SITE-DIRECTED RNA EDITING

Applicants: Joshua J. C. Rosenthal, Vega Alta, PR (US); Maria Fernanda Montiel-Gonzalez, San Juan, PR (US)

Inventors: Joshua J. C. Rosenthal, Vega Alta, PR (US); Maria Fernanda Montiel-Gonzalez, San Juan, PR (US)

Assignee: University of Puerto Rico, San Juan, PR (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 213 days.

Appl. No.: 13/947,027
Filed: Jul. 20, 2013

Related U.S. Application Data
Provisional application No. 61/673,497, filed on Jul. 19, 2012.

Int. Cl.
CI2N 15/11 (2006.01)
CI2N 15/10 (2006.01)

U.S. Cl.
CPC CI2N 15/1024 (2013.01)

Field of Classification Search
CPC CI2N 15/113; CI2N 2310/11
See application file for complete search history.

References Cited

PUBLICATIONS

* cited by examiner

Primary Examiner — Brian Whiteman
Attorney, Agent, or Firm — Hoglund & Pamiás, PSC; Roberto J. Rios

ABSTRACT
The invention provides a way to target RNA editing by adenosine deamination to a chosen adenosine within RNA. An antisense RNA oligonucleotide is used for targeting the entire complex to a specific address on the RNA molecule. A Box B RNA and a λ N-peptide are used as a linkage between the antisense RNA oligonucleotide and a deaminase domain of human ADAR2 used to catalyze the deamination of the specific adenosine residue. These elements make up two molecules: the antisense RNA Oligo Box B RNA hairpin forms a single unit, as does the λ N-peptide-deaminase domain of human ADAR2.

5 Claims, 3 Drawing Sheets
FIG. 5

A

Day 1
Inject AN-CC

Day 3
Inject Oligo + CFTR W496X

Day 8
Record currents

B

Conductance (µS)

<table>
<thead>
<tr>
<th></th>
<th>AN-CC</th>
<th>CFTR W496X</th>
<th>Oligo-BoxB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Day 3</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Day 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SITE-DIRECTED RNA EDITING

FEDERAL GRANTS

This research was supported, in part by the National Institute of Health (NIH) through their NS039405-06 grant. The Government has certain rights in this invention.

SEQUENCE LISTING

BACKGROUND OF THE INVENTION

RNA editing by adenosine deamination is believed to occur in most metazoans. It is catalyzed by the ADAR (Adenosine Deaminases that Act on RNA) family of enzymes, which convert adenosine to inosine. During translation inosine is read as guanosine, and therefore this mechanism can change codons in mRNAs. These changes can affect protein structure and function. Any codon change which requires the conversion of adenosine to guanosine is possible. ADARs are composed of a C-terminal catalytic domain that carries out the deamination reaction and two to three double-stranded RNA binding domains (dsRBds) that bind to the substrate RNA. The dsRBds are the natural targeting mechanism for ADARs. In natural systems, specific adenosines are selected for editing based on the dsRBds’ ability to recognize secondary and tertiary structure within the surrounding RNA. Often the necessary higher order structures are complex. Our goal is to be able to target ADARs to a selected adenosine. The natural targeting mechanism of ADARs, namely the dsRBds, would not serve this purpose because they require a specific higher order RNA structure in cis. The probability that such a structure exists around a specific selected adenosine is very low.

SUMMARY OF THE INVENTION

The present invention replaces the natural targeting mechanism of ADARs, the dsRBds, with an antisense RNA oligonucleotide. An antisense RNA oligonucleotide has the advantage that it can be synthesized to specifically bind to any region of RNA through Watson-Crick base-pairing. Thus by coupling different oligonucleotides to ADAR’s deaminase domain, we can guide the domain to different regions of RNA for specific editing. The deaminase domain is covalent to the antisense oligonucleotide by taking advantage of a small RNA binding protein (1N peptide) and the RNA hairpin that it recognizes (box3 hairpin). The 1N peptide is fused to the N-terminus of the deaminase domain of ADAR and the box3 RNA hairpin is inserted into the antisense guide RNA.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:

FIG. 1 illustrates the site-directed RNA editase method according to the present invention.

FIG. 2 shows the purified λN-DD in panel A and the purified RNA Oligo-Box B in panel B according to the present invention.

FIG. 3 illustrates the method using Oligo-Box B and λN-DD to specifically edit RNA encoding the squid K+ channel Sk Kv1.2A according to the present invention.

FIG. 4 illustrates the method using the Oligo-Box B and λN-DD to correct a premature termination codon within CFTR according to the present invention.

FIG. 5 illustrates the method for correcting CFTR W496X in Xenopus oocytes according to the present invention.

Throughout the figures, the same reference numbers and characters, unless otherwise stated, are used to denote like elements, components, portions or features of the illustrated embodiments. The subject invention will be described in detail in conjunction with the accompanying figures, in view of the illustrative embodiments.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a site-directed RNA editase. It is composed of a protein to carry out the adenosine deamination and an antisense RNA oligo to guide the protein to the correct location. The method of the present invention is illustrated in FIG. 1. A critical aspect of this novel method is how to attach the antisense RNA oligonucleotide, used as a guide, to the deaminase domain of ADAR, to be used to catalyze the editing reaction. For this purpose we used the bacteriophage λ N-peptide RNA binding protein (SEQ ID:3) and the Box B RNA hairpin loop (SEQ ID:2), its natural interaction partner (Chattopadhyay et al., 1995a. Tan & Frankel, 1995). Now the inventive method will be explained in relation to FIG. 1. The first element is an adenosine we wish to target 1 within a RNA molecule 2. This can be any adenosine within any RNA. The second element is an antisense RNA oligonucleotide 3. The 5’ end of the oligonucleotide should begin before (on the 3’ side) of the target adenosine. The 3’ end of the oligonucleotide should extend up to 21 nucleotides 5’ from the target adenosine. On the 3’ end of the oligo we have fused the Box B RNA sequence 4 (SEQ ID:2). The bacteriophage λ N-peptide 5 (SEQ ID:3) binds to the Box B RNA sequence 4 (SEQ ID:2). Fused to the C-terminus of the bacteriophage λ N-peptide 5 (SEQ ID:3) is the deaminase domain of human ADAR2 6 (SEQ ID:1). Thus, the antisense RNA oligonucleotide is used for targeting the entire complex to a specific address on the RNA molecule. The Box B RNA (SEQ ID:2) and the λ N-peptide (SEQ ID:3) are used as a linkage between the antisense RNA oligonucleotide and the deaminase domain of human ADAR2 (SEQ ID:1). The deaminase domain of human ADAR2 is used to catalyze the deamination of the specific adenosine residue. These elements make up the two molecules: the antisense RNA oligonucleotide-Box B RNA hairpin forms a single unit (referred to hereafter as Oligo-Box B), as does the λ N-peptide-deaminase domain of human ADAR2 (referred to hereafter as λN-DD).

Production of Oligo-Box B and λN-DD

The primary aim of the invention was to synthesize both Oligo-Box B and λN-DD. Oligo-Box B was made by using a DNA oligonucleotide encoding a T7 RNA polymerase promoter at the 5’ end followed by the Oligo-Box B sequence. The “oligo” sequence corresponds to a variable length of antisense sequence, complementary to the RNA that is being targeted. The Box B sequence (SEQ ID:2) is given in the previous section. An antisense version of the same DNA oligonucleotide was also synthesized. The two
were then hybridized together and used as a template to make RNA with T7 RNA polymerase. N-DD was made by cloning the encoding DNA sequence (all available on the public nucleotide database at www.ncbi.nlm.nih.gov) into the pPICZ A vector purchased from Invitrogen (Carlsbad, Calif.) and including an N-Terminal FLAG epitope tag (DYKDDDDK) (SEQ ID:7) and six histidines at the C-terminus. The protein was then expressed in the yeast *Pichia pastoris* (strain GS115 from Invitrogen, Carlsbad, Calif.) and purified first over a Ni-NiTrisacetic Acid column followed by an Anti-FLAG affinity column. FIG. 2 shows the purified N-DD in panel A and the purified RNA Oligo-Box B in panel B. In this case, the “oligo” part of the sequence is complimentary to nt 1454-1465 and 1469-1491 of CFTR (NCBI reference sequence NM_000492.3).

Evidence that Oligo-Box B and N-DD Are Active

We first tested Oligo-Box B and N-DD’s ability to specifically edit RNA encoding the squid K+ channel SgKv1.2A as illustrated in FIG. 3. For this experiment, Oligo-Box B complex was slightly different than the one previously described. The sequence length of the entire oligonucleotide was: 131 bp. The antisense portion of the oligonucleotide (SEQ ID:4) was complimentary to nucleotides 501-613 of SgKv1.2A. The Box B loop was inserted in the middle of the oligo, between nucleotides that are complimentary to positions 554 and 555 of SgKv1.2A. Note that this step is different than the one described previously, where the Box B loop was positioned at the 5’ end of the oligo. In our experiments, we vary the position of the Box B loop and still have a functional interaction. This Oligo-Box B, was combined with N-DD protein and SgKv1.2A RNA in vitro. After incubation, the SgKv1.2A RNA was converted into cDNA. Direct sequencing of RT-PCR products showed editing at nucleotides 530, 536, 537, 544, 547, 553, 568, 573, 574, 575, 580, 581, 584, 585 and 607. All of these positions were under the antisense oligo and adjacent to the Box B loop. Control experiments that lacked either the Oligo-Box B or the N-DD protein showed no editing. In similar experiments, we showed that by adding excess of commercially synthesized Box B oligo sequence or λN peptide could block the reaction. Taken together, these data show the Box-B-N interaction is required to target the catalytic domain of ADAR to the edited positions. These experiments show that editing was particularly active at positions 573, 574 and 575. These positions are centered 19, 20 and 21 nucleotides on the 5’ side of the Box B attachment.

Based on the above results, we tested whether we could use this system to correct a genetic mutation in vitro as illustrated in FIG. 4. We targeted λN- and 1487 in human cystic fibrosis transmembrane conductance regulator (CFTR) mRNAs, messages which encode a protein involved in the transport of chloride ions across cell membranes. In wild type CFTR, this position is encoded by a guanine. Some people carry a mutant CFTR where this position has been mutated to Adenosine (Balassopoulou et al., 1994). This mutation changes codon 496 from a tryptophan residue to a premature termination codon (PTC). Thus people with two copies of the W496X mutation make truncated, non-functional CFTR proteins and often develop the disease Cystic Fibrosis. Using our approach, we have corrected the W496X mutation back to W (tryptophan) by editing Adenosine 1487 to inosine. From the experiments previously described, we learned that when guided by an antisense oligo, the λN-DD protein will edit at a position 20 nt 5′ of the position of the Box B loop insertion. Accordingly, we made an Oligo-Box B RNA that contained sequence complimentary to CFTR nt 1454-1465 and 1469-1491. The entire sequence of this construct was

\[
\text{(SEQ ID: 8)}
\]

\[
\text{TAATCTAGGAAAACTGAGAACAGAGGCCCTGAAAAAGGGCCAAATTCTTCCACCC).
\]

The first two nucleotides were added to optimize the transcriptional efficiency of the oligo. When this RNA was combined with λN-DD protein and CFTR W496X (SEQ ID:5) in vitro, we were able to correct approximately 97% of the mutant CFTR RNA, changing nt 1487 to inosine and thus correcting codon 496 back to W. Editing was specific to this adenosine.

We have also tested our strategy in living cells. When *Xenopus* oocytes are injected with mRNA for wild type CFTR (SEQ ID:6), they produce functional chloride channels whose currents can be monitored by standard voltage clamp techniques. CFTR channels open in response to ATP and cyclic AMP. ATP levels within an oocyte are sufficient to open the channels, but cyclic AMP levels must be increased by exposing the oocytes to Forskolin. After about 1 day, *Xenopus* oocytes injected with wt CFTR produce large currents when activated with 40 μM external Forskolin. Oocytes injected with CFTR carrying the W496X mutation express no current over background for at least 7 days. FIG. 5 illustrates an experiment designed to correct CFTR W496X. We injected oocytes with RNA encoding λN-DD. Three days later we injected them again with Oligo-Box3 RNA and RNA encoding CFTR W496X. After three days total membrane conductance was measured under voltage clamp. Experimental oocytes produced large conductances (>80 μS) when exposed to 40 μM external Forskolin. Oocytes that lacked the Oligo Box B RNA or the λN-DD RNA, or oocytes that were injected with only CFTR W496X, produced no current over background. These results indicated that we could successfully correct a genetic mutation and restore a portion of CFTR function within a living cell. In principle, this strategy should work equivalently with other PTCs.

The ability to change genetic information at the level of RNA has many practical applications. We envision that Oligo Box B and λN-DD could be delivered to cells in order to correct genetic mutations that result in premature termination codons (UAG, UAA, UGA). In some cases, the wt codon is a tryptophan (UGG). In these cases, editing would restore function. Sometimes the wt codon is for a different amino acid. We anticipate that in some cases protein function would support a tryptophan at these positions and thus our strategy could restore a portion of protein function. The Oligo Box B could be delivered as DNA, which would be transcribed into RNA, or as RNA. The λN-DD could be delivered as DNA, RNA or protein. Oligo Box B and λN-DD could also be delivered to cells in order to correct stop codon mutations and missense mutations that can be corrected by changing A to G. Oligo Box B and λN-DD could also be delivered to cells in order to improve protein function. In addition, it can be used to develop strains of model organisms, including but not limited to rats, mice or *Drosophila melanogaster*, that express Oligo Box B RNA and λN-DD protein. These engineered organisms
could then serve as models for specific human diseases by introducing the correct mutations.

The basic concept behind the present invention is to guide an RNA editing enzyme to a specific residue within a mRNA by coupling it to an antisense oligonucleotide. There are many alternative approaches that could be effective. Besides human ADAR2, different ADAR catalytic domains could be used. They may have different preferences for adenosines depending on the context of the surrounding nucleotides and this could improve editing efficiency. Besides using the catalytic domain from an adenosine deaminase, the catalytic domain of a cytidine deaminase could be used to make C to U conversions in RNA. In addition, the full-length cytidine deaminase could be used. Besides using the catalytic domain from an adenosine deaminase, the catalytic domain of a cytidine deaminase like Activation-induced cytidine deaminase (AID) or APOBEC1 could be used to make C to U conversions in DNA. Further improvements to site-directed editors could be made by introducing mutations in the catalytic domain of ADAR or a cytidine deaminase could be added to alter selectivity, specificity or to modify catalytic activity. Antisense oligonucleotides could be linked at locations other than the N-terminus in order to alter selectivity of specificity. The sequence or the length of the linkage between the λN peptide and the ADAR2 deaminase domain could be modified in order to 1) regulate the distance that editing occurs away from the location of the BoxB loop or 2) the flexibility of the linkage with the idea that a more rigid structure would increase the specificity of editing site selection.

Different linkages between the catalytic domain of ADAR and the antisense oligo could be used. In a preferred embodiment of the invention, BoxB RNA and λN RNA binding peptide are used to create the linkage. Alternatively, a direct covalent linkage between the catalytic domain of ADAR and the antisense oligo could be used. In addition, different RNA-RNA binding protein could be used. Modifications to the antisense oligonucleotide structure could be made in order to stabilize it, prevent it from being degraded, to regulate its affinity for its target, to increase its catalytic efficiency, or to decrease the extent to which it blocks translation. Chemical modifications to the nucleosides could be introduced to either the bases or the sugars. Deoxynucleotides could be used instead of ribonucleotides.

Although the invention has been described in conjunction with specific embodiments, it is evident that many alternatives and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, the invention is intended to embrace all of the alternatives and variations that fall within the spirit and scope of the appended claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 8
<210> SEQ ID NO 1
<211> LENGTH: 405
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 1
Leu His Leu Asp Gln Thr Pro Ser Arg Gln Pro Ile Pro Ser Glu Gly
  1      5      10      15
Leu Gln Leu His Leu Pro Gln Val Leu Ala Asp Ala Val Ser Arg Leu
  20     25     30
Val Leu Gly Lys Phe Gly Asp Leu Thr Arg Asp Phe Ser Ser Pro His
  35     40     45
Ala Arg Arg Lys Val Leu Ala Gly Val Val Met Thr Thr Gly Thr Asp
  50     55     60
Val Lys Asp Ala Lys Val Ile Ser Val Ser Thr Gly Thr Lys Cys Ile
  65     70     75     80
Asn Gly Glu Tyr Met Ser Asp Arg Gly Leu Ala Leu Asn Asp Cys His
  85     90     95
Ala Glu Ile Ile Ser Arg Arg Ser Leu Arg Phe Leu Tyr Thr Gln
 100    105    110
Leu Glu Leu Tyr Leu Asn Asn Lys Asp Arg Asp Gln Lys Arg Ser Ile Phe
 115    120    125
Gln Lys Ser Glu Arg Gly Phe Arg Leu Lys Glu Asn Val Gin Phe
 130    135    140
His Leu Tyr Ile Ser Thr Ser Pro Cys Gly Asp Ala Arg Ile Phe Ser
 145    150    155    160
Pro His Glu Pro Ile Leu Glu Pro Ala Asp Arg His Pro Asn Arg
 165    170    175
Lys Ala Arg Gly Gin Leu Arg Thr Lys Ile Glu Ser Gly Gly Gly Thr
 180    185    190
```
| Ile Pro Val Arg Ser Asn Ala Ser Ile Gln Thr Trp Asp Gly Val Leu |
|------------------|------------------|------------------|------------------|
| | | | |
| Gln Gly Glu Arg Leu Leu Thr Met Ser Cys Ser Asp Lys Ile Ala Arg |
| | | | |
| Trp Asn Val Val Gly Ile Gln Gly Ser Leu Ser Ile Phe Val Glu |
| | | | |
| Pro Ile Tyr Phe Ser Ser Ile Leu Gly Ser Leu Tyr His Gly Asp |
| | | | |
| His Leu Ser Arg Ala Met Tyr Gln Arg Ile Ser Asn Ile Glu Asp Leu |
| | | | |
| Pro Pro Leu Tyr Thr Leu Asn Lys Pro Leu Ser Gly Ile Ser Asn |
| | | | |
| Ala Glu Ala Arg Gln Pro Gly Lys Ala Pro Asn Phe Ser Val Asn Trp |
| | | | |
| Thr Val Gly Asp Ser Ala Ile Glu Val Ile Asn Ala Thr Thr Gly Lys |
| | | | |
| Asp Glu Leu Gly Arg Ala Ser Arg Leu Cys Lys His Ala Leu Tyr Cys |
| | | | |
| Arg Trp Met Arg Val His Gly Lys Val Pro Ser His Leu Leu Arg Ser |
| | | | |
| Lys Ile Thr Lys Pro Asn Val Tyr His Glu Ser Lys Leu Ala Ala Lys |
| | | | |
| Glu Tyr Gln Ala Ala Lys Ala Arg Leu Phe Thr Ala Phe Ile Lys Ala |
| | | | |
| Gly Leu Gly Ala Trp Val Glu Lys Pro Thr Glu Gln Asp Gln Phe Ser |
| | | | |
| Leu Thr Pro Leu Val |
| | | | |

<210> SEQ ID NO 2
<211> LENGTH: 17
<212> TYPE: RNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 2

```
ggccccgaaa aagggcc
```

<210> SEQ ID NO 3
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 3

```
Asn Ala Arg Thr Arg Arg Arg Glu Arg Arg Ala Glu Lys Gln Ala Gln
```

<210> SEQ ID NO 4
<211> LENGTH: 1575
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 4

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
```

<210> SEQ ID NO 5
<211> LENGTH: 60
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 5

```
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
```

<210> SEQ ID NO 6
<211> LENGTH: 120
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 6

```
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```

<210> SEQ ID NO 7
<211> LENGTH: 180
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 7

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```

<210> SEQ ID NO 8
<211> LENGTH: 240
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 8

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```

<210> SEQ ID NO 9
<211> LENGTH: 300
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 9

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```

<210> SEQ ID NO 10
<211> LENGTH: 360
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 10

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```

<210> SEQ ID NO 11
<211> LENGTH: 420
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 11

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```

<210> SEQ ID NO 12
<211> LENGTH: 540
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 12

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```

<210> SEQ ID NO 13
<211> LENGTH: 660
<212> TYPE: DNA
<213> ORGANISM: doryteuthis opalescens

<400> SEQUENCE: 13

```
agttgatgatgtg tctactatat aaaaaaaaaa aagctgatta tgtcataatt agagggagtg
gttgagatg ataaggggct cctgttgag gactgtacag aacccaaacc gacatcggtt
gttgagatgtg tctactatat gccaatccct ggtctattttc caaacacaca
```
-continued

gaggacgaca atgtccatgt cggagtggga atgggtcgcg gcagetgacgta tgaacctgtg 240
gagcgcgttg tatacagct gacgagcctc cgggtgcaaa ccacactcag gaecctgctg 300
cagtttcttg aacgccttaacctggaacataaaaagaactaatctttaaaaaaga 360
cgggaatgtt atttttttgg tcgaaatcgt cccagctttg acggcaatacttatattac 420
cagagtcgcg gcggggatag aaaaaattctc aacgttaaccgttgagttttc ttgcgggt 480
atcagggtct caagatcggg tgcgaagaac atagaataaat acggcggagaga tgaatgttt 540
atataaagag aggsacgaccc ctctctggaa aatgagtctc acggacagag ctgcgtac 600
ttcgactatct cggagatcct acacgctgcg cgcctcctag caat SSAACCTAAG 660
atctacttta cctgtgatatt atctlgcgtt gacacccgcg cccagtt attaatggaaaaa 720
ttcgtgaattg agacaatgta ggaagacgc acataaaaatt ttggaagaatt ttcttcctaat 780
atagaacact gctgcaatctga attggctcag tcggaaacct tggtaaagatt tgccttcct 840
ctgtaaaaaa taagttttcct caaacaactt aagatctca atgaatgtt tgcctatttat 900
cctatttcg tcgccgtcctggg aagccgtttac tgcgcgcaaa acaagatcagcaacacagcc 960
atggtcgttg cgtcgttcag ggctcgttcg tgcgtcgaag tttccccagctt attcagtcgct 1020
tctagacatt ctaaagatgg acataacact gcgcagccccc tcaagaagccg catgagggaa 1080
ctcgcgtttcat tataatttctcttattagtaat ggaaggatctttctttctctattagtaat 1140
ttcgccagag ccgtgtcga gcaacacacat tccaaaaagca ctaocctgagct tttttggtgg 1200
gocgtgggta ctatcctcag ggtgtgagg gggagacagtg gcggcccttg ggcttggggc 1260
aagttgcgtcg ggcctgatag tcgccctgca ggtgtgtttag gcctgcgacta acgcctacgc 1320
gtcctttctt ccaacccctt caatcttttt ccagagagac cagaaagagtta cgataagaat 1380
aagtcacaac agctcagcgc ggcattaaac tattcggaaga acagatgctt gtagttcctc 1440
gagactgtgc cggcacataat ggagatcgag gcggccgctg tcttaaatgtg aacatataaa 1500
gaaaaactcg cggctttggag gacacacccg acaacacatt atatgaataaa cttaagttata 1560
gagactgaag tttga 1575

<210> SEQ ID NO: 5
<211> LENGTH: 443
<212> TYPE: DNA
<213> ORGANISM: Homo Sapiens

<400> SEQUENCE: 5

atgcagagggt gcgcttggga aaaggccacgc gttgttccaa aacgaaatcc ttagctggacc 60
agacacattt tgaagagaaaag atacagacag cgccctggaat tgcagcaacat ataccaaatc 120
ccttctgttg atttgctggg caactctctct gaaanatggg agaagaaaagt gcagtagagag 180
cgtctctcaaa aagaaaactc taaactctct aagccttcgc ggcgtgatttt tttctgagaa 240
tttatgttct atggaaactctc ttttatatta ggggaagtcctt ccagcctgtact gcgcctctc 300
tttacctggga gatctagctc ttccctagtc ccggatccaa aggaggaacgc cttctgctg 360
atatatctg gatcaggtgt atgccctctc tttatggta gggagacgtc cotacacca 420
gcctttttttt gcctcctcatc catgggtaggt atcagtagata ttagttgattt 480
tataaagaga ctttaaaggt gtcagacgctg tttctcagata aaataagatg tggacaactt 540
gttggctccc tttcaccaca cctgaaacaa ttgctgctag gacccgtatt gccacaccttcc 600
gttggcttcg ctcttttggc gatgagccct ctcagaggggt atattctggaga gttgtaec 660
ggtctgacct ctcggtgact tgttctttctg atagtctctg cccttttttca ggtcttggcct
720
ggagagtga tgaagatgta cagatctcag agaagtgagga agatcagta aagacctcgt
780
attaccccg aatattgattg aatatc GGa aacctcagtt cctgtctcctg ggaagagaag
gggaagaaaaa tgaagatcag ctagaacaag gcactgctgg gaagagc
900
tgagtgagt gatctcagct ctcgctgacct tttttttttt cgtttttttt atttttttttt
960
tggtctctc ctcgctgacct attcataagtt atcgatttcc cttctttgttg tctacaccg
1020
taatctctc gagagtctgag cagctggctg acctgctgctg ttcggtggcct
gttaaaccct
tggtctgcag ctcgctgacct ataataacaaaa atacactttgt tcctacaacaagcagaagat
1140
aagacatgg aataaacttt aagatcgtac gagaattttta cgcagtaatg aacagctt
1260
acttctaaag gatagtaagag cctctctctgt cagatctcag actctctctct cactctctctc
1320
tcggagaata taataacctta gagaatgaaag cagctggctc tcggatctctg
gtggatctctc
tcggagaata agaggagct aagagcagctg ctagaaccagc ttcgagcttg actggtcctt
1440
aaatattcgc aacgctgctt ctttcatagg cttcttagat attgctggtgc
ggagctgctg
ttcgtcagtt ttcgttcagtt ttacagcagtt tcctcctttt tctcctcgct
1500
accatttaag atgaaaaatcat cttggctttt tcctgttagt atctagagata cagatcgc
1560
atcgaaccgg cgaaccgatc ttcatttcgag ctaaaaaggg cagatctcag
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
1620
cggagctagc tcgctaatac cagagctgaga ggttataa gttattttttg gcattttttc
gttagctagc
ctgtggtgtt atgcaataatgg attagtttttata ctcagatcaag ctaaaaaggg cagatctcag
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
1740
ttacagcaga aaaaatattt tattttcctt tatttttctt aaaaattttc
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
1800
atcgaaccgg cgaaccgatc ttcatttcgag ctaaaaaggg cagatctcag
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
1860
gagtttcgct gctttttttt tgggacattt tcggagctgtt cggataacagtt atatatcattt
gttagctagc
ctgtggtgtt atgcaataatgg attagtttttata ctcagatcaag ctaaaaaggg cagatctcag
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
1920
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata
1990
atcgaaccgg cgaaccgatc ttcatttcgag ctaaaaaggg cagatctcag
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
2040
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
2100
atcgaaccgg cgaaccgatc ttcatttcgag ctaaaaaggg cagatctcag
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
2160
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata
2220
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata
2280
ggctacgactg
ttttttctgc cttttttttc cggagctatcc acaaatttcgca aaaaataattt gcattttttc
2340
cgagcctcct ctcgtatgctt tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2400
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2460
cgagcctcct ctcgtatgctt tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2520
cgagcctcct ctcgtatgctt tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2580
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2640
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2700
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2760
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2820
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2880
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
2940
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
3000
agctgcaactt cttttttttt gttcattt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata tttttttttt gttcattttt cttcgtgata
3060
coagtgtag tggtttttat tatgttgaga gcatattcc tcaaaaacct acacaactc 3120
aaacacggg atcctggaag caggagtcc caatcacttc accttgtagc aagtctaaa 3180
ggactagga caatctggcg cttggaacg ggagctaatt gcggaaactc 3240
gctctgtaatt tcaactgttc ttcgtaactg ctacaccagc ctgtctaca 3300
atgagaatacg aatgatcttt ttcgatctcc ttcatattgg ttcaccccatttta 3360
acaacagagg aagqagatctg attatccgta ctttagccat gaactacact 3420
agtacatttg agtggcgctg aaacttcagc atagatctgg atagatctgg 3480
agcggacagct ttaagctctat tgcaccgcca acgaaaggtta acacacaacc aaatcacaat 3540
cotaacaaga atgccaacact ctcgaagatt atgattattg aacatccaca cgtgaagaaa 3600
gatgccacatt ggccctcagg ggcccaaatg acgtcgaag tcttcacagc aaatcacaat 3660
agaagggtgca agccatcatt tctcttcctaa gaatgctcgg gagagaggtg 3720
ggctctggag aagaaagttg atcagggagg aagctttttg ttacgcgatt 3780
tggaacgctg aggaggatatt ctaggtctgtc ttcgatctcc ttcatattgg 3840
caagttggag aagcgcttgg agttacataa ccaagagatg ttatcattttttt ggaagttttt 3900
agaacaacctg tgcgcttcca gtaacagttgg agttgatcagc aaataatgag aatgtcggat 3960
agcgtagtgac tgaagctatt cctctttggag aagctttttt tgcggctgtt 4020
agttcggcgt gttgtcctaag ccaagccagg aagctttatt gttggtgacgct 4080
ctgggtcagg ccagttctcc ttcgatctcc ttcatattgg aagctttttt 4140
tcccaagcat ttggaacagt ctacaaccagc gcattctggctg atgacacact aatcctttgg 4200
gaacagatgt gcgaaccgca ccaacatttt tcagacacacc aagacaaatga 4260
gttgctcagttt acatagctgc ccagggagct ttctgcgactgc cccacaggc 4320
atggcctcc cctgacagggt gaaacttttt tccacccagca aatcgaagct 4380
aaacccagca ttgctttctg tgaagagag aagctttatt ctaggtctggt 4440
tag 4443

<210> SEQ ID NO 6
<211> LENGTH: 8086
<212> TYPE: RNA
<213> ORGANISM: Homo Sapiens
<400> SEQUENCE: 6
atgcagaggt ggcgtttgga aagggccagc gtggagctca acgtaatccgagc 60
agaccaaatg tggaggaagg aatcacagcc gcctcgggaat tcggagcactg ataccacact 120
cctctgttggttg tcttcgcagcg caggaatgctctaagggat ggtacaggg 180
ggtgctccaa aaaaaatacg ccaactctctct cagcgctttt ggagatgtgtt ttcgtaga 240
tttcgacctt atggagatctc tttatattta gggggtacta ccaagctgctc agccctttc 300
ttacctggag cacatcagc ttcctagtac cccgataacag aggaggaacc cctctatgag 360
attatatcag gcatacaggt atggctttct tttatggtga ggacactgct gtacacca 420
gcacatttgg tcccttcacta cattgaaatg catcgagaa tagctgttct tcagtttattt 480
tattacagcc ccttataaggc tggagccctt gttctcgataa aaataatgta tggagaactt 540
gttgtacct ctcgcaaaaa cggtgaactc tttgtgtaag gacctgctgc ggccactacc 600
gttgtgatcg tctctgccac gcggaccactc ctcagggggc tatactggag gttgttaacag 660
cagctgatacgcttttttatatatgtgagagcatatttcccctcaacactcataaactcaaccttgaagatttcctaccaaaaacaacactcattctggagacdattttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtgtcaggtgtcaggtgatggcttctaagctttttctcaacctcattctgttcaaggtcaggtgtcaaggtcaggtg
We claim:

1. A method of editing a nucleotide within a RNA molecule comprising:
 identifying an adenosine within said RNA molecule;
 binding an antisense RNA oligonucleotide to a region surrounding said adenosine; and
 providing a human ADAR2 deaminase domain (SEQ ID: 1) linked to said antisense RNA oligonucleotide.

2. The method of claim 1, comprising a 3' end of the antisense RNA oligonucleotide beginning before said adenosine on a 3' end, wherein a 3' end of the antisense RNA oligonucleotide extends up to 21 nucleotides 5' from said adenosine.

3. The method of claim 1, wherein a Box B RNA (SEQ ID: 2) and a λ N-peptide (SEQ ID: 3) are used as a linkage between said antisense RNA oligonucleotide and said deaminase domain of human ADAR2 (SEQ ID: 1).

4. The method of claim 1, wherein said human ADAR2 deaminase domain (SEQ ID: 1) is linked to said antisense RNA oligonucleotide by: fusing a Box B RNA sequence...
(SEQ ID:2) on the 3' end of said antisense RNA oligonucleotide; binding a bacteriophage λ N-peptide (SEQ ID:3) to said Box B RNA sequence (SEQ ID:2); and fusing the deaminase domain of human ADAR2 (SEQ ID:1) to a C-terminus of said bacteriophage λ N-peptide (SEQ ID:3). 5

The method of claim 1, wherein the deaminase domain of human ADAR2 (SEQ ID:1) is used to catalyze the deamination of a specific adenosine residue.

* * * * *