curve import validation_curve

from sklearn.ensemble import RandomForestClassifier

digits = datasets.load_digits()

X,y = digits.data, digits.target

series = [10, 25, 50, 100, 150, 200, 250, 300]

RF = RandomForestClassifier(random_state=101)

train_scores, test_scores = validation_curve(RF,

 X, y, 'n_estimators', param_range=series,

 cv=10, scoring='accuracy',n_jobs=-1)

The example begins by importing functions and classes from scikit-learn: numpy,
datasets module, validation_curve function, and RandomForestClassifier.
The last item is scikit-learn’s implementation of Random Forests for classifi-
cation problems. The validation_curve function is particularly useful for the
tests because it returns the cross-validated results of multiple tests performed on
ensembles made of differing numbers of trees (similar to learning curves).

The example will build almost 11,000 decision trees. To make the example run
faster, the code sets the n_jobs parameter to –1, allowing the algorithm to use all
available CPU resources. This setting may not work on some computer configura-
tions, which means setting n_jobs to 1. Everything will work, but it takes longer.

After completing the computations, the code outputs a plot that reveals how the
Random Forests algorithm converges to a good accuracy after building a few trees,
as shown in Figure 4-2. It also shows that adding more trees isn’t detrimental to
the results, although you may see some oscillations in accuracy due to estimate
variances that even the ensemble can’t control fully.

import matplotlib.pyplot as plt

%matplotlib inline

plt.figure()

plt.plot(series, np.mean(test_scores,axis=1), '-o')

plt.xlabel('number of trees')

Re
so

rt
in

g
to

 E
ns

em
bl

es

of
 L

ea
rn

er
s

0003054008.INDD 667 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

CHAPTER 4 Resorting to Ensembles of Learners 667

plt.ylabel('accuracy')

plt.grid()

plt.show()

Understanding the importance measures
Random Forests have these benefits:

 » Fit complex target functions, but have little risk in overfitting.

 » Select the features they need automatically (although the random subsam-
pling of features in branch splitting influences the process).

 » Are easy to tune up because they have only one hyper-parameter, the
number of subsampled features.

 » Offer OOB error estimation, saving you from setting up verification by
cross-validation or test set.

Note that each tree in the ensemble is independent from the others (after all, they
should be uncorrelated), which means that you can build each tree in parallel to
the others. Given that all modern computers have multiprocessor and multithread
functionality, they can perform computations of many trees at the same time,
which is a real advantage of RF over other machine learning algorithms.

A Random Forests ensemble can also provide additional output that could be
helpful when learning from data. For example, it can tell you which features are
more important than others. You can build trees by optimizing a purity measure
(entropy or gini index) so that each split chooses the feature that improves the

FIGURE 4-2:
Seeing the

 accuracy of
ensembles of

 different sizes.

0003054008.INDD 668 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

668 BOOK 9 Applying Machine Learning

measure the most. When the tree is complete, you check which features the algo-
rithm uses at each split and sum the improvement when the algorithm uses a
feature more than once. When working with an ensemble of trees, simply average
the improvements that each feature provides in all the trees. The result shows you
the ranking of the most important predictive features.

Practitioners call importance evaluation gini importance or mean decrease impurity.
You can compute it in both R and Python algorithm implementations. Another
way to estimate feature importance is mean decrease accuracy, and you obtain it as
an output of the randomForest function in R. In this estimation, after the algo-
rithm builds each tree, it replaces each feature with junk data and records the
decrease in predictive power after doing so. If the feature is important, crowding
it with casual data harms the prediction, but if it’s irrelevant, the predictions are
unchanged. Reporting the average performance decrease in all trees due to ran-
domly changing the feature is a good indicator of a feature’s importance.

You can use importance output from Random Forests to select features to use
in the Random Forests or in another algorithm, such as a linear regression. The
scikit-learn algorithm version offers a tree-based feature selection, which provides a
way to select relevant features using the results from a decision tree or an ensem-
ble of decision trees. You can use this kind of feature selection by employing the
SelectFromModel function found in the feature_selection module (see http://
scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
SelectFromModel.html).

To provide an interpretation of importance measures derived from Random For-
ests, this example tests the R implementation on the air quality data set, which
reports the ozone level in the air of New York from May to September 1973. To
make the example work, you must install the randomForest library. The following
R example also uses the caret library, so if you haven’t installed it yet, this is the
right time to do so.

install.packages("randomForest")

install.packages("caret")

As a first step, the example uploads the data set and filters the examples whose
ozone level data isn’t missing.

library(caret)

library(randomForest)

Data preparation

data(airquality, package="datasets")

dataset <- airquality[!(is.na(airquality$Ozone)),]

dataset[is.na(dataset)] <- -1

Re
so

rt
in

g
to

 E
ns

em
bl

es

of
 L

ea
rn

er
s

0003054008.INDD 669 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

CHAPTER 4 Resorting to Ensembles of Learners 669

After filtering, the example finds all the missing data set values and sets them
to –1. Because all the predictors (solar radiation, wind, temperature, month, and
day) are positive, using a negative replacement value tells the Random Forests
decision trees to split when the information that a value is missing is somehow
predictive.

Optimizing a tree

rf_grid <- expand.grid(.mtry=c(2,3,5))

rf_model<-train(Ozone ~ ., data=dataset, method="rf",

 trControl=trainControl(method="cv",number=10),

 metric = "RMSE",

 ntree=500,

 importance = TRUE)

print (rf_model)

The caret package provides a cross-validate check on the mtry hyper-parameter,
which represents the number of features that each tree in the ensemble consid-
ers to be possible candidates at each split. Having the RMSE (root mean squared
error) as a cost function, the caret output specifies the optimal choice is mtry=2.
The train function of caret also provides the best model, whose importance rank-
ings you can question using the importance function.

Evaluate the importance of predictors

print (importance(rf_model$finalModel))

 %IncMSE IncNodePurity

Solar.R 10.624739 13946.509

Wind 20.944030 40084.320

Temp 39.697999 49512.349

Month 7.660438 4777.895

Day 3.911277 9845.365

You can read the importance output according to two measures: the cost function
percentage increase, which is based on testing garbage data using the final model
performance; and increased node purity, which is based on the internal improve-
ment of the branch splits of the trees.

Sometimes the two rankings agree; sometimes they don’t. The cost function
percentage increase is a sensitivity analysis and is representative of the general
feature importance. Thus you can use it in other models or for communicating
insights. Increased node impurity is mostly focused on what the algorithm deems
important, so it’s excellent for feature selection to improve the ensemble.

0003054008.INDD 670 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

670 BOOK 9 Applying Machine Learning

Working with Almost Random Guesses
Thanks to bootstrapping, bagging produces variance reduction by inducing some
variations in otherwise similar predictors. Bagging is most effective when the
models created are different from each other and, though it can work with differ-
ent kinds of models, it mostly performs with decision trees.

Bagging and its evolution, the Random Forests, aren’t the only ways to leverage
an ensemble. Instead of striving for ensemble elements’ independence, a totally
contrarian strategy is to create interrelated ensembles of simple machine learn-
ing algorithms in order to solve complex target functions. This approach is called
boosting, which works by building models sequentially and training each model
using information from the previous one.

Contrary to bagging, which prefers working with fully grown trees, boosting uses
biased models, which are models that can predict simple target functions well.
Simpler models include decision trees with a single split branch (called stumps),
linear models, perceptrons, and Naïve Bayes algorithms. These models may not
perform well when the target function to guess is complex (they’re weak learners),
but they can be trained fast and perform at least slightly better than a random
lucky guess (which means that they can model a part of the target function).

Each algorithm in the ensemble guesses a part of the function well, so when
summed together, they can guess the entire function. It’s a situation not too dif-
ferent from the story of the blind men and the elephant (https://en.wikipedia.
org/wiki/Blind_men_and_an_elephant). In the story, a group of blind men
needs to discover the shape of an elephant, but each man can feel only a part of
the whole animal. One man touches the tusk, one the ears, one the proboscides,
one the body, and one the tail, which are different parts of the entire elephant.
Only when they put what each one learned separately together can they figure out
the elephant’s shape. The information for the target function to guess is trans-
mitted from one model to the other by modifying the original data set so that the
ensemble can concentrate on the parts of the data set that have yet to be learned.

Bagging predictors with Adaboost
The first boosting algorithm formulated in 1995 was Adaboost (short for Adaptive
Boosting) by Yoav Freund and Robert Schapire. Here is the Adaboost formulation:

H X sign H X
m

M

m m
1

Re
so

rt
in

g
to

 E
ns

em
bl

es

of
 L

ea
rn

er
s

0003054008.INDD 671 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

CHAPTER 4 Resorting to Ensembles of Learners 671

You may think that the Adaboost formulation is quite complicated at first sight,
but you can make it simpler by examining it piece by piece. H(X) represents the
prediction function, which transforms the features, the X matrix, into predictions.
As an ensemble of models, the prediction function is a weighted summation of
models similar to linear models.

The H(X) function provides results as a vector of signs (positive or negative) that
point out classes in a binary prediction. (Adaboost is a binary prediction algorithm.)
The signs derive from the summation of M models, each one distinguishable by
a different m index (the generic model is Hm(X)). M is an integer number that
you determine when training from data. (Deciding by testing on a validation set
or using cross-validation is better.) In principle, each model fits a portion of the
data, and having too many models means fitting the data too well, which is a
kind of memorization that leads to overfitting, high variance of estimates, and,
consequently, bad predictions. The number of added models is therefore a critical
hyper-parameter.

Note that the algorithm multiplies each model Hm(X) by an alpha value, which
differs for each model. This is the weight of the model in the ensemble, and alpha
is devised in a smart way because its value is related to the capacity of the model
to produce the fewest prediction errors possible. You calculate alpha as follows:

m m merr err1
2

1log /

Alpha, according to this formulation, gets a larger value as the error of the model
Hm(X), pointed out by the notation errm, gets smaller. The algorithm multiplies
models with fewer errors by larger alpha values and thus such models play a more
important role in the summation at the core of the Adaboost algorithm. Models
that produce more prediction errors are weighted less.

The role of the coefficient alpha doesn’t end with model weighting. Errors output
by a model in the ensemble don’t simply dictate the importance of the model in
the ensemble itself but also modify the relevance of the training examples used
for learning. Adaboost learns the data structure by using a simple algorithm a
little at a time; the only way to focus the ensemble on different parts of the data
is to assign weights. Assigning weights tells the algorithm to count an example
according to its weight; therefore a single example can count the same as two,
three, or even more examples. You can also make an example disappear from the
learning process by making it count less and less. When considering weights, it
becomes easier to reduce the cost function of the learning function by working
on the examples that weigh more (more weight = more cost function reduction).
Using weights effectively guides the learning process.

0003054008.INDD 672 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

672 BOOK 9 Applying Machine Learning

Initially, the examples, as in all the other learning algorithms seen so far, have
the same contribution in the construction of the model. The optimization happens
as usual. After creating the first model and estimating a total error, the algorithm
checks each example to determine whether the prediction is correct. If correctly
predicted, nothing happens; each example’s weight remains the same as before.
If misclassified, each example has its weight increased, and in the next iteration,
examples with larger weight influence the model, placing a greater emphasis on
finding a solution for the larger example.

At each iteration, the Adaboost algorithm is guided by weights to work on the part
of data that’s less predictable. In fact, you don’t need to work on data that the
algorithm can predict well. Weighting is a smart solution for conditioning learn-
ing, and gradient boosting machines refine and improve the process. Notice that
the strategy here is different from RF. In RF, the goal is to create independent
predictions; here, the predictors are chained together because earlier predictors
determine how later predictors work. Because boosting algorithms rely on a chain
of calculations, you can’t easily parallelize the computations, so they’re slower.
You can express the formulation of the weight update in this way:

w w exp I yi i m i H xm i

The I(yi ≠ Hm(xi)) function outputs 0 if the inequality is false and 1 if true. When
true, the previous example weight is multiplied by the exponential of alpha. The
algorithm modifies the resulting vector w by overweighting single misclassi-
fied cases by the most recent learning algorithm in the ensemble. Figuratively,
learning in such a way is like taking a small improvement step each time toward
the goal of a working predicting ensemble, and doing so without looking back,
because after learning algorithms are summed, you can’t change them anymore.

Remember the kinds of learning algorithms that work well with Adaboost. Usu-
ally they are weak learners, which means that they don’t have much predictive
power. Because Adaboost approximates complex functions using an ensemble of
its parts, using machine learning algorithms that train quickly and have a certain
bias makes sense, so the parts are simple. It’s just like drawing a circle using
a series of lines: Even though the line is straight, all you have to do is draw a
polygon with as many sides as possible to approximate the circle. Commonly,
decision stumps are the favorite weak learner for an Adaboost ensemble, but you
can also successfully use linear models or Naïve Bayes algorithms. The follow-
ing example leverages the bagging function provided by scikit-learn to determine
whether decision trees, perceptron, or the k-Nearest Neighbors algorithm is best
for handwritten digits recognition.

import numpy as np

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Re
so

rt
in

g
to

 E
ns

em
bl

es

of
 L

ea
rn

er
s

0003054008.INDD 673 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

CHAPTER 4 Resorting to Ensembles of Learners 673

from sklearn.linear_model import Perceptron

from sklearn.naive_bayes import BernoulliNB

from sklearn.cross_validation import cross_val_score

from sklearn import datasets

digits = datasets.load_digits()

X,y = digits.data, digits.target

DT = cross_val_score(AdaBoostClassifier(

 DecisionTreeClassifier(),

 random_state=101) ,X, y,

 scoring='accuracy',cv=10)

P = cross_val_score(AdaBoostClassifier(

 Perceptron(), random_state=101,

 algorithm='SAMME') ,X, y,

 scoring='accuracy',cv=10)

NB = cross_val_score(AdaBoostClassifier(

 BernoulliNB(), random_state=101)

 ,X,y,scoring='accuracy',cv=10)

print ("Decision trees: %0.3f\nPerceptron: %0.3f\n"

 "Naive Bayes: %0.3f" %

 (np.mean(DT),np.mean(P), np.mean(NB)))

You can improve the performance of Adaboost by increasing the number of ele-
ments in the ensemble until the cross-validation won’t report worsening results.
The parameter you can increase is n_estimators, and it’s currently set to 50. The
weaker your predictor is, the larger your ensemble should be in order to perform
the prediction well.

Boosting Smart Predictors
The Adaboost, previously discussed in this chapter, explains how the learning
procedure creates a function after moving step by step toward a target, an analogy
that’s similar to the gradient descent described in Book 8, Chapter 3. This section
describes the gradient boosting machines (GBM) algorithm, which uses gradient
descent optimization to determine the right weights for learning in the ensemble.
The resulting performances are indeed impressive, making GBM one of the most
powerful predictive tools that you can learn to use in machine learning. Here is
the GBM formulation:

f x
m

M

m mv h x w
1

;

0003054008.INDD 674 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

674 BOOK 9 Applying Machine Learning

As in Adaboost, you start from the formulation. The GBM formulation requires
that the algorithm make a weighted sum of multiple models. In fact, what changes
the most is not the principle of how boosting works but rather the optimization
process for getting the weight and the power of the summed functions, which
weak learners can’t determine.

In the preceding formula, M represents the number of total models and h rep-
resents the final function, which is the sum of a series of M models. Each model
is different, hence the notation hm, which translates into h1, h2, and so on. The
difference between the learning functions of the series occurs because the models
depend on both the features X and the examples weighted by the values of the
vector w, which actually changes for every model.

Meeting again with gradient descent
Up to now, things aren’t all that different from Adaboost. However, note that the
algorithm weights each model by a constant factor, v, the shrinkage factor. This
is where you start noticing the first difference between Adaboost and GBM. The
fact is that v is just like alpha. However, here it’s fixed and forces the algorithm
to learn in any case, no matter the performance of the previously added learning
function. Considering this difference, the algorithm builds the chain by reiterating
the following sequence of operations:

f x f xm m 1 v h x wm m;

Look at the formula as it develops during training. After each iteration m, the
 algorithm sums the result of the previous models with a new model built on the
same features, but on a differently weighted series of examples. This is represented
in the form of the function h(X,w). The function shows the other difference with
respect to Adaboost: The vector w isn’t determined by the misclassified errors
from the previous model but rather derives from a gradient descent optimization,
which assigns weights with respect to a cost function, optionally of different kinds.

GBM can take on different problems: regression, classification, and ranking (for
ordering examples), with each problem using a particular cost function. Gradient
descent helps discover the set of vector w values that reduce the cost function.
This calculation is equivalent to selecting the best examples to use to obtain a bet-
ter prediction. The algorithm calculates vector w multiple times as the function
h uses it, and each time, the algorithm adds the resulting function to the previ-
ous ones. The secret of GBM’s performance lies in weights optimized by gradient
descent, as well as in these three smart tricks:

Re
so

rt
in

g
to

 E
ns

em
bl

es

of
 L

ea
rn

er
s

0003054008.INDD 675 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

CHAPTER 4 Resorting to Ensembles of Learners 675

 » Shrinkage: Acts as a learning rate in the ensemble. As in gradient descent,
you must fix an adequate learning rate to avoid jumping too far from the
solution, which is the same as in GBM. Small shrinkage values lead to better
predictions.

 » Subsampling: Emulates the pasting approach. If each subsequent tree builds
on a subsample of the training data, the result is a stochastic gradient
descent. For many problems, the pasting approach helps reduce noise and
influence by outliers, thus improving the results.

 » Trees of fixed size: Fixing the tree depth used in boosting is like fixing a
complexity limit to learning functions that you put into the ensemble, yet
relying on more sophisticated trees than the stumps used in Adaboost. Depth
acts like power in a polynomial expansion: The deeper the tree, the larger the
expansion, thus increasing both the ability to intercept complex target
functions and the risk of overfitting.

Both R and Python implement GBM using all the characteristics described in the
chapter so far. You can learn more about the R implementation by reading about
the gbm package at https://cran.r-project.org/web/packages/gbm/gbm.pdf.
Python relies on an implementation in scikit-learn, which is discussed at http://
scikit-learn.org/stable/modules/ensemble.html#gradient-boosting. The
following example continues the previous test. In this case, you create a GBM
classifier for the handwritten digits data set and test its performance (this exam-
ple may run for a long time):

import numpy as np

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.cross_validation import cross_val_score

from sklearn import datasets

digits = datasets.load_digits()

X,y = digits.data, digits.target

GBM = cross_val_score(

 GradientBoostingClassifier(n_estimators=300,

 subsample=0.8, max_depth=2, learning_rate=0.1,

 random_state=101), X, y, scoring='accuracy',cv=10)

print ("GBM: %0.3f" % (np.mean(GBM)))

0003054008.INDD 676 Trim size: 7.375 in × 9.25 in March 31, 2017 4:57 AM

676 BOOK 9 Applying Machine Learning

Averaging Different Predictors
Up to this section, the chapter discusses ensembles made of the same kind of
machine learning algorithms, but both averaging and voting systems can also
work fine when you use a mix of different machine learning algorithms. This is
the averaging approach, and it’s widely used when you can’t reduce the estimate
variance.

As you try to learn from data, you have to try different solutions, thus modeling
your data using different machine learning solutions. It’s good practice to check
whether you can put some of them successfully into ensembles using prediction
averages or by counting the predicted classes. The principle is the same as in bag-
ging noncorrelated predictions, when models mixed together can produce less
variance-affected predictions. To achieve effective averaging, you have to

1. Divide your data into training and test sets.

2. Use the training data with different machine learning algorithms.

3. Record predictions from each algorithm and evaluate the viability of the result
using the test set.

4. Correlate all the predictions available with each other.

5. Pick the predictions that least correlate and average their result. Or, if you’re
classifying, pick a group of least correlated predictions and, for each example,
pick as a new class prediction the class that the majority of them predicted.

6. Test the newly averaged or voted-by-majority prediction against the test data.
If successful, you create your final model by averaging the results of the
models part of the successful ensemble.

To understand which models correlate the least, take the predictions one by one,
correlate each one against the others, and average the correlations to obtain an
averaged correlation. Use the averaged correlation to rank the selected predictions
that are most suitable for averaging.

CHAPTER 5 Real-World Applications 677

0003054009.INDD 677	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

 Real-World Applications
“In the realm of ideas everything depends on enthusiasm . . . in the real world
all rests on perseverance.”

 — JOHANN WOLFGANG VON GOETHE

 B eginners become experts and develop mastery of a skill by applying two
themes: preparation and practice. This chapter shows you how to apply
machine learning theory to solve real-world problems and provides prac-

tice in classifying images, scoring sentiment, and creating recommendations.

 While developers have made great progress creating these algorithms and imple-
menting feasible solutions, these problems are far from solved and continue to
evolve and update every day. This chapter shows you how to turn artifi cial intel-
ligence and machine learning knowledge into something useful.

 Classifying Images
 Among the fi ve senses, sight is certainly the most powerful in conveying knowl-
edge and information derived from the world outside. Many people feel that the
gift of sight helps children know about the diff erent things and persons around

Chapter 5

 IN THIS CHAPTER

 » Handling images with Python

 » Performing image classifi cation tasks
on images of faces

 » Considering Natural Language
Processing (NLP)

 » Defi ning how machines can
understand text

 » Obtaining rating data

0003054009.INDD 678	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

678 BOOK 9 Applying Machine Learning

them. In addition, humans receive and transmit knowledge across time by means
of pictures, visual arts, and textual documents.

Because sight is so important and precious, it’s similarly invaluable for a machine
learning algorithm because sight opens the algorithm to new capabilities. Most
information today is available in digital form (text, music, photos, and videos),
yet being able to read visual information in a binary format doesn’t help you to
understand it and to use it properly. In recent years, one of the more important
uses of vision in machine learning is to classify images for all sorts of reasons.

For example, robots need to know which objects they should avoid and which
objects they need to work with, yet without image classification, the task is
impossible. Humans also rely on image classification to perform tasks such as
handwriting recognition and finding particular individuals in a crowd. Here’s a
smattering of other vital tasks of image classification: conducting medical scans;
detecting pedestrians (an important feature to implement in cars and that could
save thousands of lives); and helping farmers determine where fields need the
most water. Check out the state of the art in image classification at http://
rodrigob.github.io/are_we_there_yet/build.

Working with a set of images
At first sight, image files appear as unstructured data made up of a series of bits.
The file doesn’t separate the bits from each other in any way. You can’t simply
look into the file and see an image structure because none exists. As with other
file formats, image files rely on the user to know how to interpret the data. For
example, each pixel of a picture file could consist of three 32-bit fields. Knowing
that each field is 32 bits is up to you. A header at the beginning of the file may
provide clues about interpreting the file, but even so, it’s up to you to know how
to interact with the file using the right package or library.

You use scikit-image for the following examples. It’s a Python package dedi-
cated to processing images, picking them up from files, and handling them using
NumPy arrays. By using scikit-image, you can obtain all the skills needed to load
and transform images for any machine learning algorithm. This package also
helps you upload all the necessary images, resize or crop them, and flatten them
into a vector of features in order to transform them for learning purposes.

Scikit-image isn’t the only package that can help you deal with images in Python.
There are also other packages, such as the following:

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 679	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 679

 » scipy.ndimage (https://docs.scipy.org/doc/scipy/reference/
ndimage.html):	Allows	you	to	operate	on	multidimensional	images

 » Mahotas (http://mahotas.readthedocs.org/en/latest):	A	fast	
C++-based	processing	library

 » OpenCV (https://opencv-python-tutroals.readthedocs.org):
A	powerful	package	that	specializes	in	computer	vision

 » ITK (https://itk.org):	Designed	to	work	on	3D	images	for	medical	
purposes

The example in this section shows how to work with a picture as an unstruc-
tured file. The example image is a public domain offering from https://commons.
wikimedia.org/wiki/Main_Page. To work with images, you need to access the
scikit-image library (http://scikit-image.org), which is an algorithm collec-
tion used for image processing. You can find a tutorial for this library at http://
scipy-lectures.github.io/packages/scikit-image. The first task is to display
the image on-screen using the following code. (Be patient: The image is ready
when the busy indicator disappears from the IPython Notebook tab.)

from skimage.io import imread

from skimage.transform import resize

from matplotlib import pyplot as plt

import matplotlib.cm as cm

%matplotlib inline

example_file = ("http://upload.wikimedia.org/" +
 "wikipedia/commons/7/7d/Dog_face.png")

image = imread(example_file, as_grey=True)

plt.imshow(image, cmap=cm.gray)

plt.show()

The code begins by importing a number of libraries. It then creates a string that
points to the example file online and places it in example_file. This string is
part of the imread() method call, along with as_grey, which is set to True. The
as_grey argument tells Python to turn any color images into grayscale. Any
images that are already in grayscale remain that way.

After you have an image loaded, you render it (make it ready to display on-screen).
The imshow() function performs the rendering and uses a grayscale color map.
The show() function actually displays image for you, as shown in Figure 5-1.

0003054009.INDD 680	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

680 BOOK 9 Applying Machine Learning

Sometimes images aren’t perfect; they can present noise or other granularity. You
must smooth the erroneous and unusable signals. Filters can help you achieve that
smoothing without hiding or modifying important characteristics of the image,
such as the edges. If you’re looking for an image filter, you can clean up your
images using the following:

 » Median filter:	Based	on	the	idea	that	the	true	signal	comes	from	a	median	of	
a	neighborhood	of	pixels.	A	function	disk	provides	the	area	used	to	apply	the	
median,	which	creates	a	circular	window	on	a	neighborhood.

 » Total variation denoising:	Based	on	the	idea	that	noise	is	variance	and	this	
filter	reduces	the	variance.

 » Gaussian filter:	Uses	a	Gaussian	function	to	define	the	pixels	to	smooth.

The following code provides you with an idea of the effect every filter has on the
final image, with the effects shown in Figure 5-2:

import warnings

warnings.filterwarnings("ignore")

from skimage import filters, restoration

from skimage.morphology import disk

median_filter = filters.rank.median(image, disk(1))

tv_filter = restoration.denoise_tv_chambolle(image,

 weight=0.1)

gaussian_filter = filters.gaussian_filter(image,

 sigma=0.7)

Don’t worry if a warning appears when you’re running the code. It happens
because the code converts some number during the filtering process and the new
numeric form isn’t as rich as before.

FIGURE 5-1:
The	image	
appears	

on-screen	
after you	render	

and	show	it.

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 681	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 681

fig = plt.figure()

for k,(t,F) in enumerate((('Median filter',median_filter),

 ('TV filter',tv_filter),

 ('Gaussian filter', gaussian_filter))):

 f=fig.add_subplot(1,3,k+1)
 plt.axis('off')

 f.set_title(t)

 plt.imshow(F, cmap=cm.gray)

plt.show()

If you aren’t working in IPython (or you aren’t using the magic command
%matplotlib inline), just close the image when you’re finished viewing it after
filtering noise from the image.

In the IPython command line, the asterisk in the In [*]: entry tells you that the
code is still running and you can’t move on to the next step.

The act of closing the image ends the code segment. You now have an image in
memory, and you may want to find out more about it. When you run the following
code, you discover the image type and size:

print("data type: %s, shape: %s" %

 (type(image), image.shape))

The output from this call tells you that the image type is a numpy.ndarray and
that the image size is 90 pixels by 90 pixels. The image is actually an array of pix-
els that you can manipulate in various ways. For example, if you want to crop the
image, you can use the following code to manipulate the image array:

image2 = image[5:70,0:70]

plt.imshow(image2, cmap=cm.gray)

plt.show()

The numpy.ndarray in image2 is smaller than the one in image, so the output is
smaller as well. Figure 5-3 shows typical results. The purpose of cropping the

FIGURE 5-2:
Different	filters	

for	different	
noise cleaning.

0003054009.INDD 682	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

682 BOOK 9 Applying Machine Learning

image is to make it a specific size. Both images must be the same size for you to
analyze them. Cropping is one way to ensure that the images are the correct size
for analysis.

Another method that you can use to change the image size is to resize it. The fol-
lowing code resizes the image to a specific size for analysis:

image3 = resize(image2, (30, 30), mode='nearest')

plt.imshow(image3, cmap=cm.gray)

print("data type: %s, shape: %s" %

 (type(image3), image3.shape))

The output from the print() function tells you that the image is now 30 pixels
by 30 pixels in size. You can compare it to any image with the same dimensions.

After you have cleaned up all the images and made them the right size, you need to
flatten them. A data set row is always a single dimension, not two or more dimen-
sions. The image is currently an array of 30 pixels by 30 pixels, so you can’t make
it part of a data set. The following code flattens image3, so it becomes an array of
900 elements stored in image_row.

image_row = image3.flatten()

print("data type: %s, shape: %s" %

 (type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a data
set and then use the data set for analysis purposes. The size is 900 elements, as
anticipated.

FIGURE 5-3:
Cropping	the	
image	makes	

it	smaller.

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 683	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 683

Extracting visual features
Machine learning on images works because it can rely on features to compare
pictures and associate an image with another one (because of similarity) or to a
specific label (guessing, for instance, the represented objects). Humans can easily
choose a car or a tree when we see one in a picture. Even if it’s the first time that
we see a certain kind of tree or car, we can correctly associate it with the right
object (labeling) or compare it with similar objects in memory (image recall).

In the case of a car, having wheels, doors, a steering wheel, and so on are all
elements that help you categorize a new example of a car among other cars. It
happens because you see shapes and elements beyond the image itself; thus no
matter how unusual a tree or a car may be, if it owns certain characteristics, you
can figure out what it is.

An algorithm can infer elements (shapes, colors, particulars, relevant elements,
and so on) directly from pixels only when you prepare data for it. Apart from spe-
cial kinds of neural networks, called convolutional networks (discussed in Book 9,
Chapter 3 as part of deep learning), which rank as the state of the art in image rec-
ognition because they can extract useful features from raw images by themselves,
it’s always necessary to prepare the right features when working with images.

Feature preparation from images is like playing with a jigsaw — you have to fig-
ure out any relevant particular, texture, or set of corners represented inside the
image in order to re-create a picture from its details. All this information serves
as the image features and makes up a precious element for any machine learning
algorithm to complete its job.

Convolutional neural networks filter information across multiple layers, train-
ing the parameters of their convolutions (kinds of image filters); thus they can
filter out only the features relevant to the images and the tasks they’re trained to
perform. Other special layers, called pooling layers, help the neural net catch these
features in the case of translation (they appear in unusual parts of the image) or
rotation.

Applying deep learning requires special techniques and machines able to sustain the
heavy computational workload. The Caffe library, developed by Yangqing Jia from
the Berkeley Vision and Learning Center, allows building such neural networks
but also leverages existing pretrained ones (http://caffe.berkeleyvision.
org/model_zoo.html). A pretrained neural network is a convolutional network
trained on a large number of varied images, thus learning how to filter out a
large variety of features for classification purpose. The pretrained network lets
you input your images and obtain a large number of values that correspond to a
score on a certain kind of feature previously learned by the network as an output.
The features may correspond to a certain shape or texture. What matters to

0003054009.INDD 684	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

684 BOOK 9 Applying Machine Learning

your machine learning objectives is that the most revealing features for your
purpose are among those produced by the pretrained network, so you must choose
the right features by making a selection using another neural network, an SVM, or
a simple regression model.

When you can’t use a convolutional neural network or pretrained library
(because of memory or CPU constraints), OpenCV (opencv-python-tutroals.
readthedocs.org/en/latest/py_tutorials/py_feature2d/py_table_of_
contents_feature2d/py_table_of_contents_feature2d.html) or some scikit-
image functions can still help. For instance, to emphasize the borders of an image,
you can apply a simple process using scikit-image, as shown here:

from skimage import measure

contours = measure.find_contours(image, 0.55)

plt.imshow(image, cmap=cm.gray)

for n, contour in enumerate(contours):

 plt.plot(contour[:, 1], contour[:, 0], linewidth=2)

plt.axis('image')

plt.show()

You can read more about finding contours and other algorithms for feature
 extraction (histograms; corner and blob detection) in the tutorials at http://
scikit-image.org/docs/dev/auto_examples.

Recognizing faces using eigenfaces
The capability to recognize a face in the crowd has become an essential tool for
many professions. For example, both the military and law enforcement rely on it
heavily. Of course, facial recognition has uses for security and other needs as well.
This example looks at facial recognition in a more general sense. You may have
wondered how social networks manage to tag images with the appropriate label or
name. The following example demonstrates how to perform this task by creating
the right features using eigenfaces.

Eigenfaces is an approach to facial recognition based on the overall appearance
of a face, not on its particular details. By means of a technique that can inter-
cept and reshape the variance present in the image, the reshaped information is
treated like the DNA of a face, thus allowing recovery of similar faces (because
they have similar variances) in a host of facial images. It’s a less effective tech-
nique than extracting features from the details of an image, yet it works, and you
can implement it quickly on your computer. This approach demonstrates how
machine learning can operate with raw pixels, but it’s more effective when you
change image data into another kind of data. You can learn more about eigenfaces
at https://en.wikipedia.org/wiki/Eigenface or by trying the tutorial that

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 685	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 685

explores variance decompositions in scikit-learn at http://scikit-learn.org/
stable/auto_examples/decomposition/plot_faces_decomposition.html.

In this example, you use eigenfaces to associate images present in a training set
with those in a test set, initially using some simple statistical measures.

import numpy as np

from sklearn.datasets import fetch_olivetti_faces

dataset = fetch_olivetti_faces(shuffle=True,

 random_state=101)

train_faces = dataset.data[:350,:]

test_faces = dataset.data[350:,:]

train_answers = dataset.target[:350]

test_answers = dataset.target[350:]

The example begins by using the Olivetti faces data set, a public domain set of
images readily available from scikit-learn. For this experiment, the code divides
the set of labeled images into a training and a test set. You need to pretend that
you know the labels of the training set but don’t know anything from the test set.
As a result, you want to associate images from the test set to the most similar
image from the training set.

print (dataset.DESCR)

The Olivetti data set consists of 400 photos taken from 40 people (so there are 10
photos of each person). Even though the photos represent the same person, each
photo has been taken at different times during the day, with different light and
facial expressions or details (for example, with glasses and without). The images
are 64 x 64 pixels, so unfolding all the pixels into features creates a data set made
of 400 cases and 4,096 variables. It seems like a high number of features, and
actually, it is. Using RandomizedPCA, you can reduce them to a smaller and more
manageable number.

from sklearn.decomposition import RandomizedPCA

n_components = 25

Rpca = RandomizedPCA(n_components=n_components,

 whiten=True,

 random_state=101).fit(train_faces)

print ('Explained variance by %i components: %0.3f' %

 (n_components,

 np.sum(Rpca.explained_variance_ratio_)))

compressed_train_faces = Rpca.transform(train_faces)

compressed_test_faces = Rpca.transform(test_faces)

Explained variance by 25 components: 0.794

0003054009.INDD 686	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

686 BOOK 9 Applying Machine Learning

The RandomizedPCA class is an approximate PCA version, which works better when
the data set is large (has many rows and variables). The decomposition creates 25
new variables (n_components parameter) and whitening (whiten=True), remov-
ing some constant noise (created by textual and photo granularity) and irrelevant
information from images in a different way from the filters just discussed. The
resulting decomposition uses 25 components, which is about 80 percent of the
information held in 4,096 features.

import matplotlib.pyplot as plt

photo = 17 # This is the photo in the test set

print ('We are looking for face id=%i'

 % test_answers[photo])

plt.subplot(1, 2, 1)

plt.axis('off')

plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64),

 cmap=plt.cm.gray, interpolation='nearest')

plt.show()

Figure 5-4 shows the chosen photo, subject number 34, from the test set.

After the decomposition of the test set, the example takes the data relative only
to photo 17 and subtracts it from the decomposition of the training set. Now the
training set is made of differences with respect to the example photo. The code
squares them (to remove negative values) and sums them by row, which results
in a series of summed errors. The most similar photos are the ones with the least
squared errors, that is, the ones whose differences are the least.

#Just the vector of value components of our photo

mask = compressed_test_faces[photo,]

squared_errors = np.sum((compressed_train_faces –

 mask)**2,axis=1)

FIGURE 5-4:
The	example	
application	

would like	to	find	
similar	photos.

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 687	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 687

minimum_error_face = np.argmin(squared_errors)

most_resembling = list(np.where(squared_errors < 20)[0])

print ('Best resembling face in train test: %i' %

 train_answers[minimum_error_face])

Best resembling face in train test: 34

As it did before, the code can now display photo 17, which is the photo that best
resembles images from the train set. Figure 5-5 shows typical output from this
example.

import matplotlib.pyplot as plt

plt.subplot(2, 2, 1)

plt.axis('off')

plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64),

 cmap=plt.cm.gray, interpolation='nearest')

for k,m in enumerate(most_resembling[:3]):

 plt.subplot(2, 2, 2+k)
 plt.title('Match in train set no. '+str(m))
 plt.axis('off')

 plt.imshow(train_faces[m].reshape(64,64),

 cmap=plt.cm.gray, interpolation='nearest')

plt.show()

Even though the most similar photo is similar (it’s just scaled slightly differently),
the other two photos are quite different. However, even though those photos don’t
match the test image as well, they really do show the same person as in photo 17.

FIGURE 5-5:
The	output	shows	

the	results	
that	resemble	the	

test	image.

0003054009.INDD 688	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

688 BOOK 9 Applying Machine Learning

Classifying images
This section adds to your knowledge of facial recognition, this time applying a
learning algorithm to a complex set of images, called the Labeled Faces in the
Wild data set that contains images of famous people collected over the Internet:
http://scikit-learn.org/stable/datasets/labeled_faces.html. You must
download the data set from the Internet, using the scikit-learn package in Python.
The package mainly contains photos of well-known politicians.

import warnings

warnings.filterwarnings("ignore")

from sklearn.datasets import fetch_lfw_people

lfw_people = fetch_lfw_people(min_faces_per_person=60,

 resize=0.4)

X = lfw_people.data

y = lfw_people.target

target_names = [lfw_people.target_names[a] for a in y]

n_samples, h, w = lfw_people.images.shape

from collections import Counter

for name, count in Counter(target_names).items():

 print ("%20s %i" % (name, count))

 Ariel Sharon 77

 Junichiro Koizumi 60

 Colin Powell 236

 Gerhard Schroeder 109

 Tony Blair 144

 Hugo Chavez 71

 George W Bush 530

 Donald Rumsfeld 121

As an example of data set variety, after dividing the examples into training and
test sets, you can display a sample of pictures from both sets depicting Junichiro
Koizumi, Prime Minister of Japan from 2001 to 2006. Figure 5-6 shows the output
of the following code.

from sklearn.cross_validation import

 StratifiedShuffleSplit

train, test = list(StratifiedShuffleSplit(target_names,

 n_iter=1, test_size=0.1, random_state=101))[0]

plt.subplot(1, 4, 1)

plt.axis('off')

for k,m in enumerate(X[train][y[train]==6][:4]):

 plt.subplot(1, 4, 1+k)
 if k==0:

 plt.title('Train set')

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 689	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 689

 plt.axis('off')

 plt.imshow(m.reshape(50,37),

 cmap=plt.cm.gray, interpolation='nearest')

plt.show()

for k,m in enumerate(X[test][y[test]==6][:4]):

 plt.subplot(1, 4, 1+k)
 if k==0:

 plt.title('Test set')

 plt.axis('off')

 plt.imshow(m.reshape(50,37),

 cmap=plt.cm.gray, interpolation='nearest')

plt.show()

As you can see, the photos have quite a few variations, even among photos of
the same person, which makes the task challenging: expression, pose, different
light, and quality of the photo. For this reason, the example that follows applies
the eigenfaces method described in the previous section, using different kinds
of decompositions and reducing the initial large vector of pixel features (1850)
to a simpler set of 150 features. The example uses PCA, the variance decompo-
sition technique; Non-Negative Matrix Factorization (NMF), a technique for
decomposing images into only positive features; and FastIca, an algorithm for
Independent Component Analysis, an analysis that extracts signals from noise
and other separated signals (the algorithm is successful at handling problems

FIGURE 5-6:
Examples	from	
the	training	and	

test	sets	do		differ	
in	pose	and	
expression.

0003054009.INDD 690	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

690 BOOK 9 Applying Machine Learning

like the cocktail party problem described at https://en.wikipedia.org/wiki/
Cocktail_party_effect).

from sklearn import decomposition

n_components = 50

pca = decomposition.RandomizedPCA(

 n_components=n_components,

 whiten=True).fit(X[train,:])

nmf = decomposition.NMF(n_components=n_components,

 init='nndsvda',

 tol=5e-3).fit(X[train,:])

fastica = decomposition.FastICA(n_components=n_components,

 whiten=True).fit(X[train,:])

eigenfaces = pca.components_.reshape((n_components, h, w))

X_dec = np.column_stack((pca.transform(X[train,:]),

 nmf.transform(X[train,:]),

 fastica.transform(X[train,:])))

Xt_dec = np.column_stack((pca.transform(X[test,:]),

 nmf.transform(X[test,:]),

 fastica.transform(X[test,:])))

y_dec = y[train]

yt_dec = y[test]

After extracting and concatenating the image decompositions into a new training
and test set of data examples, the code applies a grid search for the best combina-
tions of parameters for a classification support vector machine to perform a cor-
rect problem classification.

from sklearn.grid_search import GridSearchCV

from sklearn.svm import SVC

param_grid = {'C': [0.1, 1.0, 10.0, 100.0, 1000.0],

 'gamma': [0.0001, 0.001, 0.01, 0.1], }

clf = GridSearchCV(SVC(kernel='rbf'), param_grid)

clf = clf.fit(X_dec, y_dec)

print ("Best parameters: %s" % clf.best_params_)

Best parameters: {'gamma': 0.01, 'C': 100.0}

After finding the best parameters, the code checks for accuracy — the percentage
of correct answers in the test set — and obtains an estimate of about 0.82 (the
measure may change when you run the code on your computer).

from sklearn.metrics import accuracy_score

solution = clf.predict(Xt_dec)

print("Achieved accuracy: %0.3f"

 % accuracy_score(yt_dec, solution))

Achieved accuracy: 0.815

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 691	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 691

More interestingly, you can ask for a confusion matrix that shows the correct classes
along the rows and the predictions in the columns. When a character in a row has
counts in columns different from its row number, the code has mistakenly attrib-
uted one of the photos to someone else. In the case of the former Prime Minister of
Japan, the example actually gets a perfect score (notice that the output shows a 6 in
row 6, column 6, and zeroes in the remainder of the entries for that row).

from sklearn.metrics import confusion_matrix

confusion = str(confusion_matrix(yt_dec, solution))

print (' '*26+ ' '.join(map(str,range(8))))
print (' '*26+ '-'*22)
for n, (label, row) in enumerate(

 zip(lfw_people.target_names,

 confusion.split('\n'))):

 print ('%s %18s > %s' % (n, label, row))

 0 1 2 3 4 5 6 7

0 Ariel Sharon > [[6 0 1 0 1 0 0 0]

1 Colin Powell > [0 22 0 2 0 0 0 0]

2 Donald Rumsfeld > [0 0 8 2 1 0 0 1]

3 George W Bush > [1 1 2 46 1 0 0 2]

4 Gerhard Schroeder > [0 0 2 1 6 1 0 1]

5 Hugo Chavez > [0 0 0 0 1 5 0 1]

6 Junichiro Koizumi > [0 0 0 0 0 0 6 0]

7 Tony Blair > [0 0 0 1 2 0 0 11]]

Scoring Opinions and Sentiments
Many people have the idea that somehow computers can understand text. The
fact is that computers don’t even have a way in which to represent text — it’s all
numbers to the computer.

This section helps you understand three phases of working with text to score
opinions and sentiments: using Natural Language Processing (NLP) to parse the
text; performing the actual task of understanding the text; and then performing
scoring and classification tasks to interact with the text meaningfully.

Introducing natural language processing
As human beings, understanding language is one of our first achievements, and
associating words to their meaning seems natural. It’s also automatic to handle

0003054009.INDD 692	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

692 BOOK 9 Applying Machine Learning

discourses that are ambiguous, unclear, or simply have a strong reference to
the context of where we live or work (such as dialect, jargon, or terms family or
associates understand). In addition, humans can catch subtle references to feelings
and sentiments in text, enabling people to understand polite speech that hides
negative feelings and irony. Computers don’t have this ability but can rely on NLP,
a field of computer science concerned with language understanding and language
generation between a machine and a human being. Since Alan Turing first devised
the Turing Test in 1950, which aims at spotting an artificial intelligence based on
how it communicates with humans (https://en.wikipedia.org/wiki/Turing_
test), NLP experts have developed a series of techniques that define the state of
the art in computer-human interaction by text.

A computer powered with NLP can successfully spot spam in your email, tag the
part of a conversation that contains a verb or a noun, and spot an entity like
the name of a person or a company (called named entity recognition; see https://
en.wikipedia.org/wiki/Named-entity_recognition). All these achievements
have found application in tasks such as spam filtering, predicting the stock market
using news articles, and de-duplicating redundant information in data storage.

Things get more difficult for NLP when translating a text from another language
and understanding who the subject is in an ambiguous phrase. For example, con-
sider the sentence, “John told Luca he shouldn’t do that again.” In this case, you
can’t really tell whether “he” refers to John or Luca. Disambiguating words with
many meanings, such as considering whether the word mouse in a phrase refers
to an animal or a computer device, can prove difficult. Obviously, the difficulty in
all these problems arises because of the context.

As humans, we can easily resolve ambiguity by examining the text for hints about
elements like place and time that express the details of the conversation (such as
understanding what happened between John and Luca, or whether the conver-
sation is about a computer when mentioning the mouse). Relying on additional
information for understanding is part of the human experience. This sort of anal-
ysis is somewhat difficult for computers. Moreover, if the task requires critical
contextual knowledge or demands that the listener resort to common sense and
general expertise, the task becomes daunting. Simply put, NLP still has a lot of
ground to cover in order to discover how to extract meaningful summaries from
text effectively or how to complete missing information from text.

Understanding how machines read
Before a computer can do anything with text, it must be able to read the text in
some manner. You can prepare data to deal with categorical variables, such as
a feature representing a color (for instance, representing whether an example
relates to the colors red, green, or blue). Categorical data is a type of short text

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 693	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 693

that you represent using binary variables, that is, variables coded using one or
zero values according to whether a certain value is present in the categorical vari-
able. Not surprisingly, you can represent complex text using the same logic.

Therefore, just as you transform a categorical color variable, having values such as
red, green, and blue, into three binary variables, each one representing one of the
three colors, so too can you transform a phrase like “The quick brown fox jumps
over the lazy dog” using nine binary variables, one for each word that appears in the
text (“The” is considered distinct from “the” because of its initial capital letter).
This is the Bag of Words (BoW) form of representation. In its simplest form, BoW
shows whether a certain word is present in the text by flagging a specific feature in
the data set. Take a look at an example using Python and its scikit-learn package.

The input data is three phrases, text_1, text_2, and text_3, placed in a list, cor-
pus. A corpus is a set of homogeneous documents put together for NLP analysis:

text_1 = 'The quick brown fox jumps over the lazy dog.'

text_2 = 'My dog is quick and can jump over fences.'

text_3 = 'Your dog is so lazy that it sleeps all the day.'

corpus = [text_1, text_2, text_3]

When you need to analyze text using a computer, you load the documents from
disk or scrape them from the web and place each of them into a string variable. If
you have multiple documents, you store them all in a list, the corpus. When you
have a single document, you can split it using chapters, paragraphs, or simply the
end of each line. After splitting the document, place all its parts into a list and
apply analysis as if the list were a corpus of documents.

Now that you have a corpus, you use a class from the feature_extraction module
in scikit-learn, CountVectorizer, which easily transforms texts into BoW like this:

from sklearn.feature_extraction import text

vectorizer = text.CountVectorizer(binary=True).fit(corpus)

vectorized_text = vectorizer.transform(corpus)

print(vectorized_text.todense())

[[0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0]

 [0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0]

 [1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1]]

The CountVectorizer class learns the corpus content using the fit method and
then turns it (using the transform method) into a list of lists. As discussed in
Book 8, Chapter 2, a list of lists is nothing more than a matrix in disguise, so what
the class returns is actually a matrix made of three rows (the three documents, in
the same order as the corpus) and 21 columns representing the content.

0003054009.INDD 694	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

694 BOOK 9 Applying Machine Learning

The BoW representation turns words into the column features of a document
matrix, and these features have a nonzero value when present in the processed
text. For instance, consider the word dog. The following code shows its represen-
tation in the BoW:

print(vectorizer.vocabulary_)

{'day': 4, 'jumps': 11, 'that': 18, 'the': 19, 'is': 8,

 'fences': 6, 'lazy': 12, 'and': 1, 'quick': 15, 'my': 13,

 'can': 3, 'it': 9, 'so': 17, 'all': 0, 'brown': 2,

 'dog': 5, 'jump': 10, 'over': 14, 'sleeps': 16,

 'your': 20, 'fox': 7}

Asking the CountVectorizer to print the vocabulary learned from text reports
that it associates dog with the number five, which means that dog is the fifth ele-
ment in the BoW representations. In fact, in the obtained BoW, the fifth element
of each document list always has a value of 1 because dog is the only word present
in all the tree documents.

Storing documents in a document matrix form can be memory-intensive because
you must represent each document as a vector of the same length as the diction-
ary that created it. The dictionary in this example is quite limited, but when you
use a larger corpus, you discover that a dictionary of the English language con-
tains well over a million terms. The solution is to use sparse matrices. A sparse
matrix is a way to store a matrix in your computer’s memory without having zero
values occupying memory space. You can read more about sparse matrices here:
https://en.wikipedia.org/wiki/Sparse_matrix.

Processing and enhancing text
Marking whether a word is present or not in a text is indeed a good start, but
sometimes it is not enough. The BoW model has its own limits. As if you were put-
ting stuff randomly into a bag, in a BoW, words lose their order relationship with
each other. For instance, in the phrase My dog is quick and can jump over fences, you
know that quick refers to dog because it is glued to it by the form is of the verb to
be. In a BoW, however, everything is mixed and some internal references are lost.
Further processing can help prevent such. The following sections discuss how to
process and enhance text.

Considering basic processing tasks
Instead of marking the presence or absence of an element of the phrase (techni-
cally called a token), you can instead count how many times it occurs, as shown in
the following code:

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 695	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 695

text_4 = 'A black dog just passed by but my dog is brown.'

corpus.append(text_4)

vectorizer = text.CountVectorizer().fit(corpus)

vectorized_text = vectorizer.transform(corpus)

print(vectorized_text.todense()[-1])

[[0 0 1 1 1 1 0 0 2 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0]]

This code modifies the previous example by adding a new phrase with the word dog
repeated two times. The code appends the new phrase to the corpus and retrains
the vectorizer, but it omits the binary=True setting this time. The resulting
vector for the last inserted document clearly shows a 2 value in the ninth position,
thus the vectorizer counts the word dog twice.

Counting tokens helps make important words stand out. Yet it’s easy to repeat
phrase elements, such as articles, that aren’t important to the meaning of the
expression. In the next section, you discover how to exclude less important ele-
ments, but for the time being, the example underweights them using the term
frequency-inverse document frequency (TF-IDF) transformation.

The TF-IDF transformation is a technique that, after counting how many times a
token appears in a phrase, divides the value by the number of documents in which
the token appears. Using this technique, the vectorizer deems a word less impor-
tant, even if it appears many times in a text, when it also finds that word in other
texts. In the example corpus, the word dog appears in every text. In a classification
problem, you can’t use the word to distinguish between texts because it appears
everywhere in the corpus. The word fox appears only in one phrase, making it an
important classification term.

You commonly apply a number of transformations when applying TF-IDF, with
the most important transformation normalizing the text length. Clearly, a longer
text has more chances to have more words that are distinctive when compared to a
shorter text. For example, when the word fox appears in a short text, it can be rel-
evant to the meaning of that expression because fox stands out among few other
words. However, when the word fox appears once in a long text, its presence might
not matter much because it’s a single word among many others. For this reason,
the transformation divides the total tokens by the count of each token for each
phrase. Treating a phrase like this turns token counting into a token percentage,
so TF-IDF no longer considers how many times the word fox appears, but instead
considers the percentage of times the word fox appears among all the tokens. The
following example demonstrates how to complete the previous example using a
combination of normalization and TF-IDF.

TfidF = text.TfidfTransformer(norm='l1')

tfidf = TfidF.fit_transform(vectorized_text)

0003054009.INDD 696	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

696 BOOK 9 Applying Machine Learning

phrase = 3 # choose a number from 0 to 3

total = 0

for word in vectorizer.vocabulary_:

 pos = vectorizer.vocabulary_[word]

 value = list(tfidf.toarray()[phrase])[pos]

 if value !=0:

 print ("%10s: %0.3f" % (word, value))

 total += value
print ('\nSummed values of a phrase: %0.1f' % total)

 is: 0.077

 by: 0.121

 brown: 0.095

 dog: 0.126

 just: 0.121

 my: 0.095

 black: 0.121

 passed: 0.121

 but: 0.121

Summed values of a phrase: 1.0

Using this new TF-IDF model rescales the values of important words and makes
them comparable between each text in the corpus. To recover part of the order-
ing of the text before the BoW transformation, adding n-grams (https://
en.wikipedia.org/wiki/N-gram) is also useful. An n-gram is a continuous
sequence of tokens in the text that you use as a single token in the BoW repre-
sentation. For instance, in the phrase The quick brown fox jumps over the lazy dog, a
bigram — that is, a sequence of two tokens — transforms brown fox and lazy dog
into single tokens. A trigram may create a single token from quick brown fox. An
n-gram is a powerful tool, but it has a drawback because it doesn’t know which
combinations are important to the meaning of a phrase. N-grams create all the
contiguous sequences of size N. The TF-IDF model can underweight the less use-
ful n-grams, but only projects like Google’s NGram viewer (you learn more about
this viewer later in the chapter) can tell you which n-grams are useful in NLP with
any certainty. The following example uses CountVectorizer to model n-grams in
the range of (2, 2), that is, bigrams.

bigrams = text.CountVectorizer(ngram_range=(2,2))

print (bigrams.fit(corpus).vocabulary_)

{'can jump': 6, 'by but': 5, 'over the': 21,

 'it sleeps': 13, 'your dog': 31, 'the quick': 30,

 'and can': 1, 'so lazy': 26, 'is so': 12, 'dog is': 7,

 'quick brown': 24, 'lazy dog': 17, 'fox jumps': 9,

 'is brown': 10, 'my dog': 19, 'passed by': 22,

 'lazy that': 18, 'black dog': 2, 'brown fox': 3,

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 697	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 697

 'that it': 27, 'quick and': 23, 'the day': 28,

 'just passed': 16, 'dog just': 8, 'jump over': 14,

 'sleeps all': 25, 'over fences': 20, 'jumps over': 15,

 'the lazy': 29, 'but my': 4, 'all the': 0,

 'is quick': 11}

Setting different ranges lets you use both unigrams (single tokens) and n-grams in
your NLP analysis. For instance the setting ngram_range=(1,3) creates all tokens,
all bigrams, and all trigrams. You usually never need more than trigrams in an
NLP analysis. Increasing the number of n-grams is slightly beneficial after tri-
grams and sometimes even just after bigrams, depending on the corpus size and
the NLP problem.

Stemming and removing stop words
Stemming is the process of reducing words to their stem (or root) word. This task
isn’t the same as understanding that some words come from Latin or other roots,
but instead makes similar words equal to each other for the purpose of compari-
son or sharing. For example, the words cats, catty, and catlike all have the stem cat.
The act of stemming helps you analyze sentences when tokenizing them because
words having the same stem should have the same meaning (represented by a
single feature).

Creating stem words by removing suffixes to make tokenizing sentences easier
isn’t the only way to make the document matrix simpler. Languages include many
glue words that don’t mean much to a computer but have significant meaning to
humans, such as a, as, the, that, and so on in English. They make the text flow and
concatenate in a meaningful way. Yet, the BoW approach doesn’t care much about
how you arrange words in a text. Thus removing such words is legitimate. These
short, less useful words are called stop words.

The act of stemming and removing stop words simplifies the text and reduces the
number of textual elements so that only the essential elements remain. In addi-
tion, you keep just the terms that are nearest to the true sense of the phrase. By
reducing the number of tokens, a computational algorithm can work faster and
process the text more effectively when the corpus is large.

This example requires the use of the Natural Language Toolkit (NLTK), which
Anaconda doesn’t install by default. To use this example, you must download
and install NLTK using the instructions found at www.nltk.org/install.html
for your platform. Make certain that you install the NLTK for whatever version
of Python you’re using for this book when you have multiple versions of Python
installed on your system. After you install NLTK, you must also install the pack-
ages associated with it. The instructions at www.nltk.org/data.html tell you how
to perform this task. (Install all the packages to ensure that you have everything.)

0003054009.INDD 698	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

698 BOOK 9 Applying Machine Learning

The following example demonstrates how to perform stemming and remove stop
words from a sentence. It begins by training an algorithm to perform the required
analysis using a test sentence. Afterward, the example checks a second sentence
for words that appear in the first.

from sklearn.feature_extraction import text

import nltk

from nltk import word_tokenize

from nltk.stem.porter import PorterStemmer

nltk.download('punkt')

stemmer = PorterStemmer()

def stem_tokens(tokens, stemmer):

 stemmed = []

 for item in tokens:

 stemmed.append(stemmer.stem(item))

 return stemmed

def tokenize(text):

 tokens = word_tokenize(text)

 stems = stem_tokens(tokens, stemmer)

 return stems

vocab = ['Sam loves swimming so he swims all the time']

vect = text.CountVectorizer(tokenizer=tokenize,

 stop_words='english')

vec = vect.fit(vocab)

sentence1 = vec.transform(['George loves swimming too!'])

print (vec.get_feature_names())

print (sentence1.toarray())

At the outset, the example creates a vocabulary using a test sentence and places
it in the variable vocab. It then creates a CountVectorizer, vect, to hold a list of
stemmed words, but it excludes the stop words. The tokenizer parameter defines
the function used to stem the words. The stop_words parameter refers to a pickle
file that contains stop words for a specific language, which is English in this case.
There are also files for other languages, such as French and German. (You can
see other parameters for the CountVectorizer() at scikit-learn.org/stable/
modules/generated/sklearn.feature_extraction.text.CountVectorizer.
html.) The vocabulary is fitted into another CountVectorizer, vec, which is used
to perform the actual transformation on a test sentence using the transform()
function. Here’s the output from this example:

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 699	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 699

[nltk_data] Downloading package punkt to

[nltk_data] C:\Users\Luca\AppData\Roaming\nltk_data...

[nltk_data] Unzipping tokenizers\punkt.zip.

['love', 'sam', 'swim', 'time']

[[1 0 1 0]]

The first output shows the stemmed words. Notice that the list contains only
swim, not swimming or swims. All the stop words are missing as well. For example,
you don’t see the words so, he, all, or the.

The second output shows how many times each stemmed word appears in the test
sentence. In this case, a love variant appears once and a swim variant appears once
as well. The words sam and time don’t appear in the second sentence, so those
values are set to 0.

Scraping textual data sets from the web
Given NLP’s capabilities, building complete language models is just a matter of
gathering large text collections. Digging through large amounts of text enables
machine learning algorithms using NLP to discover connections between words
and derive useful concepts relative to specific contexts. For instance, when dis-
cussing a mouse in the form of a device or an animal, a machine learning algo-
rithm powered by NLP text processing can derive the precise topic from other
hints in the phrase. Humans decipher these hints by having lived, seen, or read
about the topic of the conversation.

Computers also have the opportunity to see and read a lot. The web offers access
to millions of documents, most of them freely accessible without restrictions. Web
scraping allows machine learning algorithms to automatically feed their NLP pro-
cesses and learn new capabilities in recognizing and classifying text. Developers
have already done much to create NLP systems capable of understanding textual
information better by leveraging the richness of the web.

For instance, by using free text acquired from the web and other open text sources,
such as dictionaries, scientists at Microsoft Research have developed various ver-
sions of MindNet, a semantic network, which is a network of words connected by
meaning. MindNet can find related words through synonyms, parts, causes, loca-
tions, and sources. For instance, when you ask for the word car, MindNet provides
answers such as vehicle (a synonym) and then connects vehicle to wheel because
it is a specific part of a car, thus providing knowledge directly derived from text
without anyone’s having specifically instructed MindNet about cars or how they’re
made. You can read more about MindNet at https://research.microsoft.com/
en-us/projects/mindnet/default.aspx.

0003054009.INDD 700	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

700 BOOK 9 Applying Machine Learning

Google developed something similar based on its Google Books project, helping
build better language models for all Google’s applications. A public API based
on Google’s work is the Ngram Viewer, which can explore how frequently cer-
tain combinations of tokens up to five grams have appeared over time: https://
books.google.com/ngrams.

Being able to retrieve information from the web allows even greater achievements.
For example, you could build a dictionary of positive or negative words based on
associated emoticons or emoji (https://en.wikipedia.org/wiki/Emoji).

Web scraping is a complex subject that could require an entire book to explain. This
chapter provides you with an example of web scraping and an overview of what
to expect. You need to install the Beautiful Soup package when using Python to
perform web scraping (www.crummy.com/software/BeautifulSoup). This pack-
age should already be part of your Anaconda installation, but if not, you can easily
install it on your system by opening a command shell and issuing the command:

pip install beautifulsoup4

Beautiful Soup is a package created by Leonard Richardson and is an excellent tool
for scraping data from HTML or XML files retrieved from the web, even if they
are malformed or written in a nonstandard way. The package name refers to the
fact that HTML documents are made of tags, and when they are a mess, many
developers idiomatically call the document a tag soup. Thanks to Beautiful Soup,
you can easily navigate in a page to locate the objects that matter and extract them
as text, tables, or links.

This example demonstrates how to download a table from a Wikipedia page con-
taining all the major US cities. Wikipedia (www.wikipedia.org) is a free-access
and free-content Internet encyclopedia, enjoyed by millions of users every day, all
around the world. Because its knowledge is free, open, and, most important, well
structured, it’s a precious resource for learning from the web.

Most publishers and many college instructors view Wikipedia as being a dubious
source of information. Anyone can edit the entries it contains, and sometimes people
do so in ways that slant the information politically or socially, or simply reflect a
lack of knowledge (see www.foxbusiness.com/features/2015/09/02/just-how-
accurate-is-wikipedia.html and isites.harvard.edu/icb/icb.do?keyword=
k70847&pageid=icb.page346376). This means that the information you receive
may not reflect reality. However, many studies show that the community effort
behind creating Wikipedia (see www.livescience.com/32950-how-accurate-
is-wikipedia.html, www.cnet.com/news/study-wikipedia-as-accurate-as-
britannica/, and www.zmescience.com/science/study-wikipedia-25092014)
does tend to mitigate this issue partially. Even so, you need to exercise some level

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 701	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 701

of care in taking Wikipedia entries at face value, just as you would any Internet
content. Just because someone tells you something is so doesn’t make it true
(no matter what form that information source might take). You need to cross-
reference the information and verify the facts before accepting any Internet
information source as factual, even Wikipedia. This said, the authors have verified
every Wikipedia source used in this book as much as possible to ensure that you
receive accurate information.

Wikipedia has its own rules and terms of service, which you may read at https://
meta.wikimedia.org/wiki/Bot_policy#Unacceptable_usage. The terms of
service forbid the use of bots for automated tasks, such as modifying the website
(corrections and automatic posting), and bulk downloads (downloading massive
amounts of data). Yet Wikipedia is a great source for NLP analysis because you
can download all its English articles at https://dumps.wikimedia.org/enwiki.
Other languages also are available for download. Just consult https://dumps.
wikimedia.org for further information.

from bs4 import BeautifulSoup

import pandas as pd

try:

 import urllib2 # Python 2.7.x

except:

 import urllib.request as urllib2 # Python 3.x

wiki = "https://en.wikipedia.org/wiki/\

List_of_United_States_cities_by_population"

header = {'User-Agent': 'Mozilla/5.0'}

query = urllib2.Request(wiki, headers=header)

page = urllib2.urlopen(query)

soup = BeautifulSoup(page, "lxml")

After you upload the Beautiful Soup package, the code defines a header (stating
that you are a human user using a browser) and a target page. The target page is a
document containing a list of major US cities: https://en.wikipedia.org/wiki/
List_of_United_States_cities_by_population. The list also contains infor-
mation about population and surface of the city.

table = soup.find("table",

 { "class" : "wikitable sortable" })

final_table = list()

for row in table.findAll('tr'):

 cells = row.findAll("td")

 if len(cells) >=6:

 v1 = cells[1].find(text=True)

 v2 = cells[2].find(text=True)

 v3 = cells[3].find(text=True)

0003054009.INDD 702	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

702 BOOK 9 Applying Machine Learning

 v4 = cells[4].find(text=True)

 v5 = cells[6].findAll(text=True)

 v5 = v5[2].split()[0]

 final_table.append([v1, v2, v3, v4, v5])

cols = ['City','State','Population_2014','Census_2010'

 ,'Land_Area_km2']

df = pd.DataFrame(final_table, columns=cols)

After downloading the page into the variable named soup, using the find() and
findAll() methods, you can look for a table (the <tr> and <td> tags). The cells
variable contains a number of cell entries, each of which can contain text. The
code looks inside each cell for textual information (v1 through v5) that it stores
in a list (final_table). It then turns the list into a pandas DataFrame for further
processing later. For example, you can use the DataFrame, df, to turn strings into
numbers. Simply printing df outputs the resulting table.

Handling problems with raw text
Even though raw text wouldn’t seem to present a problem in parsing because
it doesn’t contain any special formatting, you do have to consider how the text
is stored and whether it contains special words within it. The multiple forms of
encoding present on web pages can present interpretation problems that you need
to consider as you work through the text.

For example, the way the text is encoded can differ because of different operating
systems, languages, and geographical areas. Be prepared to find a host of differ-
ent encodings as you recover data from the web. Human language is complex, and
the original ASCII coding, comprising just unaccented English letters, can’t rep-
resent all the different alphabets. That’s why so many encodings appeared with
special characters. For example, a character can use either seven or eight bits for
encoding purposes. The use of special characters can differ as well. In short, the
interpretation of bits used to create characters differs from encoding to encoding.
You can see a host of encodings at www.i18nguy.com/unicode/codepages.html.

Sometimes you need to work with encodings other than the default encoding set
within the Python environment. When working with Python 3.x, you must rely
on Universal Transformation Format 8-bit (UTF-8) as the encoding used to read
and write files. This environment is always set for UTF-8, and trying to change
it causes an error message. However, when working with Python 2.x, you can
choose other encodings. In this case, the default encoding is the American Stan-
dard Code for Information Interchange (ASCII), but you can change it to some
other encoding.

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 703	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 703

You can use this technique in any Python script. It can save your day when your
code won’t work because of errors when Python can’t encode a character. How-
ever, working at the IPython prompt is actually easier in this case. The following
steps help you see how to deal with Unicode characters, but only when working
with Python 2.x. (These steps are unnecessary and cause errors in the Python 3.x
environment.)

1. Open a copy of the IPython command prompt.

You	see	the	IPython	window.

2. Type the following code, pressing Enter after each line.

import sys

sys.getdefaultencoding()

You	see	the	default	encoding	for	Python,	which	is	ascii	in	Python	2.x	(in	
Python 3.x,	it’s	utf-8	instead).	If	you	really	do	want	to	work	with	Jupyter	
Notebook,	create	a	new	cell	after	this	step.

3. Type	reload(sys)	and press Enter.

Python	reloads	the	sys	module	and	makes	a	special	function	available.

4. Type	sys.setdefaultencoding(’utf-8’)	and press Enter.

Python	does	change	the	encoding,	but	you	won’t	know	that	for	certain	until	
after	the	next	step.	If	you	really	do	want	to	work	with	Jupyter	Notebook,	create	
a	new	cell	after	this	step.

5. Type	sys.getdefaultencoding()	and press Enter.

You	see	that	the	default	encoding	has	now	changed	to	utf-8.

Changing the default encoding at the wrong time and in the incorrect way can
prevent you from performing tasks such as importing modules. Make sure to test
your code carefully and completely to ensure that any change in the default encoding
won’t affect your ability to run the application. Good additional articles to read
on this topic appear at http://blog.notdot.net/2010/07/Getting-unicode-
right-in-Python and http://web.archive.org/web/20120722170929/http://
boodebr.org/main/python/all-about-python-and-unicode.

Using Scoring and Classification
The previous NLP discussions in this chapter show how a machine learning
algorithm can read text (after scraping it from the web) using the BoW repre-
sentation and how NLP can enhance its understanding of text using text length

0003054009.INDD 704	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

704 BOOK 9 Applying Machine Learning

normalization, TF-IDF model, and n-grams. The following sections demonstrate
how to put text processing into use by learning to solve two common problems in
textual analysis: classification and sentiment analysis.

Performing classification tasks
When you classify texts, you assign a document to a class because of the topics it
discusses. You can discover the topics in a document in different ways. The sim-
plest approach is prompted by the idea that if a group of people talks or writes
about a topic, the people tend to use words from a limited vocabulary because they
refer or relate to the same topic. When you share some meaning or are part of the
same group, you tend to use the same language. Consequently, if you have a col-
lection of texts and don’t know what topics the text references, you can reverse
the previous reasoning — you can simply look for groups of words that tend to
associate, so their newly formed group by dimensionality reduction may hint at
the topics you’d like to know about. This is a typical unsupervised learning task.

This learning task is a perfect application for the singular value decomposition
(SVD) family of algorithms because by reducing the number of columns, the fea-
tures (which, in a document, are the words) will gather in dimensions, and you
can discover the topics by checking high-scoring words. SVD and principal com-
ponents analysis (PCA) provide features to relate both positively and negatively to
the newly created dimensions. So a resulting topic may be expressed by the pres-
ence of a word (high positive value) or by the absence of it (high negative value),
making interpretation both tricky and counterintuitive for humans. The scikit-
learn package includes the Non-Negative Matrix Factorization (NMF) decompo-
sition class, which allows an original feature to relate only positively with the
resulting dimensions.

This example starts with a new experiment after loading the 20newsgroups data
set, a data set collecting newsgroup postings scraped from the web, selecting only
the posts regarding objects for sale and automatically removing headers, footers,
and quotes. You may receive a warning message to the effect of, WARNING:sklearn.
datasets.twenty_newsgroups:Downloading dataset from ..., with the URL of
the site used for the download when working with this code.

import warnings

warnings.filterwarnings("ignore")

from sklearn.datasets import fetch_20newsgroups

dataset = fetch_20newsgroups(shuffle=True,

 categories = ['misc.forsale'],

 remove=('headers', 'footers', 'quotes'), random_state=101)

print ('Posts: %i' % len(dataset.data))

Posts: 585

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 705	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 705

The TfidVectorizer class is imported and set up to remove stop words (common
words such as the or and) and keep only distinctive words, producing a matrix
whose columns point to distinct words.

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(max_df=0.95,

 min_df=2, stop_words='english')

tfidf = vectorizer.fit_transform(dataset.data)

from sklearn.decomposition import NMF

n_topics = 5

nmf = NMF(n_components=n_topics, random_state=101).fit(tfidf)

As noted earlier in the chapter, the term frequency-inverse document frequency
(TF-IDF) is a simple calculation based on the frequency of a word in the docu-
ment. It is weighted by the rarity of the word between all the documents avail-
able. Weighting words is an effective way to rule out words that cannot help you
to classify or identify the document when processing text. For example, you can
eliminate common parts of speech or other common words.

As with other algorithms from the sklearn.decomposition module, the n_
components parameter indicates the number of desired components. If you’d like
to look for more topics, you use a higher number. As the required number of topics
increases, the reconstruction_err_ method reports lower error rates. It’s up
to you to decide when to stop given the trade-off between more time spent on
computations and more topics.

The last part of the script outputs the resulting five topics. By reading the printed
words, you can decide on the meaning of the extracted topics, thanks to product
characteristics (for instance, the words drive, hard, card, and floppy refer to com-
puters) or the exact product (for instance, comics, car, stereo, games).

feature_names = vectorizer.get_feature_names()

n_top_words = 15

for topic_idx, topic in enumerate(nmf.components_):

 print ("Topic #%d:" % (topic_idx+1),)
 print (" ".join([feature_names[i] for i in

 topic.argsort()[:-n_top_words - 1:-1]]))

Topic #1:

drive hard card floppy monitor meg ram disk motherboard vga scsi brand

 color internal modem

Topic #2:

00 50 dos 20 10 15 cover 1st new 25 price man 40 shipping comics

Topic #3:

condition excellent offer asking best car old sale good new miles 10 000

 tape cd

0003054009.INDD 706	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

706 BOOK 9 Applying Machine Learning

Topic #4:

email looking games game mail interested send like thanks price package

 list sale want know

Topic #5:

shipping vcr stereo works obo included amp plus great volume vhs unc mathes

 gibbs radley

You can explore the resulting model by looking into the attribute components_
from the trained NMF model. It consists of a NumPy ndarray holding positive val-
ues for words connected to the topic. By using the argsort method, you can get
the indexes of the top associations, whose high values indicate that they are the
most representative words.

print (nmf.components_[0,:].argsort()[:-n_top_words-1:-1])

Gets top words for topic 0

[1337 1749 889 1572 2342 2263 2803 1290 2353 3615 3017 806 1022 1938

 2334]

Decoding the words’ indexes creates readable strings by calling them from the array
derived from the get_feature_names method applied to the TfidfVectorizer
that was previously fitted.

print (vectorizer.get_feature_names()[1337])

Transforms index 1337 back to text

drive

Analyzing reviews from e-commerce
Sentiment is difficult to catch because humans use the same words to express
even opposite sentiments. The expression you convey is a matter of how you con-
struct your thoughts in a phrase, not simply the words used. Even though diction-
aries of positive and negative words do exist and are helpful, they aren’t decisive
because word context matters. You can use these dictionaries as a way to enrich
textual features, but you have to rely more on machine learning if you want to
achieve good results.

It’s a good idea to see how positive and negative word dictionaries work. The
AFINN-111 dictionary contains 2,477 positive and negative words and phrases
(www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010). Another
good choice is the larger opinion lexicon by Hu and Liu that appears at www.
cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon. Both dictionaries
contain English words.

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 707	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 707

Using labeled examples that associate phrases to sentiments can create more
effective predictors. In this example, you create a machine learning model based
on a data set containing reviews from Amazon, Yelp, and IMDB that you can find
at the UCI, the machine learning repository, https://archive.ics.uci.edu/ml/
datasets/Sentiment+Labelled+Sentences.

This data set was created for the paper “From Group to Individual Labels Using
Deep Features,” by Kotzias et al., for KDD 2015. The data set contains 3,000 labeled
reviews equally divided from the three sources, and the data has a simple struc-
ture. Some text is separated by a tab from a binary sentiment label where 1 is a
positive sentiment and 0 a negative one. You can download the data set and place
it in your Python working directory using the following commands:

try:

 import urllib2 # Python 2.7.x

except:

 import urllib.request as urllib2 # Python 3.x

import requests, io, os, zipfile

UCI_url = 'https://archive.ics.uci.edu/ml/\

machine-learning-databases/00331/sentiment%20\

labelled%20sentences.zip'

response = requests.get(UCI_url)

compressed_file = io.BytesIO(response.content)

z = zipfile.ZipFile(compressed_file)

print ('Extracting in %s' % os.getcwd())

for name in z.namelist():

 filename = name.split('/')[-1]

 nameOK = ('MACOSX' not in name and '.DS' not in name)

 if filename and nameOK:

 newfile = os.path.join(os.getcwd(),

 os.path.basename(filename))

 with open(newfile, 'wb') as f:

 f.write(z.read(name))

 print ('\tunzipping %s' % newfile)

In case the previous script doesn’t work, you can download the data (in zip
format) directly from https://archive.ics.uci.edu/ml/machine-learning-
databases/00331 and expand it using your favorite unzipper. You’ll find the
imdb_labelled.txt file inside the newly created sentiment labelled sentences
directory. After downloading the files, you can upload the IMDB file to a pandas
DataFrame by using the read_csv function.

import numpy as np

import pandas as pd

0003054009.INDD 708	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

708 BOOK 9 Applying Machine Learning

dataset = 'imdb_labelled.txt'

data = pd.read_csv(dataset, header=None, sep=r"\t",

 engine='python')

data.columns = ['review','sentiment']

Exploring the textual data is quite interesting. You’ll find all short phrases such
as “Wasted two hours” or “It was so cool.” Some are clearly ambiguous for a
computer, such as “Waste your money on this game.” Even though waste has a
negative meaning, the imperative makes the phrase sound positive. A machine
learning algorithm can learn to decipher ambiguous phrases like these only after
seeing many variants. The next step is to build the model by splitting the data into
training and test sets.

from sklearn.cross_validation import train_test_split

corpus, test_corpus, y, yt = train_test_split(

 data.ix[:,0], data.ix[:,1],

 test_size=0.25, random_state=101)

After splitting the data, the code transforms the text using most of the NLP tech-
niques described in this chapter: token counts, unigrams and bigrams, stop words
removal, text length normalization, and TF-IDF transformation.

from sklearn.feature_extraction import text

vectorizer = text.CountVectorizer(ngram_range=(1,2),

 stop_words='english').fit(corpus)

TfidF = text.TfidfTransformer()

X = TfidF.fit_transform(vectorizer.transform(corpus))

Xt = TfidF.transform(vectorizer.transform(test_corpus))

After the text for both the training and test sets is ready, the algorithm can learn
sentiment using a linear support vector machine. This kind of support vec-
tor machine supports L2 regularization, so the code must search for the best C
parameter using the grid search approach.

from sklearn.svm import LinearSVC

from sklearn.grid_search import GridSearchCV

param_grid = {'C': [0.01, 0.1, 1.0, 10.0, 100.0]}

clf = GridSearchCV(LinearSVC(loss='hinge',

 random_state=101), param_grid)

clf = clf.fit(X, y)

print ("Best parameters: %s" % clf.best_params_)

Best parameters: {'C': 1.0}

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 709	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 709

Now that the code has determined the best hyper-parameter for the problem, you
can test performance on the test set using the accuracy measure, the percentage of
correct times the code can guess the correct sentiment.

from sklearn.metrics import accuracy_score

solution = clf.predict(Xt)

print("Achieved accuracy: %0.3f" %

 accuracy_score(yt, solution))

Achieved accuracy: 0.816

The results indicate accuracy of higher than 80 percent, but determining which
phrases tricked the algorithm into making a wrong prediction is interesting. You
can print the misclassified texts and consider what the learning algorithm is
missing in terms of learning from text.

print(test_corpus[yt!=solution])

601 There is simply no excuse for something this p...

32 This is the kind of money that is wasted prope...

887 At any rate this film stinks, its not funny, a...

668 Speaking of the music, it is unbearably predic...

408 It really created a unique feeling though.

413 The camera really likes her in this movie.

138 I saw "Mirrormask" last night and it was an un...

132 This was a poor remake of "My Best Friends Wed...

291 Rating: 1 out of 10.

904 I'm so sorry but I really can't recommend it t...

410 A world better than 95% of the garbage in the ...

55 But I recommend waiting for their future effor...

826 The film deserves strong kudos for taking this...

100 I don't think you will be disappointed.

352 It is shameful.

171 This movie now joins Revenge of the Boogeyman ...

814 You share General Loewenhielm's exquisite joy ...

218 It's this pandering to the audience that sabot...

168 Still, I do like this movie for it's empowerme...

479 Of course, the acting is blah.

31 Waste your money on this game.

805 The only place good for this film is in the ga...

127 My only problem is I thought the actor playing...

613 Go watch it!

764 This movie is also revealing.

107 I love Lane, but I've never seen her in a movi...

674 Tom Wilkinson broke my heart at the end... and...

30 There are massive levels, massive unlockable c...

667 It is not good.

0003054009.INDD 710	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

710 BOOK 9 Applying Machine Learning

823 I struggle to find anything bad to say about i...

739 What on earth is Irons doing in this film?

185 Highly unrecommended.

621 A mature, subtle script that suggests and occa...

462 Considering the relations off screen between T...

595 Easily, none other cartoon made me laugh in a ...

8 A bit predictable.

446 I like Armand Assante & my cable company's sum...

449 I won't say any more - I don't like spoilers, ...

715 Im big fan of RPG games too, but this movie, i...

241 This would not even be good as a made for TV f...

471 At no point in the proceedings does it look re...

481 And, FINALLY, after all that, we get to an end...

104 Too politically correct.

522 Rating: 0/10 (Grade: Z) Note: The Show Is So B...

174 This film has no redeeming features.

491 This movie creates its own universe, and is fa...

Name: review, dtype: object

Recommending Products and Movies
One of the oldest and most common sales techniques is to recommend something
to a customer based on what you know about the customer’s needs and wants. If
people buy one product, they might buy another associated product if given a good
reason to do so. They may not even have thought about the need for the second
product until the salesperson recommends it, yet they really do need to have it
in order to use the primary product. For this reason alone, most people actually
like to get recommendations. Given that web pages now serve as a salesperson in
many cases, recommender systems are a necessary part of any serious sales effort
on the web. The rest of this chapter helps you better understand the significance
of the recommender revolution in all sorts of venues.

Recommender systems serve all sorts of other needs. For example, you might see
an interesting movie title, read the synopsis, and still not know whether you’re
likely to find it a good movie. Watching the trailer might prove equally fruitless.
Only after you see the reviews provided by others do you feel you have enough
information to make a good decision. You also find methods for obtaining and
using rating data in this chapter.

Gathering, organizing, and ranking such information is hard, though, and infor-
mation overflow is the bane of the Internet. A recommender system can perform
all the required work for you in the background, making the work of getting to

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 711	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 711

a decision a lot easier. You may not even realize that search engines are actually
huge recommender systems. The Google search engine, for instance, can provide
personalized search results based on your previous search history.

Recommender systems do more than just make recommendations. After reading
images and texts, machine learning algorithms can also read a person’s person-
ality, preferences, and needs and act accordingly. The rest of this chapter helps
you understand how all these activities take place by exploring techniques such as
singular value decomposition (SVD).

Realizing the revolution
A recommender system can suggest items or actions of interest to a user, after
having learned the user’s preferences over time. The technology, which is based
on data and machine learning techniques (both supervised and unsupervised), has
appeared on the Internet for about two decades. Today you can find recommender
systems almost everywhere, and they’re likely to play an even larger role in the
future under the guise of personal assistants, such as Siri or some other artificial
intelligence-based digital assistant.

The drivers for users and companies to adopt recommender systems are different
but complementary. Users have a strong motivation to reduce the complexity of
the modern world (regardless of whether the issue is finding the right product or
a place to eat) and avoid information overload. Companies, on the other hand, find
that recommender systems provide a practical way to communicate in a personal-
ized way with their customers and successfully push sales.

Recommender systems actually started as a means to handle information over-
load. The Xerox Palo Alto Research Center built the first recommender in 1992.
Named Tapestry, it handled the increasing number of emails received by center
researchers. The idea of collaborative filtering was born (learned from users by
leveraging similarities in preferences), and the GroupLens project soon extended
it to news selection and movie recommendations (the MovieLens project, whose
data you use in this chapter).

When giant players in the e-commerce sector, such as Amazon, started adopt-
ing recommender systems, the idea went mainstream and spread widely in
e-commerce. Netflix did the rest by promoting recommenders as a business tool
and sponsoring a competition to improve its recommender system (https://
en.wikipedia.org/wiki/Netflix_Prize) that involved various teams for quite a
long time. The result is an innovative recommender technology that uses SVD and
Restricted Boltzmann Machines (a kind of unsupervised neural network discussed
in Book 9, Chapter 3).

0003054009.INDD 712	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

712 BOOK 9 Applying Machine Learning

However, recommender systems aren’t limited to promoting products. Since
2002, a new kind of Internet service has made its appearance: social networks
such as Friendster, Myspace, Facebook, and LinkedIn. These services promote
link exchanges between users and share information such as posts, pictures, and
videos. In addition, search engines such as Google amassed user response infor-
mation to offer more personalized services and understand how to better match
users’ desires when responding to users’ queries (https://en.wikipedia.org/
wiki/RankBrain).

Recommendations have become so pervasive in guiding people’s daily life that
experts now worry about the impact on our ability to assume independent deci-
sions and perceive the world in freedom. You can read about this concern in the
article at https://en.wikipedia.org/wiki/Filter_bubble. The history of rec-
ommender systems is one of machines striving to learn about our minds and
hearts, to make our lives easier, and to promote the business of their creators.

Downloading rating data
Getting good rating data can be hard. Later in this chapter, you use the MovieLens
data set to see how SVD can help you in creating movie recommendations. How-
ever, you have other databases at your disposal. The following sections describe
the MovieLens data set and the data logs contained in MSWeb — both of which
work quite well when experimenting with recommender systems.

Trudging through the MovieLens data set
The MovieLens site (https://movielens.org) is all about helping you find a
movie you might like. After all, with millions of movies out there, finding some-
thing new and interesting could take time that you don’t want to spend. The setup
works by asking you to input ratings for movies that you already know about. The
MovieLens site then makes recommendations for you based on your ratings. In
short, your ratings teach an algorithm what to look for, and then the site applies
this algorithm to the entire data set.

You can obtain the MovieLens data set at https://grouplens.org/datasets/
movielens. The interesting thing about this site is that you can download all or
part of the data set based on how you want to interact with it. You can find down-
loads in the following sizes:

 » 100,000	ratings	from	700	users	on	9,000	movies

 » 1	million	ratings	from	6,000	users	on	4,000	movies

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 713	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 713

 » 10	million	ratings	and	100,000	tag	applications	applied	to	10,000	movies	by	
72,000	users

 » 20	million	ratings	and	465,000	tag	applications	applied	to	27,000	movies	by	
138,000	users

 » MovieLens’s	latest	data	set	in	small	or	full	sizes	(At	this	writing,	the	full	size	
contained	20,000,000	ratings	and	470,000	tag	applications	applied	to	27,000	
movies	by	138,000	users;	its	size	increase.)

This data set presents you with an opportunity to work with user-generated data
using both supervised and unsupervised techniques. The large data sets pres-
ent special challenges that only big data can provide. You can find some starter
information for working with supervised and unsupervised techniques in Book 9,
Chapter 1 and Book 9, Chapter 2.

The following example uses a version called the MovieLense ratings data set found
in the R recommenderlab library.

After calling the library from R (and installing it if it isn’t already available on your
system), the code uploads the library into memory and starts exploring the data.

if (!"recommenderlab" %in% rownames(installed.packages()))

 {install.packages("recommenderlab")}

library("recommenderlab")

data(MovieLense)

print(MovieLense)

943 x 1664 rating matrix of class 'realRatingMatrix' with

 99392 ratings.

Printing the data set doesn’t print any data but reports to you that the data set is a
matrix of 943 rows (the users) and 1664 columns (the movies), containing 99392
ratings. MovieLense is actually a sparse matrix, a matrix that compresses the data
by removing most of the zero values. You can normally operate on a sparse matrix
as you would when using a standard matrix. When necessary, you can convert it
into a standard dense matrix for specific statistics by using code like the following:

print(table(as.vector(as(MovieLense, "matrix"))))

 1 2 3 4 5

 6059 11307 27002 33947 21077

The output displays the rankings distribution. Rankings range from 1 to 5, and
there are more positive rankings than negative ones. This often happens with rat-
ing data: It has some imbalance in favor of positive data because users tend to buy

0003054009.INDD 714	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

714 BOOK 9 Applying Machine Learning

or watch what they believe they will like. Disappointment mostly motivates nega-
tive ratings because expectations aren’t satisfied. You can also report how many
films each user has rated on average and how many users have rated each film:

summary(colCounts(MovieLense))

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.00 7.00 27.00 59.73 80.00 583.00

summary(rowCounts(MovieLense))

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 19.0 32.0 64.0 105.4 147.5 735.0

It is also quite easy to go into deeper detail and find how users rank a particular
film.

average_ratings <- colMeans(MovieLense)

print(average_ratings[50])

Star Wars (1977)

 4.358491

print (colCounts(MovieLense[,50]))

Star Wars (1977)

 583

In this example, 583 users have rated the fiftieth movie, the original Star Wars
from 1977, which scored an average rating of 4.36.

Navigating through anonymous web data
Another interesting data set that you can use to learn from preferences is the
MSWeb data set. It consists of a week’s worth of anonymously recorded data from
the Microsoft website. In this case, the recorded information is about a behavior,
not a judgment, thus values are expressed in a binary form. As with the Mov-
ieLens data set, you can download the MSWeb data set from the R recommend-
erlab library, get information about its structure, and explore how its values are
distributed.

data(MSWeb)

print(MSWeb)

32710 x 285 rating matrix of class 'binaryRatingMatrix'

 with 98653 ratings.

print(table(as.vector(as(MSWeb, "matrix"))))

 FALSE TRUE

9223697 98653

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 715	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 715

The data set, stored in a sparse matrix, consists of 32710 randomly selected
Microsoft website users, and the columns represent 285 Vroots. A Vroot is a series
of grouped website pages. Together they constitute an area of the website. The
binary values show whether someone has visited a certain area. (You just see a
flag; you don’t see how many times the user has actually visited that website area.)

The idea is that a user’s visit to a certain area indicates a specific interest. For
instance, when a user visits pages to learn about productivity software along with
visits to a page containing terms and prices, this behavior indicates an interest in
acquiring the productivity software soon. Useful recommendations can be based
on such inferences about a user’s desire to buy certain versions of the productivity
software or bundles of different software and services.

The remainder of the chapter uses the MovieLense data set exclusively. However,
you should use the knowledge gained in this chapter to explore the MSWeb data
set using the same methodologies because they apply equally to rating data and
binary data.

Encountering the limits of rating data
For recommender systems to work well, they need to know about you as well as
other people, both like you and different from you. Acquiring rating data allows a
recommender system to learn from the experiences of multiple customers. Rating
data could derive from a judgment (such as rating a product using stars or num-
bers) or a fact (a binary 1/0 that simply states that you bought the product, saw a
movie, or stopped browsing at a certain web page).

No matter the data source or type, rating data is always about behaviors. To rate a
movie, you have to decide to see it, watch it, and then rate it based on your experi-
ence of seeing the movie. Actual recommender systems learn from rating data in
different ways:

 » Collaborative filtering:	Matches	raters	based	on	movie	or	product	similari-
ties	used	in	the	past.	You	can	get	recommendations	based	on	items	liked	by	
people	similar	to	you	or	on	items	similar	to	those	you	like.

 » Content-based filtering:	Goes	beyond	the	fact	that	you	watched	a	movie.	It	
examines	the	features	relative	to	you	and	the	movie	to	determine	whether	a	
match	exists	based	on	the	larger	categories	that	the	features	represent.	For	
instance,	if	you	are	a	female	who	likes	action	movies,	the	recommender	will	
look	for	suggestions	that	include	the	intersection	of	these	two	categories.

 » Knowledge-based recommendations:	Based	on	metadata,	such	as	prefer-
ences	expressed	by	users	and	product	descriptions.	It	relies	on	machine	

0003054009.INDD 716	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

716 BOOK 9 Applying Machine Learning

learning	and	is	effective	when	you	do	not	have	enough	behavioral	data	to	
determine	user	or	product	characteristics.	This	is	called	a	cold start	and	
represents	one	of	the	most	difficult	recommender	tasks	because	you	don’t	
have	access	to	either	collaborative	filtering	or	content-based	filtering.

When using collaborative filtering, you need to calculate similarity (see Book 9,
Chapter 2 for a discussion of the use of similarity measures). Apart from Euclid-
ean, Manhattan, and Chebyshev distances, the remainder of this section discusses
cosine similarity. Cosine similarity measures the angular cosine distance between
two vectors, which may seem like a difficult concept to grasp but is just a way to
measure angles in data spaces.

Imagine a space made of features and having two points. Using the formulations
found in Book 9, Chapter 2, you can measure the distance between the points. For
instance, you could use the Euclidean distance, which is a perfect choice when you
have few dimensions, but which fails miserably when you have multiple dimen-
sions because of the curse of dimensionality (https://en.wikipedia.org/wiki/
Curse_of_dimensionality).

The idea behind the cosine distance is to use the angle created by the two points
connected to the space origin (the point where all dimensions are zero) instead.
If the points are near, the angle is narrow, no matter how many dimensions are
there. If they are far away, the angle is quite large. Cosine similarity implements
the cosine distance as a percentage and is quite effective in telling whether a user
is similar to another or whether a film can be associated to another because the
same users favor it. The following example locates the movies that are the most
similar movies to movie 50, Star Wars.

print (colnames(MovieLense[,50]))

[1] "Star Wars (1977)"

similar_movies <- similarity(MovieLense[,50],

 MovieLense[,-50],

 method ="cosine",

 which = "items")

colnames(similar_movies)[which(similar_movies>0.70)]

[1] "Toy Story (1995)"

 "Empire Strikes Back, The (1980)"

[3] "Raiders of the Lost Ark (1981)"

 "Return of the Jedi (1983)"

Leveraging SVD
A property of SVD is to compress the original data at such a level and in such
a smart way that, in certain situations, the technique can actually create new

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 717	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 717

meaningful and useful features, not just compressed variables. The following sec-
tions help you understand what role SVD plays in recommender systems.

Considering the origins of SVD
SVD is a method from linear algebra that can decompose an initial matrix into the
multiplication of three derived matrices. The three derived matrices contain the
same information as the initial matrix, but in a way that expresses any redundant
information (expressed by statistical variance) only once. The benefit of the new
variable set is that the variables have an orderly arrangement according to the
initial variance portion contained in the original matrix.

SVD builds the new features using a weighted summation of the initial features.
It places features with the most variance leftmost in the new matrix, whereas
features with the least or no variance appear on the right side. As a result, no cor-
relation exists between the features. (Correlation between features is an indicator
of information redundancy, as explained in the previous paragraph.) Here’s the
formulation of SVD:

A =U D VT* *

For compression purposes, you need to know only about matrices U and D, but
examining the role of each resulting matrix helps, starting with the origin. A is a
matrix n*p, where n is the number of examples and p is the number of variables.
As an example, consider a matrix containing the purchase history of n customers,
who bought something in the p range of available products. The matrix values are
populated with quantities that customers purchased. As another example, imag-
ine a matrix in which rows are individuals, columns are movies, and the content
of the matrix is a movie rating (which is exactly what the MovieLens data set
contains).

After the SVD computation completes, you obtain the U, S, and V matrices. U is
a matrix of dimensions n by k, where k is p, exactly the same dimensions of the
original matrix. It contains the information about the original rows on a recon-
structed set of columns. Therefore, if the first row on the original matrix is a
vector of items that Mr. Smith bought, the first row of the reconstructed U matrix
will still represent Mr. Smith, but the vector will have different values. The new U
matrix values are a weighted combination of the values in the original columns.

Of course, you might wonder how the algorithm creates these combinations. The
combinations are devised to concentrate the most variance possible on the first
column. The algorithm then concentrates most of the residual variance in the
second column with the constraint that the second column is uncorrelated with
the first one, distributing the decreasing residual variance to each column in suc-
cession. By concentrating the variance in specific columns, the original features

0003054009.INDD 718	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

718 BOOK 9 Applying Machine Learning

that were correlated are summed into the same columns of the new U matrix,
thus cancelling any previous redundancy present. As a result, the new columns
in U don’t have any correlation between themselves, and SVD distributes all the
original information in unique, nonredundant features. Moreover, given that cor-
relations may indicate causality (but correlation isn’t causation; it can simply hint
at it — a necessary but not sufficient condition), cumulating the same variance
creates a rough estimate of the variance’s root cause.

V is the same as the U matrix, except that its shape is p*k and it expresses the
original features with new cases as a combination of the original examples. This
means that you’ll find new examples composed of customers with the same buy-
ing habits. For instance, SVD compresses people buying certain products into a
single case that you can interpret as a homogeneous group or as an archetypal
customer.

In such reconstruction, D, a diagonal matrix (only the diagonal has values) con-
tains information about the amount of variance computed and stored in each new
feature in the U and V matrices. By cumulating the values along the matrix and
making a ratio with the sum of all the diagonal values, you can see that the vari-
ance is concentrated on the first leftmost features, while the rightmost are almost
zero or an insignificant value. Therefore an original matrix with 100 features can
be decomposed and have an S matrix whose first 10 new reconstructed features
represent more than 90 percent of the original variance.

SVD has many optimizing variants with slightly different objectives. The core
functions of these algorithms are similar to SVD. Principal component analysis
(PCA) focuses on common variance. It’s the most popular algorithm and is used in
machine learning preprocessing applications.

A great SVD property is that the technique can create new meaningful and useful
features, not just compressed variables, as a byproduct of compression in certain
situations. In this sense, you can consider SVD a feature creation technique.

Understanding the SVD connection
If your data contains hints and clues about a hidden cause or motif, an SVD can
put them together and offer you proper answers and insights. That is especially
true when your data is made up of interesting pieces of information like the ones
in the following list:

 » Text in documents hints at ideas and meaningful categories.	Just	as	you	
can	make	up	your	mind	about	discussion	topics	by	reading	blogs	and	
newsgroups,	so	can	SVD	help	you	deduce	a	meaningful	classification	of	
groups	of	documents	or	the	specific	topics	being	written	about	in	
each	of	them.

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 719	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 719

 » Reviews of specific movies or books hint at your personal preferences
and larger product categories.	If	you	say	on	a	rating	site	that	you	loved	the	
original	Star Trek	series	collection,	the	algorithm	can	easily	determine	what	
you	like	in	terms	of	other	films,	consumer	products,	or	even	personality	types.

An example of a method based on SVD is latent semantic indexing (LSI), which
has been successfully used to associate documents and words based on the idea
that words, though different, tend to have the same meaning when placed in
similar contexts. This type of analysis suggests not only synonymous words but
also higher grouping concepts. For example, an LSI analysis on some sample
sports news may group baseball teams of the Major League based solely on the
co-occurrence of team names in similar articles, without any previous knowledge
of what a baseball team or the Major League is.

Other interesting applications for data reduction are systems for generating
recommendations about the things you may like to buy or know more about.
You likely have quite a few occasions to see recommenders in action. On most
e-commerce websites, after logging in, visiting some product pages, and rating or
putting a product into your electronic basket, you see other buying opportunities
based on other customers’ previous experiences. (As mentioned previously, this
method is called collaborative filtering.) SVD can implement collaborative filtering
in a more robust way, relying not just on information from single products but
also on the wider information of a product in a set. For example, collaborative
filtering can determine not only that you liked the film Raiders of the Lost Ark but
also that you generally like all action and adventure movies.

You can implement collaborative recommendations based on simple means or
frequencies calculated on other customers’ sets of purchased items or on ratings
using SVD. This approach helps you reliably generate recommendations even in
the case of products that the vendor seldom sells or that are quite new to users.

Seeing SVD in action
For the example in this section, you use the MovieLense data set described in the
“Trudging through the MovieLens data set” section, earlier in the chapter. After
uploading it, you choose settings to work with users and movies with a minimum
number of available ratings:

ratings_movies <- MovieLense[rowCounts(MovieLense) > 10,

 colCounts(MovieLense) > 50]

After you filter the useful profiles, you center the ratings of each user. You sub-
tract the mean from the rating values for each user to center the rating. This oper-
ation lessens the effect of extreme ratings (giving only highest or lowest ratings).

0003054009.INDD 720	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

720 BOOK 9 Applying Machine Learning

It also makes assigning missing values easy because each user can rate only a few
movies. The missing ratings, which SVD requires to complete its computations,
are determined using an average, which means zero values after mean centering.

ratings_movies_norm <- normalize(ratings_movies, row=TRUE)

densematrix <- as(ratings_movies_norm, "matrix")

densematrix[is.na(densematrix)] <- 0

After normalizing, setting the missing ratings to zero, and making the matrix dense
(you’re not using a sparse matrix anymore), the code uploads the irlba library
(https://cran.r-project.org/web/packages/irlba/index.html). If the library
isn’t present on your system, you can use the following code snippet to install it:

if (!"irlba" %in% rownames(installed.packages()))

 {install.packages("irlba")}

library("irlba")

SVD <- irlba(densematrix, nv = 50, nu = 50)

The library’s core algorithm is the augmented implicitly restarted Lanczos bidi-
agonalization algorithm (IRLBA), which computes an approximate SVD lim-
ited to a certain number of reconstructed dimensions. By computing just
the required dimensions, it saves times and enables you to apply SVD even to
immense matrices. The Netflix Prize successfully used the algorithm, and
it works best when computing few SVD dimensions (www.youtube.com/
watch?feature=player_embedded&v=ipkuRqYT8_I).

The following code explores the matrices extracted by the irlba function and
uses them as a smaller data set with similar informative content to the original
sparse matrix. Notice how the matrix u has the same number of rows as the initial
movie matrix, while the matrix v has the number of rows equal to the number of
columns of the original matrix. Columns are always 50, the number of dimensions
requested as part of the irlba call.

print(attributes(SVD))

$names

[1] "d" "u" "v" "iter" "mprod"

print(dim(densematrix))

[1] 943 591

print(dim(SVD$u))

[1] 943 50

print(dim(SVD$v))

[1] 591 50

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 721	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 721

print(length(SVD$d))

[1] 50

The example doesn’t stop at learning from data using an unsupervised approach.
It can also learn the likelihood of a user’s having seen a certain film from the data,
that is, you can determine whether a person has seen a film or not based on movie
interests, thanks to the SVD reconstruction. To make this analysis possible, the
code selects a film, extracts it from the data set, and recomputes the SVD decom-
position. This way, the output doesn’t have any hints about the specific film inside
the reconstructed matrices.

chosen_movie <- 45

print (paste("Chosen film:",

 colnames(densematrix)[chosen_movie]))

answer <- as.factor(as.numeric(

 densematrix[,chosen_movie]!=0))

SVD <- irlba(densematrix[,-chosen_movie], nv=50, nu=50)

rotation <- data.frame(movies=colnames(

 densematrix[,-chosen_movie]),SVD$v)

[1] "Chosen film: Pulp Fiction (1994)"

Before proceeding to learn from data, the example takes advantage of the v matrix
produced from the SVD. The v matrix, the item matrix, contains information
about the films, and it tells how SVD calculates the features in the matrix u (user
matrix). For learning tasks, the example uses the matrix u and its reconstructed
50 components. As a machine learning tool, the example relies on a Random For-
est ensemble of decision tree models.

if (!"randomForest" %in% rownames(installed.packages()))

 {install.packages("randomForest")}

library("randomForest")

train <- sample(1:length(answer),500)

user_matrix <- as.data.frame(SVD$u[train,])

target_matrix <- as.data.frame(SVD$u[-train,])

model <- randomForest(answer[train] ~., data=user_matrix,

 importance=TRUE)

To test the learned model effectively, the example uses 500 users as a training set.
The example uses the remaining users to test the prediction accuracy.

response <- predict(model, newdata=target_matrix,

 n.trees=model$n.trees)

confusion_matrix <- table(answer[-train],response)

precision <- confusion_matrix[2,2] /

 sum(confusion_matrix[,2])

0003054009.INDD 722	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

722 BOOK 9 Applying Machine Learning

recall <- confusion_matrix[2,2] /

 sum(confusion_matrix[2,])

print (confusion_matrix)

print(paste("Precision:",round(precision,3),

 "Recall:",round(recall,3)))

 response

 0 1

 0 214 50

 1 36 143

[1] "Precision: 0.741 Recall: 0.799"

By arranging the predictions on the test set in a confusion matrix, you can observe
that the precision is quite high, as is the recall. Precision is the percentage of cor-
rect predictions. The Random Forest predicts that 193 users have seen the film in
the test set and predicts a true assertion for 143 users of them, which amounts to
a precision of 74.1 percent. Checking the true total of users who have seen the film
(the previous figure was predicted) shows that 179 users watched the film. Because
143 predicted users equates to 79.9 percent of the 179 users, the model has a recall
of 79.9 percent, which is the capability of predicting all the positive users.

The model that you prepared can also provide insight about reconstructed features
that helps determine which users have seen a certain film. You can inspect the
information by printing the importance derived from the Random Forest model,
as shown in Figure 5-7.

varImpPlot(model,n.var=10)

FIGURE 5-7:
Importance	

measures	derived	
from	Random	

Forest.

Re
al

-W
or

ld
 A

pp
lic

at
io

ns

0003054009.INDD 723	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

CHAPTER 5 Real-World Applications 723

According to the plotted importance, the first component of the u matrix derived
from the SVD is the most predictive in determining whether a user has seen the
movie. To determine what this component means, you can print its ordered ele-
ments from the one contributing the most in a positive fashion to the one contrib-
uting the most in a negative one.

rotation[order(rotation[,2]),1:2]

The resulting output is a long enumeration of films. At the start of the vector, in
the negative range, you find films such as Star Wars, The Godfather, Raiders of the
Lost Ark, and The Silence of the Lambs. At the end of the vector, in the positive sector,
you see films such as Liar Liar, Mars Attacks!, and Broken Arrow. Because the nega-
tive values are stronger in absolute value than the positive ones, these values seem
to convey more sense to the SVD component. Thus users who see blockbusters
such as Star Wars, The Godfather, or Raiders of the Lost Ark are also likely to see a film
like Pulp Fiction. You can test the theory directly by seeing how similar they are to
the target film using the cosine distance.

similarity(ratings_movies[,45], ratings_movies[,145],

 method ="cosine", which = "items")

Raiders of the Lost Ark (1981)

Pulp Fiction (1994) 0.7374849

similarity(ratings_movies[,45], ratings_movies[,82],

 method ="cosine", which = "items")

Silence of the Lambs, The (1991)

Pulp Fiction (1994) 0.7492093

As shown in the output, users who see films such as Raiders of the Lost Ark or The
Silence of the Lambs are also likely to see Pulp Fiction.

Interpreting results from an SVD is quite an art and requires a lot of domain
knowledge (in this case, that means having movie experts). SVD puts sets of users
and items together in the u and v matrices. It’s up to you to use them for building
recommendations and, if necessary, to provide them with an explanation about
their reconstructed features based on your knowledge and intuition.

SVD always finds the best way to relate a row or column in your data, discovering
complex interactions or relations that you didn’t imagine before. You don’t need
to imagine anything in advance; it’s a fully data-driven approach.

0003054009.INDD 724	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:58	AM

0003098529.INDD 725	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 725

Index
Special Characters &
Numbers
':'	character,	458
'-'	character,	458
'--'	character,	458
'-.'	character,	458
:	(colon),	133,	141,	357
\' or \"	escape	sequence,	360
\n	escape	sequence,	360
\t	escape	sequence,	360
_	(underscore)	character,	358
+	operator,	261
==	(equality)	operator,	255,	257,	362
-moz-box-orient	attribute,	225,	226
-ms-box-orient	attribute,	226
-webkit-box-orient	attribute,	226
!=	(inequality)	operator,	255,	362
!DOCTYPE	html,	100
#	(hashtag),	162
#	symbol,	359
#id	selector,	299
$	alias,	297
%	operator,	string	formatting	with,	364
[attribute]	selector,	299
{ }	(curly	brackets),	132,	252,	350
<	(left-angle	bracket),	97,	98,	350
<	(less	than)	operator,	255,	362
<	and	>	(angle	bracket),	350
<=	(less	than	or	equal	to)	operator,	255,	362
>	(greater	than)	operator,	255,	362
>	(right-angle	bracket),	97,	98,	350
>=	(greater	than	or	equal	to)	operator,	245,	

255,	362
2D	array,	424,	425
3D	array,	424–425

A
a	posteriori	probability,	566
a	priori	probability,	565,	566
<a>	(anchor	tag),	105,	106,	140
absLayout.css	style	sheet,	210
abs(n)	function,	359
absolute	positioning
adding	position	guidelines,	203–204
building	page	layouts	with,	208–212
overview,	209
setting	up	HTML,	202–203
using,	204–205

absolute	value,	position	attribute,	205,	209
absolute	value	and	rounding,	359
abstraction,	337
access	control,	AI	used	for,	537–538
accuracy	measure,	709
action	attribute,	of	<form>	tag,	126,	127
activation	functions,	644,	648,	650
active	state,	anchor	tag	(<a>),	140
ad	blockers,	23
Adaboost,	670–673
add_ path()	function,	486
add_edge()	function,	450,	485,	486
add_edges_from()	function,	485,	486
add_node()	function,	485,	486
add_nodes_from()	function,	485,	486
addEventListener	method,	270
addictive	websites	and	apps,	characteristics	of,	13
addition,	using	matrices,	558
<address>	tag,	184
adjacency	matrix,	448
adjacency_matrix()	function,	449
Adobe	Photoshop	app,	36
advertising,	coding	and,	11–12

0003098529.INDD 726	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

726 Coding All-in-One For Dummies

AFINN-111	dictionary,	706
after()	method,	302
aggregating	data,	at	any	level,	430–431
agile	process,	34–35,	316
AI.	See	artificial	intelligence
Airbnb,	11
AJAX	(asynchronous	JavaScript	and	XML)
examples	of,	280–282
jQuery	with,	309–310
overview,	250–251,	279–289
shorthand	methods,	310
using	CORS,	287–288
using	same-origin	policy,	287–288
using	XMLHttpRequest	object,	285–287
viewing	requests	and	responses,	282–284

ajax()	method,	309
alert()	method,	259–260,	337
alerting	users,	259–260
algorithms.	See also specific algorithms
defined,	541
definition	of,	548
evolutionary,	549
flexible,	639–642
gradient	descent,	578–580
with	kNN,	522–525
learning	process,	573–576
linear	regression,	512–515
logistic	regression,	515–518
Naïve	Bayes,	518–522
reinforcement	learning,	573
supervised	learning,	572
techniques,	548–550
training,	542
unsupervised	learning,	573

align	attribute
of	<table>	tag,	122
of	<td>	tag,	123–124
of	<tr>	tag,	123

align	parameter,	470,	472
all	div,	197–199,	209,	215,	229
alpha	(α),	652
Amelia	(robot),	532

American	Standard	(ASCII)	coding,	702
AMORE	library,	654
Anaconda-2.1.0-MacOSX-x86_64.sh	file,	374
analogies,	systems	learning	by,	550
analogizers,	547,	550
analysis	of	variance	(ANOVA),	500
analytics,	55
analyzer	parameter,	445
anchor	tag	(<a>),	105,	106,	140
Android	devices,	56
androids
artificial	intelligence	with	machine	learning,	

533–534
goals	of	machine	learning,	534
history	of	artificial	intelligence	(AI),	532–533
history	of	machine	learning,	532–533
machine	learning	limitations	based	on	hardware,	

534–535
angle	bracket	(<	and	>),	350
animal	protection,	AI	used	for,	537
animate()	method,	307
animation	methods
practicing	with	jQuery,	308–309
setting	arguments	for,	307

annotate()	function,	464
anonymity,	big	data	and,	543
ANOVA	(analysis	of	variance),	500
Antikythera	mechanism,	532
Apache	Hadoop,	582
Apache	Spark,	582
APIs	(application	programming	interfaces)
API	directories,	334–335
choosing,	267
overview,	263–265
researching,	267
screen	scraping	without,	266

append()	method,	302,	427
Apple
App	Store,	56
iPod,	design	changes,	328–329
Maps	product,	334
programmers	hired	by,	87

0003098529.INDD 727	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 727

application	programming	interfaces.	
See	APIs

applications.	See also	mobile	applications;	web	
applications

addictive,	characteristics	of,	13
designing,	36–37
planning,	316–318
testing,	57

argsort	method,	706
arrays,	557
<article>	tag,	184,	229
artificial	intelligence	(AI)
androids	and,	532–535
art	and	engineering	divide,	540–541
current	uses	of,	536–538
facts	versus	fiction,	530–531
fad	uses	of,	535–538
history	of,	532–533
machine	learning	with,	533–534,	

538–539
mundane	uses	of,	538
specifications	of,	539–540

as_grey	argument,	679
as_matrix()	function,	481
ASCII	(American	Standard)	coding,	702
<aside>	tag,	184
assembly	language,	15
Associate	of	Arts	(AA)	degree,	64
asynchronous	JavaScript	and	XML.	See	AJAX
attr()	method,	300
[attribute]	selector,	299
attributes
making	changes	with	jQuery,	300
overview,	98–99

auto	value,	of	backgroundsize
property,	143

autoencoders,	658
automation,	AI	used	for,	537
autonomous	weapon	technologies,	531
autopct	parameter,	469
averaging	predictors,	676
awareness,	computers	and,	533
ax	variable,	455

axes
formatting,	456
obtaining,	455
representing	time	on,	478–479
setting,	455–457

axis	parameter,	423
Axure	prototyping	tool,	47

B
Bachelor	of	Arts	(BA)	degree,	59,	60
back	end,	24–25
back-end	developers
careers	as,	54–56
overview,	38
of	web	applications,	321

background	colors,	temporary,	177–179,	188
background	images,	142–146
background-attachment	property,	144–146
backgroundattachment	property,	142
background-image	property,	142–143,	154
background-position	property,	144
backgroundposition	property,	142
background-repeat	property,	144
backgroundrepeat	property,	142
background-size	property,	143–144
backgroundsize	property,	142
backpropagation,	549,	650–653
Bag	of	Words	(BoW)
implementing	TF-IDF	transformations,	446–447
machine	reading	and,	693,	694
n-grams,	445–446
overview,	442–444

bagging,	664,	665,	670–673
Balsamiq	tool,	36
bar	charts,	471–472
Barksdale,	Jim,	451
Basemap	Toolkit,	481,	482
bash	utility,	370
basic	effects,	in	jQuery,	306
batch	algorithms,	581
batch	mode,	for	weight	updates,	653
Bayes’	theorem,	565–568,	616–617

0003098529.INDD 728	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

728 Coding All-in-One For Dummies

Bayesian	inference,	549–550
Bayesian	probability,	566–568
Bayesians,	547,	549–550
Beautiful	Soup	package,	700,	701
before()	method,	302
between-cluster	sum	of	squares	(BSS),	630
biases
backpropagation	and,	549
learning	curves	affected	by,	594
limits	of,	589–591
Literary Digest	anecdote	and,	587–588
sample,	avoiding,	601–602

big	data
algorithms	in,	547–550
defining	training,	550–551
definition	of,	542–543
overview,	541–542
privacy	and,	543
size	of,	543
sources	of,	543–546
statistics	in	machine	learning,	546–547

bigrams,	696
binary	step,	645
binary	values,	neural	networks	and,	647
binary	variables,	693
binning,	409,	496
bins,	471
bivariates,	498
Black	Girls	Who	Code	(organization),	90
blacktie.co,	240
blind	men	and	elephant	story,	670
blogs,	334
body	tags,	100–101
<body>	tag,	100,	158
bold	()	tag,	107–108
Boltzmann	machines,	restricted,	658
bool()	function,	435,	436
<Boolean>	element,	434,	435
boosting,	670–673
boot	camps,	78
Bootply.com,	239
bootsnipp.com,	240

Bootstrap.	See	Twitter	Bootstrap
bootstrapping,	597–598,	664
bootstrapzero.com,	240
bootswatch.com,	240
border	attribute,	122
border	property,	155,	156,	166,	167,	168
border-collapse	property,	157
borders
adjusting,	180–181
emphasizing,	684

Boston	data	set,	656
BoW.	See	Bag	of	Words
box	display	type,	222
boxes
overview,	167–168
positioning,	169–171

box-flex	attribute,	222,	225
Box.net,	118
box-ordinal-group	attribute,	223,	225
box-orient	attribute,	222,	224
boxplot()	function,	473
boxplots
basis	of,	494
depicting	groups	using,	472–474
inspecting,	498–499
performing	t-tests	after,	499–500

braces.	See	curly	brackets	({ })
broadband	connectivity,	10
browsers
cross-browser	testing,	53–54
most	popular,	20
overview,	39
support	for	various,	318

BSS	(between-cluster	sum	of	squares),	630
btn-defaultbtn-primarybtnsuccessbtn-

danger	class	prefix,	243
btn-lgbtn-defaultbtn-sm	class	prefix,	243
bugs.	See	debugging
BuiltWith	website,	354
bull’s-eye	data	set,	642
<button>	tag,	243
buttons,	designing,	243–244

0003098529.INDD 729	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 729

C
c	parameter,	475
Caffe	library,	683
Cal	Hacks	hackathon,	63
callbacks
overview,	269–273
passing	functions	as	arguments,	270
using	named	functions	as,	271–273
writing	functions	with,	270–271

capitalize()	string	function,	dot	notation	with,	
363–364

<caption>	tag,	157
careers
augmenting	existing	job,	46–52
finding	new	job,	52–58
misconceptions	about,	83–91
overview,	45

caret dropdown-menu	class	prefix,	245
caret	library,	620
Cascading	Style	Sheets.	See	CSS
cases
adding	new	to	data,	427–428
in	databases,	388

categorical	data
creating	contingency	tables,	497–498
frequencies,	496–497
overview,	495–496,	692–693

categorical	variables
creating,	415–419
manipulating,	414–419

cells,	aligning,	121–124
cells	variable,	702
center,	473
centered	fixed-width	layouts
creating	surrogate	body	with	all	div,	197–198
jello	layouts,	198–200
overview,	196–197

central	tendency,	measuring,	492–493
centroids,	628,	629,	633,	634–637
certificates,	from	schools	of	continuing	education,	

64–65
chaining,	297–298

charts,	annotations,	464–465
Cheat	Sheet	for	this	book,	4
Chebyshev	distance,	626
child	selector,	160
chi-square	statistic,	504,	507–508
Chrome	browser
HTML	and,	96
Inspect	Element	feature,	135
installing	latest,	20
required,	3

class	attribute,	162–163,	170,	242,	243
.class	selector,	299
classification
analyzing	reviews	from	e-commerce,	706–709
of	images,	677–684
searching	by	k-Nearest	Neighbor,	637
tasks,	704–706

classifiers,	442
ClassTranscribe	project,	70
clear	property,	169,	170
clients
deliverables	to,	318
goals	of,	understanding,	317–318

closing	tags,	98,	350
closures
containing	secret	references	to	outer	function	

variables,	275–276
overview,	274–276
using,	277–278

cluster-computer	frameworks,	582
clusters,	using	distances	to	locate
checking	assumptions,	628–629
checking	expectations,	628–629
K-means	algorithm	procedure,	629–630
overview,	626–627

code,	example
defining	code	repository,	379–385
using	Jupyter	Notebook,	378–379

Code	2040	(organization),	90
code	blocks,	357
code	repository.	See	repository
Codecademy.com,	38–41

0003098529.INDD 730	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

730 Coding All-in-One For Dummies

Codepen.io	development	environment
coding	steps,	347–349
overview,	343
pre-written	code	in,	343–347

coding
defined,	8–9
online	tutorials,	9
tools,	38–39
trends	in,	9–10
uses	of,	9–13
writing	code,	33–38

Coding	for	Lawyers	website,	52
coefficient	vector,	557,	607
Coffitivity	website,	12–13,	85
collaborative	filtering,	711,	715,	719
collapse	value,	of	border-collapse

property,	157
col-lg-	class	prefix,	241
col-md-	class	prefix,	241,	242
colon	(:),	133,	141,	357
color	parameter,	472
color	property,	133,	134,	136,	137–138,	140
colors
background,	temporary,	177–179
in	graphs,	458–460

colors	parameter,	469
col-sm-	class	prefix,	241,	242
colspan	attribute,	120
col-sx-	class	prefix,	241
columns
CSS3	and,	200
in	database,	388
floating,	179–180
slicing,	425
stretching,	120–121
using	Twitter	Bootstrap,	236–239

COM	(Component	Object	Model)	
applications,	402

comma-separated	value	(CSV)	files,	392,	
394–395

comments,	359
companies,	enduring,	characteristics	of,	13

comparison	operators,	362
compile()	function,	442
compiled	programming	languages,	15
compilers,	purpose	of,	15
complement	of	a	probability,	565
complete	argument,	307
complex	analysis,	AI	used	for,	537
complexity	of	programs,	lines	of	code	and,	8
Component	Object	Model	(COM)	applications,	402
components_	attribute,	706
computer	science	curriculum,	60–61,	66–68
Computer	Science	Education	Week,	9
computer	vision,	68
concat()	method,	427
concatenate()	function,	473
concatenating	data
adding	new	cases,	427–428
adding	new	variables,	427–428
overview,	426–427
removing	data,	428–429
shuffling,	429–430
sorting,	429–430

conditional	probability,	566,	615
conditional	statements,	254,	337
confusionMatrix	function,	620
connectionism,	547,	549,	607
connectivity,	broadband,	10
console.log	statement,	254
contain	value,	of	backgroundsize

property,	143
content	class,	221
content	div,	219
content	services,	careers	in,	47–48
content	updates,	74
content-based	filtering,	715
contingency	tables,	creating,	497–498
continuing	education,	certificates	from,	64–65
Continuum	Analytics	Anaconda,	369–370
contracting,	88
convolutional	neural	networks,	658–659,	683
coordinates,	parallel,	500–501
core	memory,	581

0003098529.INDD 731	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 731

corpus,	693
correlations
considering	chi-square	for	tables,	507–508
covariance	and,	504–506
nonparametric,	507
showing	in	scatterplots,	477

CORS	(Cross-Origin	Resource	Sourcing),	287–288
cosine	similarity,	716
cost	functions,	576–579
count_vect.fit_transform()	function,	444
counterclock	parameter,	469
CountVectorizer()	function,	439
CountVectorizer	class,	693,	694,	696
Course	Report,	78
CourseHorse,	78
covariance,	correlations	and,	504–506
cover	value,	of	backgroundsize	property,	143
Craigslist.org,	114,	280
create,	read,	update,	and	delete	(CRUD),	541
creative	design,	careers	in,	46–47
creators	of	programming	languages,	14
cropping	images,	681–682
cross-browser	testing,	53–54
Cross-Origin	Resource	Sourcing	(CORS),	287–288
cross-validation
optimizing,	598–601
overview,	596–597

CRUD	(create,	read,	update,	and	delete),	541
CSS	(Cascading	Style	Sheets)
adding	to	HTML,	146–148
adding	to	static	layouts,	210–212
building	sample	web	page,	148–149
columns	and,	200
customizing	links,	139–141
designing	tables,	155–157
embedded,	147
fixing	width	with,	194–196
frameworks	for,	54
history	of,	130
incorporating	into	web	pages,	146–149
laying	out	elements,	163–171
in-line,	146

making	changes	with	jQuery,	300–301
modifying	on	web	pages,	133–135
naming	elements,	161–163
as	one	of	first	languages	to	learn,	86
overview,	26–27,	129–131
practicing	with	Codecademy.com,	148–149,	172
precompilers	for,	54
pre-written	codes,	344–345
selecting	elements,	157–163
selectors,	135–146
in	separate	style	sheets,	147–148
setting	background	images,	142–146
setting	fonts,	135–139
structure	of,	131–135
styling	elements,	158–161
styling	lists,	152–155
time	needed	to	learn,	85

CSV	(comma-separated	value)	files,	392,	394–395
curly	brackets	({ }),	132,	252,	350
curriculum,	computer	science,	60–61,	66–68
cursive	font	family,	139
cursive	value,	of	font-family	property,	

132,	133
custom	effects,	with	animate()	method,	307
customer	service,	AI	used	for,	537
cut	function,	496
Cutler,	Adele,	664
cycle_graph()	function,	449

D
D3.js	library,	268
dashed	lines,	in	graphs,	458
data.	See also	big	data;	data	sets;	data	shaping,	

data	types;	numeric	data
accessing	from	web,	402–404
accessing	in	flat-file	form,	392–397
adding	new	cases	to,	427–428
adding	new	variables	to,	427–428
advanced	matrix	operations,	561
aggregating	at	any	level,	430–431
categorical,	495–498
concatenating,	426–430

0003098529.INDD 732	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

732 Coding All-in-One For Dummies

data	(continued)
creating	from	existing,	545
dates	in,	419–421
distributions,	508–510
extracting,	with	Xpath,	435–436
filtering,	424–426
finding	shapes	in,	641–642
geographical,	plotting,	481–483
machines	reading,	692–694
managing	from	relational	databases,	400–401
manipulating	categorical	variables,	414–419
missing,	421–424
navigating	from	web,	714–715
from	NoSQL	databases,	interacting	with,	

401–402
obtaining	from	private	sources,	544–545
obtaining	from	public	sources,	544
performing	matrix	multiplication,	558–561
ratings,	712,	715–716
removing,	428–429
sampling,	388–392
selecting,	424–426
sending	unstructured-file	form,	397–399
shuffling,	429–430
sorting,	429–430
sources	of,	544–546
splitting	to	predict	outcomes,	610–614
storing	with	variables,	253–254
streaming,	388–392
textual	sets	from	the	web,	699–702
transforming,	426–430
uploading,	388–392
validating,	409–414

data	analysis
careers	in,	57–58
categorical,	495–498
correlations,	504–508
defining	descriptive	statistics	for	numeric	data,	

491–495
exploratory	data	analysis	(EDA),	490–491,	

498–504
modifying	distributions,	508–510

data	handling,	machine	learning	vs.	statistics	
at,	534

data	input,	machine	learning	vs.	statistics	at,	534
data	retrieval,	74
data	sets.	See also specific data sets
downloading,	378–386
overview,	385–386
time	needed	to	learn	about,	85

data	shaping
bag	of	words	model,	442–447
in	graphs,	447–450
on	HTML	pages,	434–436
overview,	433–434
in	raw	text	files,	436–442

data	types,	defining	in	Python,	357–358
data	visualization
with	bar	charts,	471–472
with	box	plots,	472–474
choosing	graphs,	468–475
graphs,	483–487
with	histograms,	472–474
overview,	57–58,	467–468
with	pie	charts,	468–469
plotting	geographical,	481–483
plotting	time	series,	478–481
with	scatterplots,	474–478

Database	Management	Systems	(DBMSs),	400
databases
early	vs.	modern,	63
NoSQL,	401–402
overview,	54
relational,	400–401

DataFrame	object,	SQL,	400
dataframed,	409
DataFrame.to_sql()	method,	401
date_range,	479
dates
formatting	time	values,	419–420
formatting	values,	419–420
using	time	transformations,	420–421

datetime	object,	419
DBMSs	(Database	Management	Systems),	400

0003098529.INDD 733	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 733

debugging,	38,	350
decision	trees
adaptability	of,	590
importance	measures,	667–679
overview,	662–663
predicting	outcomes	by	splitting	data,	610–614
pruning,	614–615
Quinlan	paper	on,	555
Random	Forests	algorithm,	663–677

declarations,	133
deep	belief	networks,	658
deep	learning,	644,	654,	657–659
degenerate	matrices,	561
(strikethrough)	tag,	107–108
deleted	text,	107
deliverables,	318
delta	(δ),	651–652
denial	of	service	(DoS)	attack,	55–56
deprecated	(older)	attributes,	121–122
depth,	adjusting,	206–207
descendant	selector,	160–161
describe()	method,	413,	414,	492
descriptive	statistics
defining	measures	of	normality,	494–495
measuring	central	tendency,	492–493
measuring	range,	493
measuring	variance,	493
overview,	491–492
working	with	percentiles,	494

designers
responsibilities	of,	54
of	web	applications,	319–320
who	code,	47

desktops,	adapting	layouts	for,	241–242
Developer	Tools	panel,	Chrome	browser,	20
developers
back-end,	38
front-end,	38
full	stack,	25,	38
networking	with,	81
specializations	of,	25,	38
support	from	while	learning	to	code,	77

development	environments,	343
df.index.tolist()	method,	430
diagonal='hist'	parameter,	503
dicing,	426
digital	designers.	See	designers
DiGraph()	constructor,	486
directed	graphs,	485–487
display	attribute,	222,	224
display	errors,	38
Disrupt	hackathon,	70
distances
computing	for	machine	learning,	625–626
to	locate	clusters,	626–630

distributed	storage	and	processing,	58
distribution,	machine	learning	vs.	statistics	

at,	534
distributions
data,	508–510
graphing,	501–502
normal,	508–509
transforming,	509–510

distutils.util,	435
<div>	tag,	165–167,	175–176,	237–238,	242
DNS	(domain	name	server),	23,	24
doctorate	degrees,	66
document	ready	event,	298
documentLoader	function,	286
DOM	(Document	Object	Model),	160,	301–302
domain	name	server	(DNS),	23,	24
doMath	function	(example),	270–271
Dorm	Room	Fund,	62
DoS	(denial	of	service)	attack,	55–56
dot	notation
with	capitalize(),	363–364
with	lower(),	363–364
with	strip(),	363–364
with	upper(),	363–364

dotted	line,	in	graphs,	458
double	borders,	180–181
dragging	and	dropping,	to	web	pages,	239–240
draw_networkx()	function,	487
drawcoastlines()	function,	483

0003098529.INDD 734	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

734 Coding All-in-One For Dummies

drawcountries()	function,	483
drawing	with	repetition,	597
dribbble.com,	330
drop()	method,	428
drop_duplicates()	method,	412
dropdown	class	prefix,	245
dropdown-toggle	class,	245
dropna()	method,	422
drop-out,	658,	659
dtype	property,	416
duplicates,	data,	removing,	412–414
duration	argument,	307

E
e1071	library,	621
early-stop,	654
easing	argument,	307
e-commerce,	analyzing	reviews	from,	706–709
EDA.	See	exploratory	data	analysis
editorial	services,	careers	in,	47–48
editors.	See	text	editors
education	in	coding,	misconceptions	about
can	learn	coding	in	weeks,	85
must	be	good	at	math,	84
must	study	engineering,	84
need	great	idea	to	start	coding,	85–86
overview,	83
Ruby	is	better	than	Python,	86–87

effects,	jQuery
basic,	306
custom,	307
fading,	306
overview,	305–306
practicing	with	jQuery	animations,	308–309
setting	arguments	for	animation	methods,	307
sliding,	306–307

eigenfaces,	684–687
Element	selector,	299
elements,	HTML
choosing,	131–133
laying	out,	163–171

manipulating	in	DOM,	301–302
naming,	161–163
overview,	97–98
selecting,	157–163
styling,	158–161

elif	statements,	361–362
else if	statement,	256–257
else	statement,	256,	361–362
em	values,	136–137
	(emphasize)	tag,	107,	108
email
as	source	of	big	data,	546
spam	detection,	619

embedded	CSS,	147
emphasize	()	tag,	107,	108
empty()	method,	302
encodings,	422–423,	702
English,	in	programming	languages,	14
ensembles
averaging	different	predictors,	676
bagging,	670–673
boosting,	670–673
GBM	algorithm,	673–675
leveraging	decision	trees,	662–669

ensembling	of	predictors,	601–602
entelo.	com,	88
Enthought	Canopy	Express,	369–370
enumerate()	function,	in	Python,	391
enumerations,	414
environment,	importance	to	machine	

learning,	535
epsilon	(ε),	652
equality	(==)	operator,	255,	257,	362
error	function,	576,	577
errors,	38.	See also	debugging
escape	sequences,	360,	361
eta	(η),	608,	652
Euclidean	distance,	626,	628
evaluation	function,	576–577
EventHub	platform,	70
evolutionaries,	547
evolutionary	algorithms,	549

0003098529.INDD 735	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 735

examples	in	this	book,	source	code	for,	4
Excel	files,	393,	396–397
executable	files,	15
expectations,	checking,	628–629
explode	parameter,	469
exploratory	data	analysis	(EDA)
graphing	distributions,	501–502
inspecting	boxplots,	498–499
observing	parallel	coordinates,	500–501
overview,	490–491
performing	t-tests	after	boxplots,	499–500
plotting	scatterplots,	502–504

exporting,	notebooks	in	Jupyter	Notebooks,	383
eXtensible	Markup	Language.	See	XML
extra	content,	4
extracting
data,	with	Xpath,	435–436
visual	features,	683–684

extracurricular	activities,	61–64

F
Facebook
native	mobile	app	vs.	mobile	web	app,	31
programmers	hired	by,	87
survivorship	bias	and,	588

faces	recognition,	684–687
fadeIn()	method,	306
fadeOut()	method,	306
fadeTo()	method,	306
fadeToggle()	method,	306
fading	effects,	in	jQuery,	306
fantasy	font	family,	139
Farecast	algorithm,	68
FarmLogs,	46
FastIca	algorithm,	689
feature	learning,	657
feature_extraction	module,	693
feature_selection	module,	668
feedback,	collecting,	330–331,	333
feed-forward,	645–647
Fellig,	Sam,	85

fellowships,	69
fetch_20newsgroups()	function,	444
fetch_olivetti_faces()	function,	385
<figcaption>	tag,	184
<figure>	tag,	184
files
CSV	delimited,	394–395
Excel,	396–397
formats	of,	331
Microsoft	Office,	396–397
text,	393,	436–442

fillcontinents()	function,	483
fillna()	method,	422
filtering	data,	424–426
find()	function,	402,	702
findAll()	method,	702
finding	missing	data,	421–422
Firefox	browser,	HTML	and,	96
Fisher’s	Iris	data	set,	491
fit()	method,	423,	631,	693
fitting,	machine	learning	vs.	statistics	at,	534
fixed	positioning,	216–220
fixed	value
backgroundattachment	property,	145
position	attribute,	220

fixed-width	layouts
fixing	width	with	CSS,	194–196
setting	up	HTML,	193–194

flat-file	data,	accessing
CSV	delimited	files,	394–395
Excel	files,	396–397
Microsoft	Office	files,	396–397
overview,	392–393
text	file,	393

flat-file	formatting,	392
flatten()	function,	481
flattening	images,	682
flexbox	layout
building,	215–216
designing	with	percentages,	213–214
overview,	212–213

0003098529.INDD 736	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

736 Coding All-in-One For Dummies

flexible	algorithms
choosing	k	values,	639–641
finding	shapes	in	data,	641–642
testing	k	values,	639–641

Flickr,	106,	143
flier_high,	473
flier_low,	473
float	attribute,	188
float	property,	169,	170
floating	columns,	setting,	179–180
floating	layouts
centered	fixed-width,	196–200
fixed-width,	193–196
problems	with,	188–189
three-column,	185–192
two-column
adjusting	borders,	180–181
advantages	of	fluid	layouts,	181
building	HTML	code,	175–177
setting	floating	columns,	179–180
sketching	web	pages,	173–175
using	semantic	tags,	182–185
using	temporary	background	colors,	
177–179

fluid	layouts,	advantages	of,	181
FNN	library,	639
folders,	in	Jupyter	Notebooks,	380–381
font-family	property,	132,	133,	136,	138–139
fonts,	CSS	properties	for	styling
color	property,	137–138
font-family	property,	138–139
font-size	property,	136–137
font-style	property,	138
font-weight	property,	138
overview,	135–136
text-decoration	property,	139

<footer>	tag,	184,	229
footers,	179,	188
form,	of	applications,	328–331,	332–333
<form>	tag
attributes	of,	125
defining	form	with,	126

formatting
bold,	107–108
date	values,	419–420
italics,	107–108
strikethrough,	107–108
subscript,	108–109
superscript,	108–109
time	values,	419–420
underline,	107–108

forms,	124–127
Fortune	1000	companies,	programmers	

hired	by,	87–88
frameworks
for	CSS,	54
for	JavaScript,	54
for	mobile	web,	30
overview,	27–28

fraud	detection,	536–537
freeCodeCamp,	80
freelancing,	79–80,	88
frequencies,	496–497
front	end,	24–25
front-end	developers
careers	as,	53–54
overview,	38
of	web	applications,	321

full	stack	developers,	25,	38
function	declarations,	260
function	factory,	277
functions
case	of,	347
creating	using	functions,	274,	277–278
named	as	callbacks,	271–273
naming	code	with,	260–261
passing	as	arguments,	270
writing	with	callbacks,	270–271

G
Garbage	In/Garbage	Out	(GIGO),	489
gasbuddy.com,	290–291
Gaussian	distribution,	508–509,	570,	680

0003098529.INDD 737	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 737

GBM	(gradient	boosting	machines)	algorithms,	
673–675

gbm	package,	675
Gecko-based	browsers,	225
General	Assembly,	77–78
generalizations,	551,	587–588
geographic	information	systems	(GIS),	544
geographical	data,	plotting,	481–483
geolocation,	335
.get()	method,	310
GET	value,	of	method	attribute,	of	<form>	tag,	126
get_feature_names	method,	706
getbootstrap.com,	245,	247
Getcha-Books	website,	61
getElementByID	method,	347
.getJSON()	method,	310
getlocation()	function,	335
getLocation()	function,	345
getroot()	method,	404
.getScript()	method,	310
GIGO	(Garbage	In/Garbage	Out),	489
gini	importance,	668
gini	impurity,	611
Girls	Who	Code	(organization),	90
GIS	(geographic	information	systems),	544
GitHub,	80
glyphicons.com,	246
glyphs,	246
goals
of	apps,	329
of	clients,	317–318

Google,	programmers	hired	by,	87
Google	Brain	project,	657
Google	Chrome	browser.	See	Chrome	browser
Google	DeepMind,	573
Google	Drive,	39
Google	Images,	106,	143
Google	Made	with	Code	campaign,	90
Google	Maps,	on	Yelp	site,	17
Google	NGram	viewer,	696
Google	Play	Store,	56
Google	self-driving	car,	542,	543

Google	Sites,	39
GPUs	(graphical	processing	units),	535,	657–658
gradient	boosting	machines	(GBM)	algorithms,	

673–675
gradient	descent,	578–580,	652,	674–675
graduate	degrees,	65–68
Graph()	constructor,	485
graph	data
adjacency	matrix,	448
overview,	447
using	NetworkX,	448–450

graphical	processing	units	(GPUs),	535,	657–658
graphics-intensive	applications,	31
graphs
bar	charts,	471–472
box	plots,	472–474
defining	plots,	452–453
directed,	485–487
drawing	multiple	lines,	453–454
drawing	plots,	453–454
graphing	distributions,	501–502
histograms,	472–474
with	MatPlotLib,	452–455
pie	charts,	468–469
saving,	454–455
scatterplots,	474–475
undirected,	484–485
visualizing,	483–487

greater	than	(>)	operator,	255,	362
greater	than	or	equal	to	(>=)	operator,	245,	

255,	362
grid()	function,	457
grid	system,	Bootstrap,	236–239
grids,	in	MatPlotLib
adding,	457
setting,	455–457

grid-search,	600
groupby()	function,	413,	431
GroupLens	project,	711
Groupon,	11
groups,	depicting	in	scatterplots,	476
guidelines,	positioning,	adding,	203–204

0003098529.INDD 738	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

738 Coding All-in-One For Dummies

H
h1	selector,	132
hackathons,	63
Hadoop,	Apache,	582
hairballs,	448
handles,	in	MatPlotLib,	455
hashtag	(#),	162
Haversine	formula,	337,	346
<head>	tag,	100–101,	158
<header>	tag,	184,	229
headlines
on	web	pages,	example	of,	102
writing,	103–104

healthcare.gov	website,	35
height,	191–192
height	attribute,	123–124,	205,	209
heuristics,	628
hex	code,	137
hidden	attribute,	99
hidden	layers,	648
hide()	method,	306
high-dimensional	sparse	data	set,	444
high-level	programming	languages,	14–15
Hipmunk.com,	114–115,	330
hiring	of	programmers,	87–88
histograms,	472–474,	502
“hook	model,”	13
horizontal	navigation,	164,	165
horizontal	value,	of	box-orient	attribute,	224
hotlinking,	106,	143
hover	state,	anchor	tag	(<a>),	140
HTML	(HyperText	Markup	Language).	See also	CSS	

(Cascading	Style	Sheets);	elements,	HTML
adding	CSS	to,	146–148
attributes,	98–99
building	sample	web	pages	using,	109–111
building	the	code,	175–177
formatting,	107–109
forms,	124–127
history	of,	101
HTML5,	101
lists,	115–117

as	one	of	first	languages	to	learn,	86
organizing	content	on	web	pages,	113–114
overview,	95–96
parsing,	434–435
practicing	with	Codecademy.com,	127–128
pre-written	codes,	343–344
setting	up,	193–194,	202–203
shaping	data	on	pages,	434–436
structure	of,	96–101
tables,	118–124
tags,	102–107
time	needed	to	learn,	85
writing,	210

html()	method,	302
<html>	tag,	100,	158
HTTP GET	method,	286
Huffington	Post	website,	134
Huffman,	Steve,	355
human	resources,	careers	in,	48–49
humanoid	robots,	532
Huxley,	Aldous,	233
H(X)	function,	671
hyperlinks.	See	links
hyper-parameters,	575,	599–601
HyperText	Markup	Language.	See	HTML
hypotheses,	575,	589

I
I	Quant	NY	blog,	48
icons,	adding,	246–247
id	attribute,	162,	166,	170
IDA	(Initial	Data	Analysis),	490
identity	matrix,	561
IEEE	(Institute	of	Electrical	and	Electronics	

Engineers),	540
if	statements,	361–362
if-else	statement,	254–257,	337,	348
image	()	tag,	106
image	classification
extracting	visual	features,	683–684
overview,	677–678

0003098529.INDD 739	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 739

recognizing	faces	using	eigenfaces,	684–687
working	with	sets	of	images,	678–682

image	file	format,	331
images
adding,	106
background,	142–146
borders	of,	684
cropping,	681–682
flattening,	682
resizing,	682
on	web	pages,	example	of,	102,	103

	(image)	tag,	106
imgur.com,	106
Imitation	Game,	533
implementation,	ease	of,	338
implicit	matrix	multiplication,	559
implicitly	restarted	Lanczos	bidiagonalization	

algorithm	(IRLBA),	720
import math	statement,	359
import this;	command,	356
importance	function,	669
importance	measures,	667–679
import.io,	266
Imputer	parameters,	423
imread()	method,	397,	679
imshow()	function,	398,	679
indenting	code,	342,	350,	357
independence	hypothesis,	508
Independent	Component	Analysis,	689
independent	events,	565
indexes,	556
industry	news	and	blogs,	334
inequality	(!=)	operator,	255,	362
information	gain,	611
information	redundancy,	505
Information	Retrieval	(IR),	443
informative	entropy,	611
infrastructure	category,	of	website	code,	

24,	25
init	method,	631
Initial	Data	Analysis	(IDA),	490
in-line	CSS,	146

.innerHTML	method,	347
in-person	training	programs,	76–77
input	layer,	in	neural	networks,	646
<input>	tag,	126
in-sample	data,	587,	589,	591
Insight	Segmentation	and	Registration	Toolkit	

(ITK),	679
Inspect	Element	feature	(Developer	Tools),	

Chrome	browser,	135
Instagram,	26
Institute	of	Electrical	and	Electronics	Engineers	

(IEEE),	540
interaction	designers,	320
International	Organization	for	Standardization/	

International	Electrotechnical	Commission	
(ISO/IEC),	540

Internet,	broadband	connectivity,	10
Internet	Protocol	(IP)	address,	23
Internet	service	provider	(ISP),	23,	24
internships,	68–72
interpreted	programming	languages,	15
interpreters,	purpose	of,	15
interquartile	range	(IQR),	494,	498
intuition,	machine	learning	and,	535
inverse	of	a	matrix,	561
InVision	prototyping	tool,	47
iOS	devices,	56
IP	(Internet	Protocol)	address,	23
iPod,	design	changes,	328–329
.ipynb	files,	384
IPython	Notebook,	377,	383,	384
IQR	(interquartile	range),	494,	498
IR	(Information	Retrieval),	443
Iris	data	set,	495,	505,	632,	634,	635,	647
iris_dataframe.describe()	function,	492
IRLBA	(implicitly	restarted	Lanczos	

bidiagonalization	algorithm),	720
irlba	function,	720
irlba	library,	720
isin()	method,	418
isnull()	method,	416,	421
ISO/IEC	(International	Organization	

for	Standardization/	International	
Electrotechnical	Commission),	540

0003098529.INDD 740	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

740 Coding All-in-One For Dummies

ISP	(Internet	service	provider),	23,	24
italics	text,	107–108
ITK	(Insight	Segmentation	and	Registration	

Toolkit),	679

J
JavaScript.	See also	AJAX
adding	to	web	pages,	261–262
alerting	users,	259–260
creator	of,	14
frameworks	for,	54
functions,	260–261
functions	in,	case	of,	347
if-else	statements,	254–257
libraries,	267–268
number	methods,	258–259
as	one	of	first	languages	to	learn,	86
overview,	26–27,	249–251
practicing	with	Codecademy.com,	263
pre-written	codes,	345–347
prompting	users	for	input,	259–260
string	methods,	258–259
structure	of,	251–252
variables,	253–254
working	with	APIs,	263–267

JavaScript	Object	Notation	(JSON),	280,	289–293
jello	layouts,	198–200
Jetstrap.com,	239
join()	method,	428
jQuery
with	AJAX,	309–310
document	ready	event,	298
effects,	305–309
getting	started,	296–297
making	changes	with,	300–302
objects,	297–298
overview,	267–268,	295
selectors,	298–299

jQuery	keyword,	297
JSON	(JavaScript	Object	Notation),	280,	289–293
JSON.parse	method,	293
Jupyter	Notebook

creating	folders,	380–381
creating	notebooks,	381–383
exporting	notebooks,	383
importing	notebooks,	384–385
removing	notebooks,	383–384
starting,	378–379
stopping,	379

K
k	parameters
choosing,	525
flexible	algorithms,	639–642
overview,	638–639

k	values,	639–641
k_means	variable,	632
Kaggle	library,	538
Keras	wrapper,	654
Keynote	app,	36
keywords	value,	of	backgroundposition

property,	144,	145
k-fold	cross-validation,	596,	597
klaR	library,	619
K-means	algorithms
procedure	of,	629–630
tuning,	630–637

k-means++	initialization	procedure,	632
k-Nearest	Neighbors	(kNN)
choosing	k	parameters,	525
overview,	522–523
predicting	after	observing	neighbors,	

523–524
searching	for	classification	by,	637

knowledge	representation,	539
knowledge-based	recommendations,	715–716
kurtosis,	494,	495

L
label	parameter,	472
Labeled	Faces	in	the	Wild	data	set,	688
labels,	in	graphs,	463–464
labels	parameter,	469,	487

0003098529.INDD 741	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 741

language	processing,	natural,	68,	443,	539,	
691–692

Laplace	correction,	617
large	numbers,	law	of,	662
Lasagne	library,	Python,	654
last_valid_index()	method,	428
latent	semantic	indexing	(LSI),	719
law	of	large	numbers,	662
layers
in	neural	networks,	647–650
in	Photoshop,	36

Layoutit.com,	239
layouts.	See also	floating	layouts;	positioning
adapting	for	desktops,	241–242
adapting	for	mobile,	241–242
adapting	for	tablets,	241–242
building	with	absolute	positioning,	208–212
centered	fixed-width,	196–200
dragging	and	dropping	web	pages,	239–240
fixed-width,	193–196
flexbox,	212–216
fluid,	181
jello,	198–200
static,	210–212
three-column,	185–192
two-column
adjusting	borders,	180–181
advantages	of	fluid	layouts,	181
building	HTML	code,	175–177
setting	floating	columns,	179–180
sketching	web	pages,	173–175
using	semantic	tags,	182–185
using	temporary	background	colors,	177–179

using	grid	system,	236–239
using	predefined	templates,	240

leakage	traps,	avoiding,	602
learning	curves,	depicting,	593–595
learning	rates,	583,	608–609,	652
learning_curve	function,	595
leave-one-out	cross-validation	(LOOCV),	597
left	attribute,	205,	209,	221
left	navigation	toolbar,	164,	165
left-angle	bracket	(<),	97,	98,	350

legal	services,	careers	in,	51–52
legend()	function,	465,	466
legends,	in	graphs,	465–466
.length	method,	259
less	than	(<)	operator,	255,	362
less	than	or	equal	to	(<=)	operator,	

255,	362
	(list	item)	tag,	116,	158,	245
library	classes,	79
lifespan	of	programming	languages,	14
lindaliukas.fi	website,	27
linear	function,	307
linear	models,	512–513,	592,	606
linear	regression
bias	and,	589,	590
defining	family	of	linear	models,	512–513
limitations	of,	514–515
neural	networks	and,	654
using	more	variables,	513–514

lines,	in	MatPlotLib
defining	appearance,	458–462
multiple,	drawing,	453–454
using	styles,	458–459

lines	of	code,	complexity	of	programs	and,	8
link	state,	anchor	tag	(<a>),	140
<link>	tag,	147
links
to	content,	104–106
customizing,	139–141
description	of,	105
destination	of,	105
in	graph	data,	447
on	web	pages,	example	of,	102,	103

Linux	operating	system,	installing	Python	on,	
371–372

lipsum.org,	238
list	item	()	tag,	116,	158,	245
lists
nesting,	117
ordered,	116
overview,	115–116
styling,	152–155
unordered,	116

0003098529.INDD 742	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

742 Coding All-in-One For Dummies

list-style-image	property,	153,	154
list-style-type	property,	152–153,	154
Literary Digest	poll,	587–588
live	data,	displaying	in	web	page,	281
LiveScript.	See	JavaScript
LivingLanguage	app,	70
llcrnrlat	parameter,	483
llcrnrlon	parameter,	483
load_boston()	function,	385
load_diabetes()	function,	385
load_digits([n_class])	function,	385
load_iris()	function,	385
location	services,	56–57,	342
location-based	offers,	building	applications	with,	

313–315
logic	category,	of	website	code,	24,	25
logic	errors,	38
logical	operation	XOR,	644,	645
logistic	regression
applying,	516
multiclass	problems,	517–518
overfitting	and,	654
overview,	515–516

LOOCV	(leave-one-out	cross-validation),	597
Lorem	Ipsum	text,	176,	238
loss	function,	577
lower()	string	function,	dot	notation	with,	

363–364
low-level	programming	languages,	14–15
LSI	(latent	semantic	indexing),	719
Lynda.com,	76

M
Mac	operating	system,	installing	Python	on,	

372–374
machine	code,	14–15
machine	efficiency,	AI	used	for,	537
machine	learning.	See also	artificial	intelligence	

(AI);	big	data
algorithms,	572–576
choosing	Python	distribution	for,	368–371
computing	distances	for,	625–626

cost	functions,	576–578
current	uses	of,	536–538
decision	trees,	610–615
fad	uses	of,	536
goals	of,	534
history	of,	532–533
limitations	based	on	hardware,	534–535
mathematics	and
describing	use	of	statistics,	568–570
exploring	probabilities,	563–568
overview,	553–554
working	with	data,	554–563

overview,	57
perceptrons	and,	606–610
probabilities,	563–568,	615–621
process,	573–576
role	of	statistics	in,	546–547
specifications	of,	539–540
taught	in	college	courses,	67
training	defined,	550–551
updating	by	mini-batch,	581–583
updating	online,	581–583
validating
alternatives,	597–598
avoiding	leakage	traps,	602
avoiding	sample	bias,	601–602
balancing	solutions,	592–595
checking	out-of-sample	errors,	586–588
considering	model	complexity,	591–592
cross-validation,	596–597
limits	of	bias,	589–591
optimizing	cross-validation,	598–601
overview,	585–586
testing,	595
training,	595

Made	with	Code	campaign,	Google,	90
Mahotas	library,	679
mailto	value,	of	action	attribute,	of	<form>

tag,	127
Manhattan	distance,	626
map() function,	435
mapping,	574

0003098529.INDD 743	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 743

map-reduce	technology,	582
Maps	product,	Apple,	334
margin	property,	166,	167,	168
margin-bottom,	215
margin-left,	215,	216
margin-right,	215,	216
margin-top,	215
marker	parameter,	475
markers,	adding	in	MatPlotLib,	460–462
marketing
careers	in,	50–51
coding	and,	12

mashape.com,	335
mashups,	big	data,	545
master	algorithm,	547
master’s	degree,	65–66
math. method(variable)	method,	359
math.ceil(n)	function,	359
mathematics
computing	math	in	Python,	358–360
machine	learning	and
describing	use	of	statistics,	568–570
exploring	probabilities,	563–568
overview,	553–554
working	with	data,	554–563

math.floor(n)	function,	359
math.method(value)	method,	359
MATLAB	application,	451–452
MatPlotLib
annotations,	462–466
axes,	455–457
graphs,	452–455
grids,	455–457
labels,	462–466
legends,	462–466
line	appearance,	458–462
overview,	451–452
ticks,	455–457

matplotlib.pyplotmodule,	452
matrices
adjacency,	448
advanced	operations,	561
basic	operations,	558

creating,	556–558
defined,	556
multiplication,	558–561

max_features	argument,	445–446
mb_k_means	variable,	632
mean,	570
mean	decrease	accuracy	and	impurity,	668
measuring
central	tendency,	492–493
range,	493
similarity	between	vectors,	624–625
variance,	493

median,	570
Median	filter,	680
menu	div,	219
menu	navigation,	164,	165
<menu/command>	tag,	184
<meter>	tag,	184
method	attribute,	of	<form>	tag,	126
methods,	258
Meyer,	Eric,	137
Meyer,	Rebecca,	137
microservices,	403
Microsoft,	programmers	hired	by,	87
Microsoft	Excel	files,	393,	396–397
Microsoft	Office	files,	396–397
Microsoft	Windows	operating	system,	installing	

Python	on,	374–377
MindNet	semantic	network,	699
min-height	attribute,	189–191
min-height	property,	specifying,	189–191
mini-batch	(stochastic)	mode,	for	weight	

updates,	653
mini-batches,	updating	machine	learning	by,	

581–583
Miniconda	installer,	370
minimum	viable	product,	37
missing	data
encoding,	422–423
finding,	421–422
imputing,	423–424

missing_values	parameter,	423
misspelled	statements,	350

0003098529.INDD 744	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

744 Coding All-in-One For Dummies

mobile	applications
coding,	28–32
coding	for	practice,	79–80
defined,	25–26
development	of,	careers	in,	56–57
layouts	for,	241–242
native	apps,	30–32
web	apps,	29–30

mobile	web	applications,	compared	with	native	
mobile	applications,	28–29

mockups,	36,	37,	47,	54,	331,	333
modules,	360
MongoClient	class,	402
MongoDB,	401–402
monospace	font	family,	139
MovieLens	data	sets,	712–714,	719
-moz-box-orient	attribute,	225,	226
Mozilla	Firefox	browser,	HTML	and,	96
mozilla.org,	163
-ms-box-orient	attribute,	226
MSWeb	data	set,	714–715
mtry	hyper-parameter,	669
multiclass,	strategies	with	logistic	regression,	

517–518
MultiDiGraph()	graph	type,	486
MultiGraph()	graph	type,	486
multiplication,	on	matrices,	558–561
multivariates,	498,	570
mutually	exclusive	probabilities,	565
<MyDataset>	root	node,	in	XML,	404

N
\n	escape	sequence,	360
n_ components	parameter,	705
n_clusters,	631
n_components	parameter,	686
n_estimators	parameter,	673
n_jobs	parameter,	666
Naïve	Bayes
estimating	responses	with,	618–621
general	discussion,	615–618
overview,	518–520
predicting	text	classifications,	520–522

NaiveBayes	function,	619,	620,	621
named	entity	recognition,	692
named	functions,	using	as	callbacks,	271–273
native	mobile	applications,	25,	28–29
natural	language,	15
Natural	Language	Processing	(NLP),	68,	443,	539,	

691–692
Natural	Language	Toolkit	(NLTK),	438,	697
natural	language	understanding,	539
<nav>	tag,	184,	229
nav-pills	class	prefix,	245
ndarray	objects,	562,	563
n-dimensional	arrays,	562
Nelder-Mead	method,	600
nesting
flexboxes,	222
lists,	117

network	parallelism,	582
network	systems,	taught	in	college	courses,	67
NetworkX	package,	448–450,	484
neural	networks
architecture	of,	646
building,	654–656
deep	learning,	657–659
imitating	nature
backpropagation	algorithms,	650–653
feed-forward	process,	645–647
layers,	647–650
overview,	644–645

overfitting,	653–657
overview,	643–644

neuralnet	library,	654
neurons,	549,	644
newlines,	357,	360
ngram_range	parameter,	445
n-grams,	445–446,	696,	697
NLP.	See	Natural	Language	Processing
NLTK	(Natural	Language	Toolkit),	438,	697
NMF	(Non-Negative	Matrix	Factorization),	689,	704
nodes,	447
no-freelunch	theorem,	592–593
noise,	575,	576
nolearn	wrapper,	654

0003098529.INDD 745	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 745

None	value,	in	Python,	421
nonlearnable	parameters,	575
nonlinear	separability,	608–610
Non-Negative	Matrix	Factorization	(NMF),	689,	704
nonnegativity,	625
nonparametric	correlation,	507
nonresponsive	bias,	588
no-repeat	value,	of	backgroundrepeat

property,	144
normal	distribution,	570
normality,	defining	measures	of,	494–495
NoSQL	(not	only	SQL)	databases,	401–402
notch	parameter,	473
nparray,	491
np.dot	function,	563
np.NaN	(NumPy	Not	a	Number),	421
number	methods,	working	with,	258–259
<Number>	element,	434
numeric	data
defining	measures	of	normality,	494–495
measuring	central	tendency,	492–493
measuring	range,	493
measuring	variance,	493
overview,	491–492
working	with	percentiles,	494

NumPy,	408–409
numpy, datasets	module,	666
NumPy	Not	a	Number	(np.NaN),	421
NumPy	package,	492,	562
numpy.ndarray,	681
NYU	(New	York	University),	Certificate	in	Web	

Development	from,	65

O
objectify.parse()	method,	404
Objective-C	programming	language,	32,	56
Occam’s	razor,	593
off()	method,	304
off()	method,	304
	(ordered	list)	tag,	116,	152
older	(deprecated)	attributes,	121–122
Olivetti	faces	data	set,	685

on()	method,	302–304
onclick	attribute,	336
one-hot	encoding,	555
online	learning,	583
online	mode,	for	weight	updates,	652–632
on-the-job	training,	75–79
open()	method,	389
.open	method,	287
OpenCV	package,	679,	684
opening	tags,	98,	350
OpenOffice,	36
open-source	apps,	334
OpenTable	app,	36
optimization	engine,	575
ordered	list	()	tag,	116,	152
ordered	lists,	116,	152–155
oReq	object,	286
Outgrow.me,	85–86
out-of-bootstrapping	examples,	598
out-of-core	algorithms,	583
out-of-sample	errors,	587–588
output	layer,	in	neural	networks,	646
<output>	tag,	184
overestimation,	595
overfitting,	591,	602,	653–657
overflow	property,	191–192

P
p	selector,	136
<p>(paragraph)	tag,	104,	158
padding	property,	166,	167,	168
page	layouts.	See	layouts
pandas	package,	393,	408–409,	415,	496
pandas.crosstab	function,	497,	498
paragraph	(<p>)	tag,	104,	158
paragraphs
organizing	text	in,	104
on	web	pages,	example	of,	102,	103

parallel	coordinates,	500–501
parallelism,	657–658
parameters,	261

0003098529.INDD 746	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

746 Coding All-in-One For Dummies

parentheses,	using	in	JavaScript,	252
Parody	Tech	Twitter	accounts,	160–163
parse()	method,	in	Python,	396
parsers,	393
parsing
HTML,	434–435
XML,	434–435

partial_fit	method,	631
partition	algorithms,	627
pasting,	664
pattern-matching,	440–442
PayScale	cost	of	living	calculator,	90
PCA	(principal	component	analysis),	635,	639,	689,	

704,	718
pd.DataFrame. duplicated()	method,	411
Pearson	correlation,	504,	506,	507
Pearson’s	r,	506
percentage-sizing,	136–137
percentiles,	defining	for	numeric	data,	494
perceptrons
neural	networks	and,	644
nonlinear	separability,	608–610
overview,	606–608

PhD	programs,	66
PhoneGap	wrapper,	31
Photoshop	app,	36
Photos.	See	images,	678
PHP,	27–28,	87
pictures.	See	images
pie	charts,	468–469
Pingendo.com,	239
Play	Store.	See	Google	Play	Store
plot()	function,	459,	460,	465,	477
plot.show()	function,	453
plotting
defining	plots,	452–453
drawing	plots,	453–454
geographical	data,	481–483
scatterplots,	502–504
time	series,	478–481
trends,	480–481

plt.axes()	function,	455
plt.plot()	function,	453

plt.savefig()	function,	454
PNG	(Portable	Network	Graphic)	format,	455
poly1d()	function,	477
polyfit()	function,	477,	481
Pong	game,	8
pooling,	658–659,	683
population,	in	statistics,	569
Portable	Network	Graphic	(PNG)	format,	455
position	value,	of	backgroundposition

property,	144,	145
positioning.	See also	layouts
absolute,	201–205
fixed,	216–220
guidelines,	adding,	203–204
z-index	attribute,	206–208

positive	and	negative	word	dictionaries,	706
.post()	method,	310
POST	value,	of	method	attribute,	of	<form>

tag,	126
PowerPoint	app,	36
precompilers,	for	CSS,	54
predefined	templates,	240
predicting
outcomes,	by	splitting	data,	610–614
text	classifications,	520–522

predictive	analytics,	66
predictors,	averaging,	676
prepend()	method,	302
prerequisites,	2–3
pretrained	neural	networks,	683–684
pre-written	codes
CSS,	344–345
HTML,	343–344
JavaScript,	345–347

price,	338
principal	component	analysis	(PCA),	635,	639,	689,	

704,	718
privacy,	big	data	and,	543
probabilities
conditioning	chance	by	Bayes’	theorem,	

565–568
Naïve	Bayes	and,	615–621
operations	on,	564–565

0003098529.INDD 747	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 747

processing,	distributed,	58
product	managers,	49–50,	54,	322
programmableweb.com,	335
programmatic	trading,	580
programming.	See	coding
programming	languages
compiled	versus	interpreted,	15
creators	of,	14
functionality	across,	14
lifespan	of,	14
low-level	versus	high-level,	14–15
overview,	13–16
syntax	and	structure	of,	14
for	web	software,	16

<progress>	tag,	184
project	managers,	38
Project_<code>,	79
projection	parameter,	483
prompt()	method,	259–260
prompting	users	for	input,	259–260
properties,	131,	133
prototypes,	47,	74,	628,	629
PSD	file	format,	331
pseudo-class	selectors,	141
public	relations,	coding	and,	12
publicdomainarchive.com,	143
pvalue,	500
PyMongo	library,	402
Python	programming	language.	See also	scikit-

learn	package
collecting	input,	362–363
commands,	361–362
creator	of,	14
data	types,	defining,	357–358
displaying	output,	362–363
distribution	for	machine	learning,	choosing,	

368–371
downloading	data	sets,	378–386
downloading	example	code,	378–386
installing,	371–377
math	computations,	358–360
matrices	in,	557

NetworkX	package	for,	448–450
as	one	of	first	languages	to	learn,	86
overview,	27–28,	354
Random	Forests	in,	665
required,	3
versus	Ruby,	86–87
special	characters,	360–361
strings,	360–361,	363–364
structure	of,	355–357
tip	calculator,	building,	365
variables,	defining,	357–358
versions	of,	356,	368

Q
qcut	function,	496
qualitative	features,	in	machine	learning,	555
quality	assurance,	74,	322–323
quantitative	features,	in	machine	learning,	555
quartiles,	472
quotation	marks,	360
quotes,	in	JavaScript,	252

R
R	programming	language
kNN	algorithm	in,	639
matrices	in,	557
Random	Forests	in,	665

random()	method,	in	Python,	391–392
Random	Forests	(RF),	663–668,	721–722
random	sampling,	569,	582,	586
random	search,	600–601
randomForest	function,	668
randomForest	library,	664,	668
RandomForestClassifier,	666
RandomizedPCA	class,	685–686
range()	function,	470,	485
range	parameter,	471
ranges,	measuring,	493
ratings	data
downloading,	712
limitations	of,	715–716

0003098529.INDD 748	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

748 Coding All-in-One For Dummies

raw	text	files,	shaping	data	in
introducing	regular	expressions,	440–442
removing	stop	words,	438–439
stemming	stop	words,	438–439
Unicode,	436–437

raw_input("prompt")	method,	362
read()	method,	in	Python,	389
read_csv()	method,	395,	707
read_sql()	method,	400
read_sql_query()	method,	400
read_sql_table()	function,	400
read_table()	method,	in	Python,	393
readability,	355
Real	Time	Bidding	(RTB)	platforms,	580
recommender	systems
downloading	ratings	data,	712
leveraging	SVD,	716–723
limitations	of	ratings	data,	715–716
MovieLens	data	sets,	712–714
navigating	anonymous	web	data,	714–715
overview,	711–712

recommenderlab	library,	713
reconstruction_err_	method,	705
<Record>	node,	in	XML,	404
Reddit.com,	355
RegExr. com,	52
regexr.com,	440
regression
linear,	512–515
logistic,	515–518

regular	expressions,	51–52,	266,	440–442
regularization,	654
reinforcement	learning,	573
rel	attribute,	of	<link>	tag,	147
relational	databases,	managing	data	from,	

400–401
relative	positioning,	216
relative	value,	position	attribute,	

216,	221
remove()	method,	302
Ren,	Bob,	70
repeat	value,	of	backgroundrepeat

property,	144

repeat-x	value,	of	backgroundrepeat
property,	144

repeat-y	value,	of	backgroundrepeat
property,	144

repository
creating	folders,	380–381
creating	notebooks,	381–383
exporting	notebooks,	383
importing	notebooks,	384–385
overview,	379
removing	notebooks,	383–384

representation,	551,	650
reproducibility,	628
reqListener	function,	286
researching
APIs,	267
for	graduate	degree	programs,	68
identifying	sources,	333–335
projects,	35–36
web	applications
choosing	solutions	for	each	step,	338–340
dividing	applications	into	steps,	326–333
identifying	research	sources,	333–335
overview,	325

reset_index()	method,	428,	430
resizing	images,	682
resource	scheduling,	AI	used	for,	537
resources,	4
response	vectors,	557,	558
responsive	design,	191,	222
responsive	website	design,	36
restricted	Boltzmann	machines,	658
results,	machine	learning	vs.	statistics	at,	534
reviews,	from	e-commerce,	706–709
RF	(Random	Forests),	663–668,	721–722
RGB	value,	137
right	navigation	toolbar,	164,	165
right-angle	bracket	(>),	97,	98,	350
RMSE	(root	mean	squared	error),	669
robotics,	532,	539
Rocket	Fuel,	580
root	mean	squared	error	(RMSE),	669
round (n, d)	function,	359

0003098529.INDD 749	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 749

row_s.name	property,	479
rows
in	databases,	388
slicing,	424–425
stretching,	120–121

rowspan	attribute,	120
rpart.plot	package,	613
RTB	(Real	Time	Bidding)	platforms,	580
Ruby	programming	language
creator	of,	14,	321,	322
as	one	of	first	languages	to	learn,	86
overview,	27–28
versus	Python,	86–87

S
safety	systems,	AI	used	for,	537
sales
careers	in,	50–51
coding	and,	12

same-origin	policy,	287–288
sample	bias,	avoiding,	601–602
samples,	defined,	586
sampling	data,	388–392
sans-serif	font	family,	139
scalar	multiplication,	using	matrices,	558
scaling,	55
scatterplots
creating,	475–478
overview,	474–475
plotting,	502–504

school-year	internships,	69
scikit-image	library,	397,	678,	679,	684
scikit-learn	package
feature_extraction	module	in,	693
K-means	algorithm	offered	by,	631
learning_curve	function	of,	595
Naïve	Bayes	models	in,	621
Olivetti	faces	data	set	from,	685
Random	Forests	and,	666
tutorial	for,	679

SciPy	library,	354

scipy.ndimage	package,	679
scipy.sparse	matrix,	444
scope	creep,	17
scoring
analyzing	reviews	from	e-commerce,	706–709
enhancing	text,	694–699
machines	reading	data,	692–694
natural	language	processing,	691–692
problems	with	raw	text,	702–703
processing	text,	694–699
scraping	textual	data	sets	from	the	web,	

699–702
SCOTUS	Servo,	52
Scrapy	library,	354
screen	scraping,	266
<script>	tag,	embedding	JavaScript	using,	

261–262
scroll	value,	of	backgroundattachment

property,	145
search()	function,	442
search	engine	optimization	(SEO),	11–12,	53
search	engines,	researching	using,	334
<section>	tag,	184,	229
security,	55–56,	67
SelectFromModel	function,	668
selection	bias,	588
selectors
background	images,	142–146
child,	160
customizing	links,	139–141
descendant,	160–161
fonts,	135–139
jQuery,	298–299
writing	name	correctly,	178

semantic	tags,	182–185,	229
semicolons,	using	in	JavaScript,	252
sentiment	analysis,	619
SEO	(search	engine	optimization),	53
separability,	nonlinear,	608–610
separate	style	sheets,	CSS	specified	in,	147–148
separate	value,	of	border-collapse

property,	157
Series(),	424

0003098529.INDD 750	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

750 Coding All-in-One For Dummies

serif	font	family,	139
servers,	54
set_xlim()	function,	456
set_xticks()	class,	456
set_ylim()	function,	456
set_yticks()	function,	456
shape	method,	562
shape	property,	444
shapes,	finding	in	data,	641–642
shaping	data
bag	of	words	model,	442–447
in	graphs,	447–450
on	HTML	pages,	434–436
overview,	433
in	raw	text	files,	436–442

Shazam	app,	68
shorthand	methods,	for	AJAX,	310
show()	function,	306,	398,	679–680
showLocation()	function,	346
shrinkage,	675
shuffling	data,	429–430
side	projects,	61
sight,	677–678.	See also	images
similarity
k	parameters,	638–642
measuring	between	vectors,	624–625
overview,	624–625
searching	for	classification	by	kNN,	637
tuning	K-means	algorithm,	630–637
using	distances	to	locate	clusters,	626–630

single	tokens	(unigrams),	697
singular	matrices,	561
singular	value	decomposition	(SVD)
in	action,	719–723
classification	tasks	and,	704
origins	of,	717–718
overview,	716–718

sketching	web	pages,	173–175
skewness,	494,	495
sklearn.cluster.KMeans	algorithm,	631
sklearn.cluster.MiniBatchKMeans

algorithm,	631
sklearn.decomposition	module,	705

slideDown()	method,	307
slideToggle()	method,	307
slideUp()	method,	307
sliding	effects,	in	jQuery,	306–307
SnapMeNow	app,	70
social	networks,	recommender	systems	and,	712
softmax,	in	neural	networks,	647
solid	lines,	in	graphs,	458
solutions,	balancing,	592–595
sort_index()	method,	430
sorting,	data,	429–430
source	code	for	examples	in	this	book,	4
spaces
in	HTML,	101
in	Python,	356–357

spam	filters,	551
spanning,	120
Spark,	Apache,	582
sparse	matrices,	694,	713
Spearman	correlation,	507
special	characters,	in	Python,	360–361
specializations	of	website	developers,	25,	38
specifications,	540
splitting,	data	to	predict	outcomes,	610–614
spread,	473
spreadsheet	consolidation,	74
SQL	(Structured	Query	Language),	400
SQLAlchemy	library,	401
SQLite	database,	353
src	attribute,	106,	262
stackoverflow.com,	163
standard	deviation,	570
standardization,	z-score,	509
standards,	540
starbucks.com	website,	30
startups,	programmers	hired	by,	88
statements,	8–9
static	layouts,	adding	CSS	to,	210–212
statistics.	See also	descriptive	statistics
comparing	machine	learning	to,	534
defined,	542
describing	use	of,	568–570
role	in	machine	learning,	546–547

0003098529.INDD 751	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 751

stemming,	438–439,	697–699
stochastic	(mini-batch)	mode,	for	weight	

updates,	653
stochastic	gradient	descent,	583
stop	words
removing,	438–439,	697–699
stemming,	438–439,	697–699

stop_words	parameter,	439,	446,	698
stopping	rules,	612
storage,	distributed,	58
storage	category,	of	website	code,	24,	25
str()	function,	419,	436
strategy	parameter,	423
stratified	sampling,	570,	582
streaming,	388–392,	583
strftime()	function,	in	Python,	419
strikethrough	()	tag,	107–108
string	methods,	258–259
<String>	element,	435
string.capitalize()	function,	364
string.format()	method,	364
string.lower()	function,	364
strings,	252,	360–364
string.strip()	function,	364
string.upper()	function,	364
strip()	string	function,	363–364
	(bold)	tag,	107–108
strtobool()	function,	435
Structured	Query	Language	(SQL),	400
student-run	companies,	62
style	attribute,	154
<style>	tag,	147,	154
styling,	356–357
subsampling,	675
subscript	(<sub>)	tag,	108–109
subscript	text,	108–109
.substring (start, end)	method,	259
subtraction,	using	matrices,	558
suffixes,	removing	from	words,	438
<summary/detail>	tag,	184
summer	internships,	69
superscript	(<sup>)	tag,	108–109

supervised	classification,	574
supervised	learning,	572
surrogate	body,	creating	with	all	div,	197–198
survivorship	bias,	588
SVD.	See	singular	value	decomposition
<svg>	tag,	184
Swift	programming	language,	32,	56
swing	function,	307
Sworkit	app,	86
sym	parameter,	473
symbolic	reasoning,	548
symbolic	variables,	414
symbolists,	547
symmetry,	625
syntax	of	programming	languages,	14

T
\t	escape	sequence,	360
table	heading	(<th>)	tag,	119
table	row	(<tr>)	tag,	119–120,	123
table	selector,	157
<table>	tag,	118–119,	122
tables
aligning,	121–124
basic	structure	of,	118–120
cells,	aligning,	121–124
chi-square	for,	507–508
columns,	stretching,	120–121
contingency,	creating,	497–498
designing,	155–157
rows,	stretching,	120–121

tablets,	adapting	layouts	for,	241–242
tabs,	360
tag	soup,	700
tags,	HTML.	See	elements,	HTML
tangent	hyperbolic	activation	function,	645
Tapestry	recommender,	711
target	functions,	574,	576
tasks,	breaking	goals	into,	329
td	selector,	157
<td>	tag,	119,	123

0003098529.INDD 752	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

752 Coding All-in-One For Dummies

Techcrunch	Disrupt	hackathon,	70
technical	designs	and	decisions,	37
technology	companies,	hiring	by,	87–88
templates,	predefined,	240
temporary	background	colors,	188
TensorFlow	library,	654
term	frequency-inverse	document	frequency	

(TF-IDF)	transformations,	446–447,	
695–696,	705

terminal	leaf,	613
testing
k	values,	639–641
machine	learning,	595

text
processing,	694–699
raw,	436–442,	702–703

text()	method,	302
text	analysis,	51–52
text	classification,	619
text	classifications,	520–522
text	editors,	39
text	encodings,	436–437
text	files,	accessing	data	from,	392,	393
text-align	attribute,	155,	156
text-align	property,	table	and	td

selectors,	157
text-decoration	property,	136,	139,	140
text-processing	tasks,	619
TF-IDF	transformations.	See	term	frequency-

inverse	document	frequency	(TF-IDF)	
transformations

tfidf.transform()	function,	447
TfidfTransformer()	function,	447
TfidVectorizer	class,	705,	706
<th>(table	heading)	tag,	119
Theano	library,	Python,	654
theta	(Θ),	648
third-party	providers,	17
3D	array,	424–425
three-column	layouts
overview,	185–186
problems	with	floating	layouts,	188–189
specifying	min-height	property,	189–191

styling	three-column	web	pages,	186–188
using	height,	191–192
using	overflow,	191–192

threshold	distance,	337,	339
ticks,	setting	in	MatPlotLib,	455–457
time
formatting	values,	419–420
plotting	series,	478–481
representing	on	axes,	478–479
transformations,	420–421

<time>	tag,	184
timedelta()	function,	420
timeline,	318
tinyletter.com,	263
title()	function,	469
title	attribute,	98–99
title	tags,	100–101
<title>	tag,	100,	158
.toFixed(n)	method,	259
toggle()	method,	306
tokenizer	parameter,	698
tokenizing,	442,	697
tokens,	694
tolower()	function,	436
toolbars,	244–246
tooltips,	99
top	attribute,	205,	209,	221
Torvalds,	Linus,	341
toString()	method,	274–275
total	variation	denoising,	680
<tr>	(table	row)	tag,	119–120,	123
training
by	freelancing,	79–80
by	learning	after	work,	75–79
by	learning	at	work,	75–79
machine	learning,	550–551,	595
overview,	73
by	taking	work	project	to	next	level,	74–75
by	transitioning	to	new	role,	80–82

training	algorithms,	542
train/test	set	split,	596
transform()	function,	423,	431,	439,	693,	698

0003098529.INDD 753	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 753

transforming	data
adding	new	cases,	427–428
adding	new	variables,	427–428
overview,	426–427
removing	data,	428–429
shuffling,	429–430
sorting,	429–430

transitioning	to	new	role,	80–82
transpose	of	a	matrix,	561
triangle	inequality,	625
trigrams,	696
try-everything	principle,	of	no-free-lunch	

theorem,	593
t-tests,	499–500
Turing	Test,	692
TV	filter,	681
twenty_train	object,	444
Twitter,	programmers	hired	by,	87
Twitter	Bootstrap
coding	web	page	elements,	243–247
installing,	235–236
layout	options,	236–242
overview,	233–235
practicing	with	Codecademy.com,	247

2D	array,	424,	425
two-column	layouts
adjusting	borders,	180–181
advantages	of	fluid	layouts,	181
building	HTML	code,	175–177
setting	floating	columns,	179–180
sketching	web	pages,	173–175
using	semantic	tags,	182–185
using	temporary	background	colors,	177–179

type	attribute
of	<form>	tag,	125
of	<link>	tag,	147

U
<u>	(underline)	tag,	107,	108
Uber,	11,	50
udacity.com,	77

UI	(user	interface)	designers,	320
	(unordered	list)	tag,	116,	117,	158
uncorrelated	ensembles	of	trees.,	664
underestimation,	595
undergraduate	degees
computer	science	curriculum,	60–61
extracurricular	activities,	61–64
two-year	versus	four-year	school,	64–65

underline	(<u>)	tag,	107,	108
underscore	(_)	character,	358
understandability,	628
undirected	graphs,	484–485
Unicode,	436–437
unicorns,	47
unigrams	(single	tokens),	697
units.	See	neurons
univariates,	498,	570
universal	approximators,	650
Universal	Transformation	Format	8-bit	(UTF-8),	

437,	702
unordered	list	()	tag,	116,	117,	158
unordered	lists
creating,	116
using	CSS,	152–155

unstack()	method,	413
unstructured	data,	sending,	397–399
unsupervised	learning,	573
unsupervised	tasks,	627
uploading	data,	388–389
upper()	string	function,	dot	notation	with,	

363–364
Upwork,	88
urcrnrlat	parameter,	483
urcrnrlon	parameter,	483
usability,	628
use_idf,	447
user	experience	(UX)	designers,	320
user	interface	(UI)	designers,	320
user-generated	coding	websites,	335
users
alerting,	259–260
prompting	for	input,	259–260

0003098529.INDD 754	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

754 Coding All-in-One For Dummies

UTF-8	(Universal	Transformation	Format	8-bit),	
437,	702

util.strtobool()	function,	436
UX	(user	experience)	designers,	320

V
val()	method,	302
validating	data,	409–414.	See also	machine	

learning,	validating
validation	curve	charts,	593
validation	sets,	595
validation_curve	function,	666
valign	attribute
of	<td>	tag,	123–124
of	<tr>	tag,	123

value	attribute,	of	<form>	tag,	125
values,	131,	133
values	variable,	470
var	keyword,	254
variables
adding	new	to	data,	427–428
categorical,	414–419
in	databases,	388
defining	in	Python,	357–358
in	machine	learning,	555
storing	data	with,	253–254
using	with	algorithms,	513–514

variance	decomposition	technique,	689
variance	measurement,	493
variance	reduction,	611
vector	of	coefficients,	557
vectorization,	561–563
vectors,	557,	624–625
Venema,	Wietse,	367
vertical	navigation,	164,	165
vertical	value,	of	box-orient	attribute,	

224,	225
virtual	training	resources,	76
visited	state,	anchor	tag	(<a>),	140
visual	designers.	See	designers
visual	designs,	36
visual	features,	extracting,	683–684

visualizing	data.	See	data	visualization
Vroots,	715

W
W	matrix,	648
W3C	(World	Wide	Web	Consortium),	101
wait	times,	AI	used	to	predict,	538
waterfall	process,	34–35,	316
weapon	technologies,	autonomous,	531
web
accessing	data	from,	402–404
navigating	anonymous	data	from,	714–715
textual	data	sets	from,	699–702

web	applications
building,	319–323
coding
with	CSS,	26–27
development	environments,	343
with	HTML,	26–27
with	JavaScript,	26–27
with	PHP,	27–28
preparing,	342
pre-written	codes,	343–347
with	Python,	27–28
with	Ruby,	27–28
steps	to	follow,	347–349

debugging,	350
defined,	25–26
defining	purpose	and	scope	of,	16–17
example,	16–17
planning,	316–317
researching
choosing	solutions	for	each	step,	338–340
dividing	applications	into	steps,	326–333
identifying	research	sources,	333–335

using	third-party	providers,	17
web	browsers.	See	browsers
web	hosts,	39
web	pages
adding	JavaScript	to,	261–262
building	sample	using	CSS,	148–149
building	sample	using	HTML,	109–111

0003098529.INDD 755	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

Index 755

coding	basic	elements,	243–247
displaying,	20–26
dragging	and	dropping	to,	239–240
incorporating	CSS,	146–149
inspecting	code,	20–23
modifying	CSS	on,	133–135
organizing	content	on,	113–114
organizing	data	on,	163–165
sketching,	173–175
three-column,	186–188

web	scraping.	See	screen	scraping
web	services,	402
web-based	software,	10
WebKit-based	browsers,	225
-webkit-box-orient	attribute,	226
website	developers.	See	developers
websites.	See	web	pages
Weebly	web	host,	39
weight	updates,	652–653
weights,	in	neural	networks,	648,	650,	651
WhatsApp,	26
whiskers,	472
whitespace,	357,	363
width,	fixing	with	CSS,	194–196
width	attribute,	122,	123–124,	155,	156,	473
WinPython,	371
wireframes,	36,	37,	330,	333
Wistia	code	school,	74
within-cluster	sum	of	squares	(WSS),	630,	636
Wix	web	host,	39

Women	Who	Code	(organization),	90
workplace	utility	apps,	coding	for	practice,	79
World	Wide	Web	Consortium	(W3C),	101
wrapbootstrap.com,	240
wrappers,	31
WSS	(within-cluster	sum	of	squares),	630,	636

X
x-axis,	in	MatPlotLIb,	455
xlabel()	function,	463
XML	(eXtensible	Markup	Language)
accessing,	403–404
parsing,	434–435
strict	formatting	in,	434

XMLHttpRequest	objects,	285–287
XPath,	434,	435–436
xpath()	function,	436
xy	parameter,	464

Y
Yahoo!	87,	116
y-axis,	in	MatPlotLib,	455
Yelp.com,	16–17
Yes	We	Code	(organization),	90
ylabel()	function,	463

Z
z-index	attribute,	206–208

0003098529.INDD 756	 Trim	size:	7.375	in	×	9.25	in	 March	30,	2017	10:54	PM

0003081843.INDD 757	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

About the Authors
Nikhil Abraham is currently the CFO of Udacity, a venture-backed education
technology startup that teaches its students how to code and that bridges the gap
between real-world skills, relevant education, and employment. Prior to joining
Udacity, he worked at Codecademy. At Codecademy, he helped technology, finance,
media, and advertising companies teach their employees how to code. With his
help, thousands of marketing, sales, and recruiting professionals have written
their first lines of code and built functional applications. In addition to his day job,
he has lectured at the University of Chicago Law School and created a course that
teaches students how to solve legal problems using open data and software.

Prior to joining startups, Nikhil worked in a variety of fields, including manage-
ment consulting, investment banking, and law; he also founded a Y Combinator-
backed technology education startup. He received a JD and MBA from the University
of Chicago and a BA in quantitative economics from Tufts University.

Nikhil is a recent transplant from Manhattan, New York, and now lives in Moun-
tain View, California. Content from Nikhil’s books Coding For Dummies and Getting
a Coding Job For Dummies appears in this book.

Andrie de Vries started to use R in 2009 to analyze survey data, and he has been
continually impressed by the ability of the open-source community to innovate
and create phenomenal software. During 2009 he also started PentaLibra, a bou-
tique market research and statistical analysis agency. After getting increasingly
involved in the R community, he joined Revolution Analytics to help take R to
enterprise customers, helping clients to deal with the challenges of data science
and big data. To maintain equilibrium in his life, Andrie is studying and practicing
yoga. Content from Andrie’s book R For Dummies, 2nd Edition appears in this book.

Andy Harris began his teaching life as a special education teacher. He joined
the faculty of the Indiana University-Purdue University Indianapolis Computer
 Science department in 1995. He serves as a Senior Lecturer, teaching the introduc-
tory course to freshmen as well as numerous courses on web development, gen-
eral programming, and game programming. As manager of the Streaming Media
Laboratory, he developed a number of online video-based courses, and worked on
a number of international distance education projects including helping to start
a computer science program in Tetevo, Macedonia FYR, and collaboration with
Sun-Yat-Sen University in Guangzhou, China.

Andy is active in home schooling, and is the technology columnist for a national
homeschool magazine.

Eva Holland is an experienced writer, trainer, and cofounder of WatzThis?. She
excels in presenting complicated subjects in easy-to-understand language for
beginners of all levels.

0003081843.INDD 758	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

Eva has written, designed, and taught online, in-person, and video courses. She
has created curriculum for web development, mobile web development, and
search engine optimization (SEO). Prior to founding WatzThis?, Eva served as
COO of MWS, where she provided astute leadership, management, and vision that
guided the company to its goals. Content from Eva’s book Coding with JavaScript For
Dummies appears in this book.

Luca Massaron is a data scientist and marketing research director who special-
izes in multivariate statistical analysis, machine learning, and customer insight,
with more than a decade of experience in solving real-world problems and gen-
erating value for stakeholders by applying reasoning, statistics, data mining, and
algorithms. From being a pioneer of web audience analysis in Italy to achieving
the rank of top ten Kaggler on kaggle.com, he has always been passionate about
everything regarding data and analysis and about demonstrating the potentiality
of data-driven knowledge discovery to both experts and nonexperts. Content from
Luca’s books Machine Learning For Dummies and Python for Data Science For Dummies
appears in this book.

Chris Minnick is an accomplished author, trainer, and web developer. Prior to
cofounding WatzThis?, Chris was CEO of Minnick Web Services for 18 years, where
he managed and worked on hundreds of web and mobile projects for customers
ranging from small businesses to some of the world’s largest companies. Content
from Chris’ book Coding with JavaScript For Dummies appears in this book.

Joris Meys, MSc is a statistical consultant, R programmer and R lecturer at Ghent
University (Belgium). After earning a master’s degree in biology, he worked for
six years in environmental research and management before starting an advanced
master’s degree in statistical data analysis. Joris writes packages for both specific
projects and general implementation of methods developed in his department,
and he is the maintainer of several packages on R-Forge. He has co-authored a
number of scientific papers as a statistical expert. To balance science with culture,
Joris spends most of his spare time playing saxophone in a couple of local bands.
Content from Joris’ book R For Dummies, 2nd Edition appears in this book.

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 100 books and more than 600 articles to date. His tech-
nical editing skills have helped more than 63 authors refine the content of their
manuscripts. John has provided technical editing services to both Data Based
Advisor and Coast Compute magazines. It was during his time with Data Based
Advisor that John was first exposed to MATLAB, and he has continued to follow the
progress in MATLAB development ever since. During his time at Cubic Corpora-
tion, John was exposed to reliability engineering and has continued his interest
in probability. Be sure to read John’s blog at http://blog.johnmuellerbooks.
com. Content from John’s books Machine Learning For Dummies and Python for Data
 Science For Dummies appears in this book.

0003081843.INDD 759	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

Dedication
This book is dedicated to my infant son, the ever-energetic Aiden Abraham. Son,
someday we’ll go through this book together, and you’ll learn to code. For now,
I’m just happy that you made it on the 16-hour flight from Abu Dhabi to San Fran-
cisco without crying so I could finish this book! This book is also dedicated to my
amazing wife, Molly Grovak. I am very grateful for all your love and support, and
for being an amazing mom to Aiden, especially this last year with weekly bicoastal
travels.

— Nikhil Abraham

0003081843.INDD 760	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

0003081843.INDD 761	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

Author’s Acknowledgments
This book was possible with help from a number of people.

Thanks to all the people at Wiley, including Steven Hayes and Pat O’Brien for
edits and helpful advice. Also, thank-you to all the technical, editorial, layout, and
graphics folks for turning text of variable quality into text of outstanding quality.

Thanks to those of you who helped shape the content in this book online and
offline. Thanks to Codecademy for all the freely available online content. Thanks
to Douglas Rushkoff for starting a national conversation on whether we as a soci-
ety should program or be programmed, and for bringing this message to schools,
universities, and nonprofits. Thanks to Susan Kish for being the only executive
I can find who has spoken publicly about her journey learning how to code (check
out her TED Talk!) and for seeing the future of coding in corporations. Thanks to
Alia Shafir and Joshua Slusarz at Bloomberg for all the coding sessions you helped
organize, leaders you wrangled, rooms you reserved, and laptops you rebooted.
Thanks to Melissa Frescholtz and her leadership team at AOL for supporting a
culture of code and for taking code education even to places where it’s used every
day. Thanks to alumni at Cornell University, Northwestern University, University
of Virginia, and Yale University for testing early versions of content and helping
to make it better. Thanks to the people at Donorschoose.org, including Charles
Best and Ali Austerlitz, and at Google.org for shining a bright light on coding for
women and girls. Thanks to Code.org for making coding accessible and cool for
hundreds of millions of kids in the United States and abroad.

— Nikhil Abraham

0003081843.INDD 762	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

0003081843.INDD 763	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

Publisher’s Acknowledgments

Project Manager: Pat O’Brien

Copy Editor: Melba Hopper

Sr. Editorial Assistant: Cherie Case

Production Editor: Vasanth Koilraj

Cover Image: © maciek905/iStockphoto

0003081843.INDD 764	 Trim	size:	7.375	in	×	9.25	in	 March	31,	2017	4:12	PM

9781119363026-badvert01.indd 765	 Trim	size:	7.375	in	×	9.25	in	 March	25,	2017	12:26	PM

9781119363026-badvert01.indd 766	 Trim	size:	7.375	in	×	9.25	in	 March	25,	2017	12:26	PM

9781119363026-badvert01.indd 767	 Trim	size:	7.375	in	×	9.25	in	 March	25,	2017	12:26	PM

9781119363026-badvert01.indd 768	 Trim	size:	7.375	in	×	9.25	in	 March	25,	2017	12:26	PM

9781119363026-badvert01.indd 769	 Trim	size:	7.375	in	×	9.25	in	 March	25,	2017	12:26	PM

9781119363026-badvert01.indd 770	 Trim	size:	7.375	in	×	9.25	in	 March	25,	2017	12:26	PM

